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Abstract – This paper intends to study the Vector –Valued Measurable functions and its related 
properties. Study in this paper is not restricted to, but, we do have extensively dealt with the class of 
‘Riemann measurable’ vector-valued functions and ‘Lusin type property’. This class contains all 
Riemann integrable functions and is closely related to the restricted versions of the McShane and 
Henstock integrals, the M-and H-integrals, defined by means of Lebesgue measurable gauges. Not 
exclusively but primarily, in this paper, our developments are in the spirit of the Riemann type integral 
theory for real-valued functions. In particular, we prove that a bounded Riemann measurable vector-
valued function is M -integrable. 
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INTRODUCTION 

Recalling a ―Banach space‖ we know that there are two 
basic notions of function measurability. They are the 
notions of Bochner (or strong) measurability and scalar 
(or weak) measurability. And their relationship is well-
known:  the Pettis Measurability Theorem states that a 
function is Bochner measurable if and only if it is both 
scalarly measurable and almost separably-valued. As a 
result, these notions of measurability diverge sharply 
for non-separable range spaces. Two classical 

examples illustrate some of the difficulties that occur in   
the non-separable case when dealing with various 
collections of measurable and integrable vector-valued 
functions. Although all bounded Bochner measurable 
functions are necessarily Bochner integrable, according 
to Graves‘ example some fairly simple functions exist 
that is Riemann integrable but not integrable in the 
Bochner sense. The difficulty is that the function of 
Graves‘ example is not the limit of a sequence of 
finitely-valued Bochner measurable functions. On the 
other hand, Pettis‘ theory, which has the widest range 
among the classical theories of vector-valued 
integration, does not assign an integral to a bounded 
scalarly measurable function from Phillips‘ example. 

We originally set out to find a notion of measurability for 
a vector-valued function that is more relevant to 
Riemann type integration theories, such as those of 
McShane and Henstock, rather than that of Bochner or 
scalar measurability. Seeking such a notion of 
measurability, we turned to the integration theories set 

forth by Kolmogorov and Birkhoff. These two theories 
of integration, which are also based on finite or infinite 
Riemann type sums, turn out to be equivalent and to 
have all the reasonable generality. They are, 
however, not as simple and as useful as the theory of 
Riemann type integrals. Later investigations of the 

Kolmogorov–Birkhoff construction can be found. In 
connection with some of these investigations several 
classes of ‗measurable‘ functions were defined that 
included the collection of Bochner measurable 
functions as a subclass. These classes consist of 
functions that are, in a certain sense, very close to 
Riemann integrable functions and are defined by 
means of Cauchy type conditions and limit processes. 

In this paper we introduce the notion of Riemann 
measurability, generalizing the well-known Lusin 
condition, which is equivalent to Lebesgue 
measurability for real-valued functions defined on [a, 
b]. The notion of Riemann measurability, which we 
believe to be new, is based on a weakening of the 
Lusin condition in which the sets on which the 
function is required to be continuous are replaced 
with sets over which the function satisfies a Cauchy 
type condition for Riemann integrability, so that the 
function may even be everywhere discontinuous on 

these sets. Several authors, including Jeffery 
(‗measurable‘ functions), Kunisawa ( -measurable 
functions), Snow  (Pε-measurable functions or almost 
Riemann-integrable functions), and, more recently, 
Cascales and Rodríguez (the Bourgain property), 
have used similar notions of measurability in their 
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treatment of the Birkhoff integral. However, we should 
emphasize that our notion of function measurability, 
unlike in the papers mentioned above, is formulated 
without the use of partitions into measurable sets or 
considering the relation of the function to any special 
function sequence. Our measurable function class is 
defined by means of the classical Riemann sums and 
constant gauges and is therefore closely related to the 
M - and H -integrals that are obtained if we assume that 
the gauge in the definitions of the McShane and 
Henstock integrals can be chosen to be Lebesgue 
measurable. Finally, we demonstrate that the class of 
Riemann measurable functions is large enough to 

include all Birkhoff integrable functions, while we try to 
keep, in part at least, the simplicity and usefulness that 
characterize the theory of Riemann type integrals for 
real-valued functions defined on a compact interval of 
the real line. 

TERMINOLOGY AND NOTATION USED: 

For the most part, our notation and terminology are 
standard. Throughout this paper [a, b] will denote a 
fixed nondegenerate interval of the real line and I (or 
sometimes J ) its closed nondegenerate subinterval. X 

denotes a real Banach space and X∗ its dual. Let E and 
H be sets, then dist(E, H) is the distance between E 
and H; int E, ∂E, χE, and λ(E) will denote the interior of 
E, the boundary  of  E, the  characteristic  function of E, 
and the Lebesgue measure of E, respectively. For ease 
of notation, we will drop the adjective Lebesgue and 
refer to measurable sets, negligible sets, and 
measurable functions. Finally, a (measurable) gauge on 
E is any (measurable) positive function defined on a 
(measurable) set E. 

Definition 

(a) A partial McShane partition of  is a finite 

collection  such that  is a 
collection of pairwise non-overlapping intervals and  

 for each k. P is subordinate to a gauge δ 

on [a, b] if  for each   is 
said to be a McShane partition of [a, b] provided   

      covers [a, b]. 

We  say that a function  is McShane  

integrable  on [a, b],  with  a  McShane integral  
if for each positive number ε there is a gauge δ on [a, b] 
such that 

 

whenever   is a McShane partition of [a, 
b] subordinate to δ. 

A partial Henstock partition of [a, b] is a partial 

McShane partition (McShane patition)   
of [a, b] with tk ∈ Ik for each k. A function f : [a, b] → X is  
Henstock integrble  on [a, b], with a Henstock integral  

, if for each positive number ε there is a gauge δ 
on [a, b] such  that for each Henstock partition 

 of [a, b] subordinate to δ. Customarily, 

we say that a function  is McShane (Henstock) 

integrable on a set   if the function  

 is McShane (Henstock) integrable on [a, b]  and 
Standard arguments show that a McShane (Henstock) 
integrable on [a, b] function is McShane (Henstock) 
integrable on any subinterval I of [a, b]. Moreover, a 
McShane integrable on [a, b] function is McShane 
integrable on any measurable subset of [a, b]. Finally, 
recall that f is said to be scalarly measurable on a 

measurable set E ⊂ [a, b] if for each x∗ ∈ X∗ the real-
valued function x∗f is measurable on E. 

DEFINING MEASURABILITY AND 
INTEGRABILITY: 

We begin with the fundamental definition of classes of 
vector-valued functions. 

Definition. Let  and let  be a 
measurable subset of [a, b]. 

(a)  is said to be Lusin measurable on E if for 

each ε > 0 there exists a closed set  

with  such that the function  
is continuous. 

(b) f is said to be Riemann measurable on E if for 

each ε > 0 there exist a closed set F ⊂ E with 
λ(E \ F ) <ε and a positive number δ such that 

 

whenever  is a finite collection of pairwise non-

overlapping intervals with     

and . Some comments are in order at 
this point. The Pettis Measurability Theorem shows 
that ‗Lusin measurability‘ of (a) above implies 
Bochner measurability. Thus Lusin measurability is 
equivalent to Bochner measurability. It is our 
understanding that the ‗Riemann measurability‘ of (b) 
above is explicitly described here for the first time, 
although we borrow some essential ideas from some 
previous studies. 
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The next theorem summarizes the basic properties of 
Riemann measurable functions. 

Theorem 1 .. Let  

and let  be a measurable subset of [a, b]. 

(a) If f is Riemann measurable on E, then αf is 
Riemann measurable on E for each αϵR. 

(b) If  and  are Riemann measurable on , 

then  is Riemann measurable on E. 

(c) If  is Riemann measurable on  and is a 
measurable subset of E, then f is Riemann 
measurable on E1. 

(d) If  is Riemann measurable on , then there 

exists a sequence  of pairwise disjoint 
closed subsets of E such that the set 

 is negligible and f  is bounded on 

 for each . 

(e) If  is Riemann measurable on  if and only if 

 is Riemann measurable on [a, b]. 

(f) If  is Lusin measurable on , then f is 

Riemann measurable on . 

Proof. The proofs of (a) and (b) are not difficult and we 

leave them to the reader. Fix  in the remainder of 
this proof. 

For (c), let a closed set  and  correspond to 

 in the definition of Riemann measurability of f E. 

Evidently  Choose a closed set 

 such that . 

This gives us 

 

It is now clear that δ and F1 correspond to ε in the 
definition of Riemann measurability of f on E1. 

For (d), combine part (c) with the definition of Riemann 
measurability. 

For (e), suppose first that f is Riemann measurable on 

E. Let a closed set  and correspond to 

ε/2 in the definition of Riemann measurability of on 

. Choose a closed set H ⊂ [a, b] \ E such  that 

. Define F1 = F ∪ H and 

 and note that 

 

Consequently, δ1 and F1 correspond to ε in the 

definition of Riemann measurability of  on [a, b]. 

(c) and the definition of Riemann measurability of  
on E combine to obtain the converse. For  (f),  choose  
a  sequence  {Fn}∞n=1  of  pairwise  disjoint  closed  

subsets  of  E and  a  sequence  of 

positive numbers such that the set  is 
negligible. 

Let   be a finitite collection of pairwise non 
overlapping intervals with 

 for each k, and 
compute 

 

It follows that δ and F correspond to ε in the definition 

of Riemann measurability of . 

Definition. A function  is said to be M-
integrable (H -integrable) on [a, b] if it is McShane 

(Henstock) integrable on [a, b] and for each  
there exists a measurable gauge δ on [a, b] that 
corresponds to ε in the definition of the McShane 

(Henstock) integral of . The function  is M 

-integrable  (H -integrable) on a set  if 

 is M-integrable (H -integrable) on [a, b] and 

. 

Remark. Solodov first introduced the M -integral for 
vector-valued functions. He proved that a vector-
valued function is M -integrable on [a, b] if and only if 
it is integrable on [a, b] in the Kolmogorov sense. As 
we noted in the introduction, the Kolmogorov integral 
(or the unconditional Riemann–Lebesgue integral)is 

in turn equivalent to the Birkhoff integral. 

The standard technique can be applied to show that 
the M - and H -integrals have typical properties, 
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including the linearity of the M- and H-integrals, the 
relation between M- 

and H-integrations and subintervals, and the Hake 
Theorem for the H -integral. 

Theorem 2 . Let  and let 

. 

(a) If f and g are M-integrable (H -integrable) on [a, 

b], then  is M-
integrable (H -integrable) on [a, b] and 

 

If f is M-integrable (H -integrable) on [a, b] and [c, d] is 
a nondegenerate subinterval of [a, b], then f is M-
integrable (H -integrable) on [c, d]. 

(b) Let . If  is M-integrable (H -integrable) 

on [a, c] and [c, b],  then  is  M-integrable (H -
integrable) on [a, b] and 

 

(c) If f is H -integrable on [a, c] for each  for 

each  and the limits  exists 
in X then f is M-integrable on [a,b] and 

 

A routine proof can be applied to demonstrate the 
following more involved property of the M -integral. 

Before we illustrate the results of this paper let us 
understand the basic terms and concepts utilized 
throughout in this paper. 

UNDERSTANDING MEASURABLE SPACES 

A measurable space is a set S, together with a 
nonempty collection, S, of subsets of S, satisfying the 
following two conditions: 

1. For any A, B in the collection S, the set A − B is 
also in S. 

2. For any  

The elements of S are called measurable sets. These 
two conditions are summarized by saying that the 
measurable sets are closed under taking finite 
differences and countable unions. 

Think of S as the arena in which all the action 
(integrals, etc) will take place; and of the measurable 
sets are those that are ―candidates for having a size". 
In some examples, all the measurable sets will be 
assigned a ―size"; in others, only the smaller 
measurable sets will be (with the remaining meam 
surable sets having, effectively ―infinite size"). 

Several properties of measurable sets are immediate 
from the definition. 

1. The empty set ø, is measurable. [Since S is 
nonempty, there exists some measurable set 

A. So,  is measurable, by 
condition 1 above.] 

2. For A and B any two measurable sets, 

, and A − B are all 
measurable. 

It follows immediately, by repeated application of 
these facts, that the measurable sets are closed 
under taking any finite numbers of intersections, 
unions, and differences. 

3. For  measurable, their intersection, 

Ai, is also measurable. [First note that we have the 
following set-theoretic identity: 

. 

Now, on the right, apply condition 1 above to the set-

differences, and condition 2 to the union.] Thus, 
measurable sets are closed under taking countable 
intersections and unions. 

Here are some examples of measurable spaces. 

1. Let  be any set, and let  consist only of the 

empty set . This is a (rather boring) 
measurable space. 

2. Let  be any set, and let  consist of all 

subsets of . This is a measurable space. 

3. Let  be any set, and let  consist of all 

subsets of  that are countable (or finite). 
This is a measurable space. 

4. Let  be any set, and fix any nonempty 

collection  of subsets of . Let  be the 

collection of subsets of  that result from the 

following construction. First set . Now 

expand  to include all sets that result by 
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taking differences and countable unions of sets 
in S. Next, again expand S to include all sets 
that result by taking differences and countable 

unions of sets in (the already expanded) . 

Continue in this way, and denote by  the 

collection that results. Then  is a 
measurable space. Thus, you can generate 

measurable spaces by starting with any set , 

and any collection  of subsets of  (i.e., those 
that you really want to turn out, in the end, to 
be measurable). By expanding that original 
collection P, as described above, you can 
indeed achieve a measurable space in which 
the chosen sets are indeed measurable. 

5. Let  be any measurable space, and let 

 (not necessarily measurable). Let K1 
denote the collection of all subsets of K that are 

S-measurable. Then  is a measurable 

space. [The two properties for  follow 
immediately from the corresponding properties 
of (S, S1).] Thus, each subset of a measurable 
space gives rise to a new measurable space 
(called a subspace of the original measurable 
space). 

6. Let  and  be measurable 
spaces, based on disjoint unu derlying sets. 

Set , and let S consist of all sets 

 such that  and . 

Then  is a measurable space. 

THE CONCEPTS OF MEASURABLE 
FUNCTIONS: 

Lets begin with some motivation from probability. Let 

 be a probability space. It is known that 
random variables should be considered as mappings 

from . But is this enough for a rigorous 
mathematical theory. In practise, in calculating 

probabilities such as where . 
This means terms of the measure P, there must be 

 

Now , however P only makes 
sense when applied to sets in F. So it can be concluded 

that  only makes sense if we impose an 

additional condition on the mapping , namely that 

 for all . This property is 
precisely what is meant by measurability. 

In fact let  be an arbitrary measurable space. A 

mapping  is said to be measurable if 

 for all . So in particular, we should 
define a random variable on a probability space to be a 

measurable mapping from  to . 

Theorem 3 : Let f : S → R be a mapping. The following 
are equivalent: 

for all  

for all  

for all  

for all  

Proof.  as  and  is 
closed under taking complements. 

 is proved similarly. 

 uses  

 

and the result follows since Σ is closed under 
countable intersections. 

 uses 

 

and the fact that Σ is closed under countable unions. 

It follows that f is measurable if any of (i) to (iv) in 
Theorem 3 is established for all a ϵ R. Now it can be 
shown that f is measurable if and only if f−1((a; b)) ϵ Σ 
for all −∞ ≤ a < b ≤ ∞. 

 set  in  is open if for every  there is an 
open interval I containing x for which I ⊆ O. 

Proposition. Every open set  in R is a countable 
union of disjoint open intervals. 

Proof.  For x ϵ O, let Ix be the largest open interval 

containing x for which Ix ⊆ O. If x; y ϵ O and x ≠y then 
either Ix and Iy are disjoint or identical, for if they have 
a non-empty intersection their union is an open 
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interval containing both x and y and that leads to a 

contradiction unless they coincide. Clearly  

Now select a rational number r(x) in every interval Ix 
and rewrite O as the countable disjoint union over 
intervals Ix labelled by distinct rationals r(x). 

It follows that every open interval in R is an open set. 
Also we see from Proposition 2 that if O is an open set 
in R then O ϵ B(R). 

Theorem 4 The mapping f : S → R is measurable if 
and only if f−1(O) ϵ Σ for all open sets O in R. 

Proof. Suppose that f−1(O) ϵ Σ for all open sets O in R. 
Then in particular f−1((a; ∞)) ϵ Σ for all a ϵ R and so f  is 
measurable. Then, 

 

If f is measurable, then  for all n ϵ N and 
so f-1(O) ϵ Σ since Σ is closed under countable union. 

Theorem 5 The mapping f : S → R is measurable if and 
only if f−1(A) ϵ Σ for all A ϵ B(R). 

Proof. Suppose that f is measurable and let A = {E ⊆ 
R;f−1(E) ϵ Σ}. It is first required to show that  A is a ζ-
algebra. S(i). R ϵ A as S = f−1(R). 

S(ii). If E ϵ A then Ec ϵ A since f−1(Ec) = f−1(E)c ϵ Σ. 

S(iii) If (An) is a sequence of sets in A then 

 since   
On the basis of the above studies it have been 
established that f-1((a,b)) ϵ Σ for all 

 and so A is a ζ-algebra of subsets 
of R that contains all the open intervals. But, according 
to defination B(R) is the smallest of such ζ-algebras. It 
follows that 

 

The converse is easy (e.g. just allow A to range over 
open sets, and use above Theorem). 

Theorem 6 leads to the following important extension of 

the idea of a measurable function: Let  and 

 be measurable spaces. The mapping 

 is measurable if  for all . 

Let  be a measure space and  be a 
measurable function. It is easy to see that the mapping 

is a measure on . Indeed 

 is obvious and if (An) is a sequence of disjoint 
sets in B(R) we have 

 

where  for  

The measure  is called the pushforward of  by . 

In the case of a probability space  and a 

random variable , the pushforward is usually 

denoted . It is a probability measure on  
(total mass 1) and is called the probability law or 

probability distribution of the random variable . 

SOME EXAMPLES OF MEASURABLE 
FUNCTIONS: 

Frst consider the case where  (equipped with its 
Borel ζ-algebra) 

and look for classes of measurable functions. In fact, 
it will prove that {continuous functions on 

{measurable functions on R}. 

Proposition. A mapping  is continuous if and 

only if  is open for every open set O in R. 

Proof. First suppose that f is continuous. Choose an 
open set O and let a ϵ f−1(O) so that f(a) ϵ O. Then 

there exists  > 0 so that (f(a) −  f(a) + ) ⊆ O. By 

definition of continuity of f, for such an  there exists δ 

> 0 so that  

−  f(a) + ). But this tells us that (a – δ, a + δ) ⊆ 

f−1((f(a) −  f(a) + )) ⊆ f−1(O). Since a is arbitrary it 
can be conluded that f−1(O) is open.Conversely 
suppose that f−1(O) is open for every open set O in 

R. Choose a ϵ R and let  > 0. Then since (f(a) −  

f(a) + ) is open so is f−1((f(a) −  f(a) + )). Since a ϵ 

f−1((f(a) −  f(a) + )) there exists δ > 0 so that (a – 

δ, a + δ) ⊆ f−1((f(a) −  f(a) + )). From here it can be 
seen that whenever |x – a| < δ we must have 

|f(x)−f(a)|< . But then f is continuous at a and the 
result follows. 

Corollary. Every continuous function on R is 
measurable. 

Proof. Let f : R → R be continuous and O be an 
arbitrary open set in R. Then (O) is an open set in R,  
f−1(O) is in B(R). Hence f is measurable. There are 
many discontinuous functions on R that are also 
measurable. Lets look at an important class of 
examples in a wider context. Let (S; Σ) be a general 
measurable space. Fix A ϵ Σ and define the indicator 
function 1A : S → R by 
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If (S, Σ) = (R, B(R)) or indeed if  is any metric space, 

then  is clearly a measurable but discontinuous 
function. 

A particularly interesting example is obtained by taking 

 and . Then  is called 
Dirichlet‘s jump function. 

As already seen that  is measurable (it is a countable 
union of points). As there is a rational number between 
any pair of irrationals and an irrational number between 

any pair of rationals, we see that in this case  is 

measurable, but discontinuous at every point of . A 

measurable function from  to  is 
sometimes called Borel measurable. 

MEASURABLE FUNCTIONS ALGEBRAS: 

Consider, (S, Σ) is a measurable space. Let f and g be 
functions from S to R and define for all x ϵ S, 

 

Proposition. If f and g are measurable then so are 

Proof. This follows immediately from the facts that for 
all c ϵ R, 

 

Let  be the function  for all . If f 

is measurable it is easily checked also is. 
Let 0 denote the zero function that maps every element 

of S to zero, i.e. . Then 0 is measurable since 
it is the indicator factor of a measurable set. 

Define  so that all x ϵ s. 

 

Corollary. If f is measurable then so are   and . 

Now define the set . 

Proposition. If f and g are measurable then {f > g} ϵ Σ. 

Proof  Let  be an enumeration of the 
rational numbers. Then 

 

Theorem 7 If f and g are measurable then so is f + g. 

Proof. By now it is known that a −g is measurable for 
all a ϵ R. Now (f + g)−1((a, ∞)) = {f + g > a} = {f > a – 
g} ϵ Σ; 

by previous Propositions and this establishes the 
result. 

Use induction to show that if  are 

measurable and  then  is also 

measurable where . So the 

set of measurable functions from  to  forms a real 
vector space. Of particular interest are the simple 
functions which take the form 

 

Theorem 8 If f : S → R is measurable and 

 is continuous then  is 
measurable from S to R. 

Proof. For all  let . Then 

since  is continuous,  a is an open set in . Then 

since for any subset  of , 

, we have 

 

The result follows. 

Theorem 9  if f and g are measurable so is  
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Proof. Apply above Theorem with  to 

deduce that  is measurable whenever h is. But 

 and the result follows. 

MEASURABLE FUNCTIONS LIMITS: 

Let (fn) be a bounded sequence of functions from S to 
R such that the condition supnϵNsupxϵS |fn(x)|<∞. 
Define infnϵNfn and supnϵNfn by 

 

Proposition. If fn is measurable for all nϵN then infnϵNfn 
and supnϵNfn are both measurable. 

Proof. For all c ϵ R, 

 

Define  

 

For all  x ϵ S. 

UNDERSTANDING SIMPLE FUNCTIONS: 

Recall the definition of indicator functions IA where A ϵ 
Σ. A mapping 

f : S → R is said to be simple if it takes the form 

 

where  and  

with  In 
other words, a simple function is a finite linear 
combination of indicator functions of non-overlapping 
sets. It follows from above theorems that every simple 
function is measurable. It is straightforward to prove 
that sums and scalar multiples of simple functions are 
themselves simple, so the set of all simple functions 
form a vector space. 

Recall that a mapping  is non-negative if 

 for all , which in short is written as 

 when . It is easy to see that a 
simple function is non-negative if and only if 

. 

Theorem 10 : Let  be measurable and non-
negative. Then there exists a sequence (Sn) of non-
negative simple functions on S with 

 so that Sn converges 

pointwise to f as . If f is bounde then 
convergence is uniform. 

Proof. This problem needs to be broken in three steps: 

Step 1- Construction of . 

Divide the interval  into  subintervals 

each of length 1/2n by taking 

 Let Ej=f-1(Ij) and Fn=f-1([n,∞)). Then 

 for all x ϵ S 

 

Step 2 – Properties of (Sn) 

For x ϵ Ej, Sn(x) =(j-1)/ 2n and (j-1)/ 2n ≤ f(x) < (1/2n) 
and so Sn(x) ≤ f(x). For x ϵ Fn, Sn(x) = n and f(x) ≥ n. 
So it concludes that Sn(x) ≤ f for all n ϵ N. To show 
that Sn ≤ Sn+1 fix an arbitrary j and consider Ij =[(j-
1)/2n,j/2n). For convenienace write Ij as I such that 

 where I1= [(2j-2)/2n+1, (2j-1)/2n+1) and 
I2 = [(2j-1)/2n+1, 2j/2n+1). Let E= f-1(I), E1=f-1(I1) 
and E2=f-1(I2). Then Sn(x) = (j-1)/22 for all x ϵ E and 
so on for X ϵ E1  and x ϵ E2. It follows that Sn ≤ Sn+1 
for all x ϵ E. 

Step 3 – Convergence of (Sn) 

For any x ϵ S, since f(x) ϵ R there exists n0 ϵ N so 
that f(x) ≤ n0. Then for each n > n0, f(x) ϵ Ij for some 
1≤ j ≤ n2n. from here on the basis of above theorems, 
the result follows, from which the uniformity of 
convergence is deduced. 

WHAT ARE MEASURES: 

Let (S,S1) be a measurable space. A measure on (S, 
S1) consists of a nonempty subset, M, of S1, together 

with a mapping   (where R+ denotes the sets 
of non-negative reals) satisfying the following two 
conditions. 

from applying the above 

1. For any A ϵ M and any B ⊂ A, with B ϵ S1, we 
have B ϵ M. 
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2. Let A1, A2; · · · ϵ M be disjoint, and set A = 

A1  A2 · · ·. Then: This union A is in M if and 
only if the sum µ(A1) + µ(A2) + · · · converges; 
and when these hold that sum is precisely µ(A). 

A set A ϵ M is said to have measure; and µ(A) is called 
the measure of A. Think of the collection M as 
consisting of those measurable sets that actually are 
assigned a ―size" (i.e., of those size-candidates (in S1) 
that were successful); and of µ(A) as that size. 

Then the first condition above says that all sufficiently 
small measurable sets are indeed assigned size. The 
second condition says that the only excuse a 
measurable set A has for not being assigned a size is 
that ―there is already too much measure inside A", i.e., 
that A effectively has ―infinite measure". The last part of 
condition 2 says that measure is additive under taking 
unions of disjoint sets (something we would have 
wanted and expected to be true). 

Several properties of measures are immediate from the 
definition. 

1. The empty set ø is in M, and µ(ø) = 0. [There 
exists some set A ϵ M. Set B = ø and apply 
condition 1, to conclude øϵ M. Now apply 
condition 2 to the sequence (having union A = 
ø). Since A ϵ M, we have µ(ø) + µ(ø) + · · ·-
µ(ø), which implies µ(ø) - 0.] 

2. For any A, B ϵ M, A B, A B, and A−B are all 
in M. Furthermore, if A and B are disjoint, then 

µ(A  B) = µ(A) + µ(B). [The first and third 

follow immediately from condition 1, since A B 
and A−B are both subsets of A. For the second, 
apply condition 2 to the sequence A – B, B, 

ø,…….. of disjoint sets, with union A  B. 
Additivity of the measures also follows from 
this, since  when A and B are disjoint, A − B = 
A.] 

3. For any A, B ϵ M, with B ⊂ A, then µ(B)≤ µ(A). 
[We have, by the previous item, µ(A) = µ(B) + 
µ(A − B).] Thus, ―the bigger the set, the larger 
its measure". 

4. For any A1, A2; · · · ϵ M, Ai ϵ M. [This is 

immediate from condition 1 above, since Ai ϵ 

S1 and Ai ⊂ A1 ϵ M.] 

Thus, the sets that have measure (i.e., those that are in 

M) are closed under finite differences, intersections and 
unions; as well as under countable intersections. What 
about countable unions? Let A1, A2; · · · be a 
sequence of sets in M, not necessarily disjoint. First 

note that  = A can always be written as a union of 
a collection of disjoint sets in M, namely of A1, A2 − A1, 
A3 − A2 − A1; · · ·. If the sum of the measures of the 
sets in this last list converges, then, by condition 2 
above, we are guaranteed that A ϵ M. And if the sum 
doesn‘t converge, then we are guaranteed that A is not 
in M. Note incidentally, that convergence of this sum is 
guaranteed by convergence of the sum µ(A1) + µ(A2) + 
µ(A3) + · · · (but, without disjointness, this last sum may 
exceed µ(A)). In short, the sets that have measure are 
not in general closed under countable unions, but 
failure occurs only because of excessive measure. 

Here are some examples of measures. 

1. Let S be any set, let S, the collection of 
measurable sets, be all subsets of S, let M= 
S, and, for A ϵ M, let µ(A) = 0. This is a 
(boring) measure. 

2. Let S be any set, S all countable (or finite) 
subsets of S, M the collection of all finite 
subsets of S, and, for A ϵ M, let µ(A) be the 
number of elements in the set A. This is is 
called counting measure on S. Note that the 
set S itself could be uncountable. 

3. Let S be any set and S the collection of all 
subsets of S. Fix a nonnegative function 

S  on S. Now let M consist of all sets A ϵ 
S such that ΣAf converges. Thus, M includes 
all the finite subsets of S; and possibly some 
countably infinite subsets (provided there isn‘t 
too much f on the subset); and possibly even 
some uncountable infinite subsets (provided f 
vanishes a lot on the subset). For A ϵ M, set 
µ(A) = ΣAf. This is a measure. For f = 1, it 
reduces to counting measure. 

4. Let (S, S1,M,µ) be any measurable 
space/measure. Fix any K ϵ S (not 
necessarily in S). Denote by K the collection 
of all sets in S that are subsets of K; and by 
MK the collection of all sets in M that are 
subsets of K. For A ϵ MK, set µK(A) = µ(A). 
Then (K, K1, MK, µK) is again a measurable 
space/measure. [This is an easy check, using 
for each property, the corresponding property 
of (S, S1, M, µ).] Thus, any subset of the 
underlying set S of a space with measure 
gives rise to another space with measure. 
This is called, of course, a measure 
subspace. 

5. Let (S0,S1, M0,µ0) and (S00,S01,M00, µ00) 
be measurable spaces/measures, with S0 

and S00 disjoint. Set S = S0 S00; let S 

consist of A ⊂ S such that A  S0 ϵ S1 and A 
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 S00 ϵ S01. Let S (resp, M) consist of A ⊂ S 

such that A  S0 ϵ S1 and A  S00 ϵ S1 (resp, 
ϵ M0 and ϵ M00). Finally, for A ϵ M, set µ(A) = 

µ0(A  S0) + µ00(A  S00). This is a 
measurable space/measure. Thus, we may 
take the ―disjoint union" of two measurable 
spaces/measures. 

6. Let (S, S) be a measurable space, and let (M, 
µ) and (M, µ0) be two measures on this space. 
[Note that they have the same M.] Define M 

 R+ by: (µ + µ0)(A) = µ(A) + µ0(A). This is 
a measure, too. And, similarly, for any number 

a > 0, the mapping   with action 
(aμ)(A) = aμ(A) is a measure. Thus, we can 
add measures, and multiply them by positive 
constants. 

We now obtain two results to the effect that ―if a 
sequence of sets apa proaches (in a suitable sense) 
another set, then their measures approach the 
measure of that other set". In short, the measure of a 
set is ―a continuous function of the set". 

Theorem 11. Fix a measure space (S, S1, M, µ), let A1 

⊂ A2 ⊂ · · · with Ai ϵM; and set A = Ai. Then: A ϵ M if 
and only if the sequence µ(Ai) of numbers converges 
(as i→∞); and when these hold that limit is precisely 
µ(A). 

Proof. Since the Ai are nested, we have the following 
set-theoretic identities: 

A = A1  (A2 − A1)  (A3 − A2)  · · · ; 

Ai = A1  (A2 − A1)  (A3 − A2)  · · ·  (Ai –  Ai−1): 

Note that the sets in the unions on the right are disjoint, 
and in M. Since the union on the right of Eqn. (2) is 
finite, we have 

µ(Ai) = µ(A1) + µ(A2 − A1) + µ(A3 − A2) + · · · + µ(Ai – 
Ai−1): 

Hence: The µ(Ai) converge if and only if the sum µ(A1) 
+ µ(A2 − A1) + µ(A3 − A2) + · · · converges; which in 
turn holds if and only if A ϵ M and the definition of a 
measureg; and that when these hold µ(A) = lim µ(Ai) as 
per above equations and the definition of a measureg. 

Theorem 12. Fix a measure space (S; S; M; µ), let A1 

⊃ A2 ⊃ · · ·, with Ai ϵM; and set A = Ai. Then 

, and . 

Proof. The proof is similar to that above (but easier), 

using the fact that A1 = A  (A1 −A2)  (A2 −A3) · · 
·, where the sets on the right are disjoint, and in M. 

As a final result on measure spaces, we show that, 

under certain circumc stances, a ( ; µ) that is ―not 
quite a measure" can be made into one by including 

within  certain additional sets. Let (S, S1) be a 

measurable space. Let  be a nonempty subset of S, 

and let µ be a mapping ,    Let us suppose 
that this (M; µ) satisfies the following two conditions: 

1. For any  and any B ⊂ A, with , 

we have   

2. Let A1, A2; · · ·  be disjoint, and set A = 

A1  A2  · · ·, their union. Then, provided 

, the sum µ(A1) + µ(A2) + · · · 
converges, to µ(A). 

Thus, this (M; µ) is practically a measure on (S,S). 
Condition 1 above is identical to condition 1 for a 
measure; and condition 2 is only somewhat weaker 
than condition 2 for a measure. All that has been left 
out, in condition 2, is that portion of condition 2 that 
states: 

Whenever Σµ(Ai) converges, then . That is, 
this (M; µ) is very nearly a measure, lacking only the 
requirement that disjoint unions of elements of M, if 
not too obese measurem wise, are themselves in M. 

The present result is that, under the circumstances of 
the paragraph above, we can recover from that (M; µ) 
a measure. The idea is to enlarge the original M to 
include the missing sets. Denote by M^ the collection 
of all subsets of S that are of the form [Ai,where A1; 
A2; · · · is a sequence of disjoint sets in M for which 
Σµ(Ai) converges; and let µ^(A) = Σµ(Ai). Note that 
every set A in M is automatically in M^ ; with µ^(A) = 
µ(A). This  The present theorem is: This (M^ ; µ^) is a 
measure. 

The first step of the proof is to show that the function 

µ^ is well-defined. To this end, let A = A1   A2  · · 
· be in M^ via condition ii) above. Let B1, B2, · · · be a 
second disjoint collection of elements of M, with the 

same union: Bj = A. We must show that Σµ(Bj) = 
Σµ(Ai), i.e., that µ^(A), defined via the Bj, is the same 
as µ^(A) defined via the Ai. To see this, set, for i; j = 

1; 2; · · ·, Cij = Ai  Bj. Then the Cij are disjoint and in 
M, and their union is precisely A. But by condition 2 
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we have Σiµ(Cij) = µ(Bj) and Σjµ(Cij) = µ(Ai). That 
Σµ(Ai) = Σµ(Bj) follows. 

To complete the proof, we must show that (M^ ; µ^) 
satisfies conditions 1 and 2 for a measure. For 

condition 1: Let ^ : We have A = Ai, where 
the Ai are disjoint and are in M, and are such that 

Σµ(Ai) converges. Let B ⊂ A, with . We must 

show that ^ . But this follows, since B =  (B  

Ai), where the B  Ai are disjoint, are in M, and are 

such that Σµ(B  Ai) converges. We leave condition 2 
as an (easy) exercise. Here is an example of an 
application of this result. Let S = Z+, the set of positive 
integers, let S consist of all subsets of S, let M consist 
of all finite subsets of S, and, for A ϵ M, let µ(A) = 
ΣnϵA(1/2n), where the sum on the right is finite. This 
(M; µ) satisfies conditions 1 and 2 above. But it is not a 
measure, for it does not satisfy condition 2 for a 
measure space. In this case, the M^ constructed above 
consists of all subsets of S, and, for A ϵM^ , µ^(A) = Σn 
ϵ A(1/2n), where now the sum on the right is over the 
(possibly infinite) set A. The measure space (M, µ) here 
constructed will be recognized as a special case of 
Example above. 

Finally, we remark that, when the original (M, µ) of the 
previous page happens to be a measure, then M^ = M, 
and µ^ = µ. 

We now turn to what is certainly the most important 
example of a measure space: Lebesque measure. Let 
S = R, the set of reals. [The case S = Rn is virtually 
identical, line-for-line, to this case; but S = R makes 
writing easier.] 

Set I = (a; b), an open interval in R. The idea is that we 
want this interval to be measurable, with measure its 
length: µ(I) = b − a. Let‘s try to turn this idea into a 
measure space. By condition 2 for a measure space, 
our collection M will have to include also sets of the 

form K = I1  I2 · · ·, a union of disjoint intervals, with 
measure µ(K) = µ(I1) + µ(I2) + · · · provided the sum on 
the right converges. And furthermore, by condition 1 for 
a measure space, M will also have to include 
differences of intervals, i.e., the half-closed intervals [a, 
b) and (a, b], with measures again b − a. So, we 
expand our original M to include these new sets. Next, 
let us return, with this new, expanded M, to condition 2. 
By this condition, M must include also countable unions 
of the half-closed intervals. Returning to condition 1, we 
find that our M must include differences of these 
unions. Continue in this way, at each stage expanding 
the then-current M by including the new sets demanded 
by conditions 2 and 1. Does this process terminate? 
That is, do we, eventually, reach a point at which 
applying conditions 2 and 1 to the then-current M does 
not result in any further expansion of M? If this did 
occur, then we would be done. Presumably, we would 

at that point be able to write down some general form 
for a set in this final M, as well as a general formula for 
its measure. We would thus have our measure space. 
But, unfortunately, it turns out that this process does 
not terminate: Each passage through condition 2 and 
condition 1 requires that additional, new sets be 
included in M. In short, this is not a very good way to 
construct our measure space. So, let‘s try a new 

strategy. Fix any set X ⊂ R. Let I1, I2, · · · be any 
countable collection of open intervals that covers X 

[i.e., that are such that X ⊂  Note that we do not 
require that the Ii be disjoint.] There always exists at 
least one such collection, e.g., (−1, 1), (−2, 2),· · . 

Now set m = Σµ(Ii), the sum of the lengths of the Ii. 
This m is either a nonnegative number or ―∞‖ (in case 
the sum fails to converge). We define the outer 

measure of X, written µ∗(X) to be the greatest lower 
bound of these m‘s, taken over all countable 
collections of open intervals that cover X; so µ∗(X) is 
either a nonnegative number, or ―∞‖ (in case X is 
covered by no countable collection of intervals the 
sum of whose lengths converges). The outer measure 
of X reflects \how much open-interval is required to 
cover X", i.e., is a rough measure of the ―size" of X. 
For example, for X already an interval, X = (a; b), we 

have µ∗(X) = (b − a), its length (an assertion that 
seems rather obvious, but is in fact a bit tricky to 
prove). As a second example, let X be the set of 
rational numbers. Order the rationals in any way, e.g., 

3/5, −398/57, 3; · · ·. Now fix any  > 0. Let I1 be the 

interval of length  centered on the first rational (3/5); 

I2 the interval of length 2 centered on the second 
rational (−398/57); and so on. Then these Ii cover X; 

and µ(I1) + µ(I2) + · · · =  + 2 + · · · = 2 . But  > 0 
is arbitarary: Thus, there exists a covering of X (the 
rationals) by open intervals the sum of whose lengths 

is as close to zero as we wish. We conclude: = 
0. The same holds for any countable (or finite) subset 
of the reals. The outer measure has the sort of 
behavior we might expect of a measure. For example: 

For X ⊂ Y ⊂ R, then  ≤  (which follows 
from the fact that any covering of Y is already a 

covering of X). For X; Y ⊂ R,  (X  Y ) ≤ + 

 (which follows from the fact that the intervals in 
a covering of X taken together with the intervals in a 
covering of Y yields a collection of intervals that 

covers X  Y ). Thus, it is tempting to try to construct 
our measure space using outer measure: Let M 
consist of all subsets X of S = R with finite outer 

measure, and set µ(X) = . But, unfortunately, 
this does not work, as the following example 
illustrates. For a and b and two numbers in the 

interval [0; 1), write a b provided a-b is a rational 
numer. This is an equivalence trlation. Now suppose, 
for contradiction, that we had a measure space based 
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on outer measure. By the first two properties above, we 

would have Σ (Xr) = ([0; 1)) = 1, where the sum on 
the left is over all rationals r ϵ [0; 1). 

Thus, the outer measure is somewhat flawed as a 
representative of the‖\size" of a set, in the following 
sense. Certain sets (such as the X above) are, roughly 
speaking, so frothy that they cannot be covered 
efficiently by open intervals, and for these the outer 
measure is ―too large". 

This observation is the key to finding our measure 
space. For X and Y any two subsets of S = R, set d(X; 

Y ) = (X − Y ) +  (Y − X), so d(X; Y ) is a 
nonnegative number (or possibly ―1"). Think of d(X, Y ) 
as reflecting the extent to which X and Y differ as sets", 
i.e., as an effective ―distance" between the sets X and 
Y . 

This interpretation is supported by the following 
properties: 

1. We have d(X, Y ) = 0 whenever X = Y . [But 
note, that the converse fails, e.g., with Y 
consisting of X together with any one number 
not in X.] 

2. For any subsets X,Y, Z of R, we have d(X, Z) ≤ 
d(X,Y ) + d(Y,Z). This follows from the facts that 

X − Z ⊂ (X − Y )  (Y − Z) and Z − X ⊂ (Z − Y ) 

 (Y − X). That is, d( ‗ ) satisfies the triangle 
inequality. 

3. For any subsets X, X0, Y, Y0 of R, d(X  Y, X0 

 Y0) ≤ d(X, X0) + d(Y, Y0), and similarly with 

― ‖ replaced by  or ―-―{This follows from 

the fact that the set-difference of X  Y and X0 

 Y0 is a subset of (X − X0)  (Y − Y0); and 

similarly for  and ―-―{That is, nearby sets 
have nearby unions, intersections, and 
differences", i.e., the set operations are 
―continuous" as measured by d( , ). 

4. For any subsets X, Y of R, |  (X)−  (Y)| ≤ 

d(X, Y ). This follows from X   (Y − X) = Y and 

Y  (X − Y ) = X. That is, outer measure is a d( 
; )-continuous function of the set. 

As we have remarked, the outer measure is sometimes 
\too large", and this fact renders it unsuitable as a 
measure. But the outer measure is suitable for 
generating an effective distance, d( , ), between sets, 
for in this role its propensity to be ―too-large" becomes 
merely an excess of caution. 

We now turn to the key definition. Denote by M the 
collection of all subsets A of S = R with the following 

property: Given any  > 0, there exists a K ⊂ R, where 
K is a finite union of open intervals, such that d(A; K) ≤ 

. And, for A ϵM, set µ(A) =  (A). In other words, the 
elements of M are the sets that can be ―approximated" 
(as measured by d( , )) by finite unions of open 
intervals. And, similarly, µ(A) is approximated by the 
sum of the lengths of the intervals in K (as follows from 

the fact that d(A, K) ≤  implies | (A) − (K)| ≤ ). It 
follows, in particular, that µ(A) is not ―∞". 

In the land of measure spaces, the more sets that are 
measurable the better. Do there exists measures that 
are better, in this sense, than Lebesque measure? That 
is, does there exist a measure (M^ ; µ^) on R that is an 
extene sion of Lebesque measure, in the sense that M^ 
is a proper superset of M, and µ^ agrees with µ on M? 
It turns out that there does. Let X denote any non-
measurable set of finite outer measure. Let S^ consist 

of all subsets of R of the form (A  X)  (B − X), 
where A and B are measurable. Thus, for example, 

choosing A = B we conclude that S^ ⊃ S; and, 

choosing A ⊃ X and B =ø, we conclude that X ϵ S^ . 
This collection is closed under differences and 
countable unions (as follows immediately from the 

fact that S is). Let M^ ⊂ S consist of those sets of this 
form with B having finite measure; and, for any such 

set, set  ((A\X) [ (B − X)) = µ*(A \ X)+µ(B)− µ*(B \ X). 
Thus, for example, X ϵ M^ , with µ^(X) = µ*(X); and, 
for A ϵ M, µ^(A) = µ(A). One checks that this (M^ ; µ^) 
is indeed a measure space, and that it is indeed an 
extension of Lebesque measure. Since X ϵ M^ but X ϵ 
M, this is a proper extension. 

For the purpose of convenience and better 
understanding we here, have defined some of the 
related terms and basic concepts in illustrative format 
with help of text and pictures. 

Riemann Sum 

1. Partition the interval [a,b] into n subintervals 

 

• Call the partition  

• The  subinterval is  

• Largest is called the norm, called  

• If all subintervals are of equal length, the 
norm is called regular. 

2. Choose an arbitrary value from each 

subinterval, call it  
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3. Form the sum 

 

This is the Riemann sum associated with 

• the function f 

• the given partition P 

• the chosen subinterval representatives 

• We will express a variety of quantities in terms 
of the Riemann sum 

This illustrates that the size of ∆x is allowed to vary 

 

Then     a < x1 < x2 < x3 < x4 ….etc.  is a partition of   [ 
a, b ]  Notice the partition  ∆x  does not have to be the 
same size for each rectangle.   

And    x1* , x2* , x3* ,  etc…  are  x  coordinates  such 
that a < x1* < x1,   x1 < x2* < x2 ,   x2 <  x3*  <  x3 , … 
and are  used to construct the height of the rectangles. 

The graph of a typical continuous function y = ƒ(x) over 
[a, b]. Partition [a, b] into n subintervals a <  x1 < x2 
<…xn < b. Select any number in each subinterval ck. 

products. 

 

This is called the Riemann Sum of the partition of ∆x. 

The width of the largest subinterval of a partition ∆ is 
the norm of the partition, written ||x||. 

As the number of partitions, n, gets larger and larger, 
the norm gets smaller and smaller. 

As n→∞, ||x|| →0 only if ||x|| are the same width!!!! 

The Definite Integral 

 

• The definite integral is the limit of the Riemann 
sum 

• We say that f is integrable when 

the number I can be approximated as accurate as 
needed by making || ∆ || sufficiently small 

f must exist on [a,b] and the Riemann sum must exist 

|| ∆ || →0 is the same as saying n→∞ 

 

The Definite integral above represents the Area of the 
region under the curve y = f (x), bounded by the x-
axis, and the vertical lines x = a, and x = b 

 

Relationship between Differentiability, Continuity, 
and Inerrability 

 

D – differentiable functions, strongest condition … all  
Diff‘ble functions are continuous and  integrable. 

C – Continuous functions, all cont functions are 
integrable, but not all are diff‘ble. 

I – integrable functions, weakest condition … it is 
possible they are not con‗t, and not diff‗ble. 

Additive property of integrals 
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If is integrable over interval [a,b], where a<c<b,  then: 

 

More Properties of Integrals 

For f, g integrable on [a,b], and k is a constant..., then 
since kf and f±g are integrable on [a,b], we have: 

1.  

2.  

Even – Odd Property of Integrals 

For  an even function: 

 

 

For  an odd function: 

 

Inequality Properties 

If  is integrable and nonnegative on :  

 

If  are integrable on , and  

 

Now, we here summarize some results about the 
integration and differentiation of Banach-space valued 
functions of a single variable. In a rough sense, vector-
valued integrals of integrable functions have similar 
properties, often with similar proofs, to scalar-valued 
L1-integrals. Nevertheless, the existence of different 
topologies (such as the weak and strong topologies) in 
the range space of integrals that take values in an 

infinite-dimensional Banach space introduces 
significant new issues that do not arise in the scalar-
valued case. 

VECTOR-VALUED MEASURABLE FUNCTIONS: 

Suppose that  is a real Banach space with norm  

and dual space  Let , and consider 

functions . We will generalize some of 
the definitions for real-valued functions of a single 
variable to vector-valued functions. 

Measurability:  if , let 

 

Denote the characteristic function of E 

Definition : A simple function  is a 
function of the form 

 

where E1, . . . , EN are Lebesgue measurable 

subsets of (0, T ) and . 

Definition .  A function    is  
strongly measurable, or  mea- surable for short, if 

there is a sequence  of simple 

functions  such that  strongly in X  
(i.e.  in norm) for t a.e.  in (0, T ). 

Measurability is preserved under natural operations 
on functions. 

If is measurable, then  
is measurable. 

If  is measurable and  
is measurable, then 

 is measurable. 

If  is a sequence of measurable 

functions and  strongly in  for t 

pointwise a.e. in , then  is 
measurable. 

We will only use strongly measurable functions, but 
there are other definitions of measurability. For 

example, a function  is said to be 
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weakly measurable if the real-valued function 

 is measurable for every ′. 
This amounts to a ‗co-ordinate wise‘ definition of 
measurability, in which we represent a vector-valued 
function by its real-valued coordinate functions. For 
finite-dimensional, or separable, Banach spaces these 
definitions coincide, but for non-separable spaces a 
weakly measurable function need not be strongly 
measurable. The relationship between weak and strong 
measurability is given by the Pettis theorem(1938). 

Definition.  A function  taking values in a 
Banach space X  is almost separably valued if there is 

a set  of measure zero such that  is 
separable, meaning that it contains a countable dense 
subset. This definition is equivalent to the condition that 

 is included in a closed, separable 
subspace of X. 

Theorem 13.  A function    is  strongly  
measurable if  and only if it is weakly measurable and 
almost separably valued. 

Thus, if X is a separable Banach space,  

is strongly measurable if and only  

is measurable for every ′. This theorem 
therefore reduces the verification of strong 
measurability to the verification of measurability of real-
valued functions. 

Definition. A  function  taking values in a 

Banach space  is weakly continuous if  

 is  continuous for every ′.  
The space of such weakly continuous functions is 

denoted by . 

Since a continuous function is measurable, every 
almost separably valued, weakly continuous function is 
strongly measurable. 

Example. Suppose that H is a non-separable Hilbert 
space whose dimension is equal to the cardinality of R. 

Let  be an orthonormal basis of H, and 

define a function  by . Then  is 

weakly but not strongly measurable. If    is  
the  standard  middle  thirds  Cantor  set  and {e˜t : t ∈ 

K} is an orthonormal basis of , then  

defined by  and   
is almost separably valued since |K| = 0; thus, g  is 
strongly measurable and equivalent to the zero-
function. 

Example.  Define .  

Then  is not almost separably valued, since 

 for t  so  is not strongly 
measurable.  On the other hand,  if we define g : (0, 1) 
→ L2(0, 1) by  g(t) = χ(0,t), then g  is strongly 
measurable.  To see this, note that L2(0, 1) is  

separable and for every , which is 
isomorphic to L2(0, 1)′, we have 

 

Thus,  is absolutely continuous 
and therefore measurable. 

Integration. The definition of the Lebesgue integral as 
a supremum of integrals of simple functions does not 
extend directly to vector-valued integrals because it 

uses the ordering properties of  in an essential way. 
One can use duality to∫define X-valued integrals f dt 
in terms of the corresponding real-valued integrals 

 where ′, but we will not consider 
such weak definitions of an integral here. Instead, we 
define the integral of vector-valued functions by 
completing the space of simple functions with respect 

to the norm. The resulting integral is 
called the Bochner integral, and its properties are 
similar to those of the Lebesgue integral of integrable 
real-valued functions. 

Definition. Let 

 

Be a simple function and let the integral f be defined 
by 

 

Where |Ej| denotes the Lebesgue measure of Ej. 

The value of the integral of a simple function is 
independent of how it is rep- resented in terms of 
characteristic functions. 

Definition.  A strongly measurable function f  : (0, T ) 
→ X  is Bochner integrable,  or integrable  for  short, if 
there is a  sequence  of  simple  functions  such that 
fn(t) → f (t) pointwise a.e. in (0, T ) and 
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The integral of f defined by 

 

Where the limits exists strongly in X. 

The value of the Bochner integral of  is independent of 
the sequence {fn} of approximating simple functions, 
and 

 

Moreover, if  is a bounded linear operator 

between Banach Space  and  is 

integrable, then  is integrable and 

 

More generally, this equality holds whenever 

 is a closed linear operator and 

, in which case . 

Example. If   is integrable and ′, 

then  is integrable and 

 

Example.  If  J : X→Y  is a continuous embedding of a 
Banach space X into a Banach space Y , and f : (0, T ) 
→ X, then 

 

Thus the  valued integrals agree, we can identify 
them. 

The following result, due to Bochner (1933), 
characterizes integrable functions as ones with 
integrable norm. 

Theorem 14. A function  is Bochner 
integrable if and only if it is strongly measurable and 

 

Thus, in order to verify that a measurable function f is 
Bochner integrable one only has to check that the real 

valued function , which is 
necessarily measurable, is integrable. 

Example. The functions  and 

 from above examples are 
not Bochner integrable since they are not strongly  

measurable. The function  is  
Bochner integrable,  and  its  integral  is  equal  to  

zero. The function  is Bochner 

integrable since it is measurable and  
is integrable on (0, 1). The dominated convergence 
theorem holds for Bochner integrals. The proof is the 
same as for the scalar-valued case, and we omit it. 

Theorem 15.  Suppose  that    is  
Bochner  integrable  for  each 

 strongly in  

for t a.e. in , and there is an integrable function 

 such that   for t 

a.e. in  and every . 

Then  is Bochner integrable and 

 

As usual, we regard functions that are equal 
pointwise a.e. as equivalent, and identify a function 
that is equivalent to a continuous function with its 
continuous representative. 

Theorem 16.  If  is a Banach space and 

, then  is a Banach 
space. 

Simple functions of the form 

 

where  and  is a measurable subset of (0, 

T ), are dense in . By mollifying these 
functions with respect to t, we get the following 
density result. 
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Proposition.  If X  is a Banach space and 1 ≤ p < ∞, 
then the collection of functions of the form 

 

The characterization of the dual space of a vector-
valued Lp-space is analogous to the scalar-valued 
case, after we take account of duality in the range 
space X. 

Theorem 17.  Suppose  that  1  ≤ p < ∞ and  X  is  a  
reflexive  Banach  space 

with dual space X'. Then the dual of  is 
isomorphic to 

 

where 

 

The action of  on 

is given by 

 

where the double brackets denote the  -  

duality pairing and the single brackets denote the  -  
duality pairing. 

The proof is more complicated than in the scalar case 

and some condition on  is required. Reflexivity is 

sufficient (as is the condition that is separable). 

Differentiability. The definition of continuity and 
pointwise differ- entiability of vector-valued functions 
are the same as in the scalar case. A function 

 is strongly continuous at 

 strongly in 

, and f is strongly continuous in (0, T ) if it 
is strongly continuous at every point of (0, T ). A 

function f is strongly differentiable at , with 
strong pointwise derivative ft(t), if 

 

where the limit exists strongly in X, and f is continuously 

differentiable in  if its pointwise derivative exists 

for every  and  is a 
strongly continuously function. The assumption of 
continuous differentiability is often too strong to be 
useful, so we need a weaker notion of the 
differentiability of a vector-valued function.  As for real-
valued functions, such as the step function or the 
Cantor function, the requirement that the strong 

pointwise derivative exists a.e. in  does not 
lead to an effective theory. Instead we use the notion 
of a distributional or weak derivative, which is a 
natural generalization of the definition for real-valued 

functions. Let  denote the space of 

measurable function  that are 
integrable on every compactly supported interval (a, 

b) (0, T). Also, as usual, let  denote the 
space of smooth, real-valued functions φ : (0, T) → R 

with compact support, . 

Definition. A function  is differentiable 

with weak derivate  if  

The above  
integrals are understood as Bochner integrals. In the 

commonly occurring case where  is a 
continuous embedding 

 from the above 
example we have 

 

Thus, we can identify f with Jf and use (6.40) to define 
the Y -valued derivative of an X-valued function. We 

then write, for example, that f ∈ Lp(0, T ; X) and ft ∈ 
Lq(0, T ; Y ) if f (t) is Lp in t with values in X and its 
weak derivative ft(t) is Lq in t with values in Y . 

If  is a scalar-valued, integrable function, 
then the Lebesgue differentiation theorem, implies 

that the limit  exists and is equal to f(t) 

for  pointwise a.e. in (0,T). the same result is true for 
vector-valued integrals. Thus, we can identify f with Jf 
and use above equation to define the Y -valued 
derivative of an X-valued function. We then write, for 

example, that  and 

if  is Lp in t with values in 
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and its weak derivative  is Lq in t with values in 
Y. 

The Radon-Nikodym property. Although we do not use 
this dis- cussion elsewhere, it is interesting to consider 
the relationship between weak differ- entiability and 
absolute continuity in the vector-valued case. The 
definition of absolute continuity of vector-valued 
functions is a natural generalization of the real-valued 
definition. We say that f : [0, T ] → X is absolutely 
continuous if for every ǫ > 0 there exists a δ > 0 such 
that 

 

for  every  collection  {[t0, t1], [t2, t3], . . . , [tN−1, tN ]} of  
non-overlapping subintervals of [0, T ] such that 

 

similarly, f : [0, T ] → X is Lipschitz continuous on [0, T ] 
if there exists a constant M ≥ 0 such that 

 

It follows immediately that a Lipschitz continuous 
function is absolutely continuous (with δ = ǫ/M ). A real-
valued function is weakly differentiable with integrable 
derivative if and only if it is absolutely continuous c.f. 
Theorem. This is one of the few properties of real-
valued integrals that does not carry over to Bochner 
integrals in arbitrary Banach spaces. It follows from the 
integral representation in above Theorem that every 
weakly differentiable function with integrable derivative 
is absolutely continuous, but it can happen that an 
absolutely continuous vector-valued function is not 
weakly differentiable. 

Example.  Define  . 

Then f is Lipschitz continuous, and therefore absolutely 
continuous. Nevertheless, the derivative f ′(t) does not 

exist for any t ∈ (0, 1) since the limit as h → 0 of the 

difference quotient  does not converge in 
L1(0, 1), so by above Theorem  f is not weakly 
differentiable. 

A Banach space for which every absolutely continuous 
function has an inte- grable weak derivative is said to 
have the Radon-Nikodym property. Any reflexive 
Banach space has this property but, as the previous 
example shows, the space L1(0, 1) does not. One can 
use the Radon-Nikodym property to study the geomet- 
ric structure of Banach spaces, but this question is not 
relevant for our purposes. Most of the spaces we use 
are reflexive, and even if they are not, we do not need 
an explicit characterization of the weakly differentiable 
functions. 

HILBERT TRIPLES: Hilbert triples provide a useful 
framework for the study of weak and variational 
solutions of PDEs. We consider real Hilbert spaces for 
simplicity. For complex Hilbert spaces, one has to 
replace duals by antiduals, as appropriate. 

Definition.  A Hilbert triple consists of three separable 
Hilbert spaces 

 

such that V is densely embedded in H, H is densely 
embedded in V′, and 

(f, v) = (f, v)H for every f ∈ H and v ∈ V . 

Hilbert triples are also referred to as Gelfand triples, 
variational triples, or rigged  Hilbert  spaces.   In  this  
definition,  (·, ·) :  V′ × V  → R  denotes  the duality 
pairing between V′ and V,  and (. , .)H  : H × H → R 
denotes  the  inner  product  on H.Thus, we identify:  
(a) the space V with a dense subspace of H through 
the embedding; (b) the dual of the ‗pivot‘ space H with 
itself through its own inner product, as usual for a 
Hilbert space; (c) the space H with a subspace of the 
dual space V′, where H acts on V through the H-inner 
product, not the V-inner product. In the elliptic and 
parabolic problems considered above involving a 
uniformly elliptic, second order operator, we have 

 

where  is a bounded open set.  Nothing will 
be lost by thinking about this case. The embedding 

is inclusion. The embedding  

  is defined by the identification of 
an L2-function with its corresponding regular 

distribution, and the action of   on a test of 

functions is given by 

 

The isomorphism between  and its dual space  is 
then given by 

 

Thus, a Hilbert triple allows us to represent a 
‗concrete‘ operator, such as −∆, as an isomorphism 
between a Hilbert space and its dual. As suggested 
by this example, in studying evolution equations such 
as the heat equation ut = ∆u, we are interested in 

functions u that take values in  whose weak time-
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derivatives ut takes values in ′. The basic facts about 
such functions are given in the next theorem, which 
states roughly that the natural identities for time 
derivatives hold provided that the duality pairings they 
involve make sense. 

Theorem 18.  Let    be  a  Hilbert  triple.  If  

   and   , then     
Moreover: 

for any v ∈  , the real-valued function  

  is weakly differentiable in  ) and 

 

The real valued function is wealkly 
differentiable in (0,T) 

 

there is a constant C = C(T ) such that 

 

 

Proof.  We extend u to a compactly supported map 

 with .  For 
example, we can do this by reflection of u in the 
endpoints  of the interval [4]: Write 

 where  

are nonnegative test functions  such that  

on  and supp , 

;  then  extend  φu,  ψu  to  
compactly  supported,  weakly  differentiable functions 

 defined by 

 

and finally  define .  Next, we mollify the 

extension u˜ with the standard mollifier  
to obtain a smooth approximation 

 

The same results that apply to mollifiers of real-valued 
functions apply to these vector-valued functions. 
Moreover,as a consequence of the boundedness of the 
extension operator and the fact that mollification does 
not increase the norm of a function, there exists a 
constant 0 < C < 1 such that for all 0 <ε ≤ 1, say, 

 

which implies that  is absolutely 
continuous and and above assumptions  holds. 

Finally, if  is a test function 

 and , then 

. Therefore, since  → ut in 

, 

 

Also, since uǫ is a smooth V-valued function 

 

We conclude that for every  and  

 

We further have the following integration by parts 
formula. 

Suppose that  and 

.  Then 

 

Proof. This result holds for smooth functions 

. Therefore by density and 
Theorem 6.41 it holds for all functions 

 with . 
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THE RESULTS: 

In connection with the exploration of Riemann 
measurability we will prove the following theorem, 
which is significant for our analysis. 

Theorem 18. Let  be measurable. If 

 is H -integrable on E, then f is 
Riemann measurable on E. 

Proof. We will first prove the theorem in the case in 
which E = [a, b]. Fix ε > 0. Let a measurable gauge δ0 

on [a, b] correspond to  in the definition of the 

Henstock integral of  on [a, b]. Since δ0 is measurable 
on [a, b], there exist δ > 0 and an open set tt such that 

and  . Define F = [a, 

b] \ G. Let  finite collection of pairwise non-
overlapping intervals with 

 for each k. As per 
Saks–Henstock we get 

 

Now suppose that f is H -integrable on a measurable 
set E [a, b]. Then the function fχE is Riemann 
measurable on [a, b]. the function f is Riemann 
measurable on E. The proof is complete. 

The next goal is to prove that any bounded Riemann 
measurable vector-valued function is M -integrable. 
Two intermediate results are required before this can 
be proved. Given a real-valued function f defined on 

, recall that  is 

the oscillation of the function f on a set . 

Theorem 19. Let  and let  be 
measurable. If f is both bounded and Riemann 
measurable on E, then f is M -integrable on E. 

Proof. Without loss of generality, we may assume that 
E = [a, b]. Suppose that f is both bounded and Riemann 

measurable on [a, b]. Set  Fix ε > 0. 

Let a closed set and  correspond to 

 in the definition of Riemann 

measurability of on . Define a measurable 
gauge δ0 on [a, b] by 

 

Choose two McShane partition of [a,b], 

 Which are subordinate 

to  Let   then let, 

 

The non-degenerate intervals of the collection 

   are pairwise non-overlapping and 
cover [a, b]. Note that 

 

with obvious notation for the terms T1 and T2. 

Now we need to estimate these two terms. Since F 
and δ correspond to min(ε/20, ε/4M ) in the definition 

of Riemann measurability of  on [a, b], we have λ([a, 
b] \ F ) < ε/4M and 

 

By the construction of δ0, we obtain 

 

Naturally, the last two inequalities imply that 

 It follows that 

. So, f satisfies the Cauchy criterion for 

M -integrability on . This completes the proof. 

Corollary. Let  and let  be 

measurable. If the set  is separable for some 

negligible set N ⊂ E and f is Riemann measurable on 
E, then f is Lusin measurable on E. 

Proof. Since f is Riemann measurable on E, f must be 
scalarly measurable on E. Now the Pettis Measur- 
ability Theorem applies to f to show that f is Bochner 
measurable on E. Since Bochner measurability and 
Lusin measurability are equivalent, the corollary 
follows. 

We close this paper with a few comments on 
Riemann measurable functions and on the M - and  H 
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-integrals. Unfortunately, we have been unable to arrive 
at any idea as to how wide the Riemann mea- surable 
function class for an arbitrary range space may be. It 
would be interesting to find some classes of non-
separable Banach spaces in which McShane (or even 
Pettis) integrability implies Riemann measur- ability. 
This case does not have obvious solutions, but some 
guidance may be derived from Fremlin and Mendoza 
give a bounded l∞-valued (note that l∞ is non-
separable, but the unit ball of (l∞)* is w*-separable) 
function that is Talagrand integrable, but not McShane 
integrable on [0, 1].Their function must be Pettis 
integrable, but not Riemann measurable on [0, 1]. On 
the other hand, Fremlin shows that the Birkhoff integral 
and the McShane integral are still equivalent when the 
range space has w*-separable dual unit ball 
(equivalently, when it is linearly isometric to a subspace 
of l∞). Note that the latter condition is, of course, 
fulfilled for separable range spaces. Combining 
Fremlin‘s result,  and above theorem makes it plain 
that, when the range space is within the above class, a 
McShane integrable function is nec- essarily Riemann 
measurable. Fremlin‘s proof, however, uses the notion 
of unconditional convergence of an infinite series of 
elements in a Banach space. Solodov demonstrates 
that the Kolmogorov integral (and in fact the Birkhoff 
integral, is equivalent to the M -integral. For this reason, 
it is also unclear whether a result analogous to 
Fremlin‘s above could be valid for the pair of the non-
absolute H - and Henstock integrals. 
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