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Abstract – We are presenting a research in mathematics on the linear algebra and matrix. Mathematical 
model is the area of mathematics which focuses on vector analysis, abstract algebra (also referred to as 
linear space), linear maps (also referred to as linear transformations) and linear function structures. 
Vector spaces are a key concept of contemporary mathematics; therefore, linear algebra is commonly 
used in both abstract algebra and functional analysis. Linear algebra also has a concrete expression in 
analytic geometry and it is extended in function theory. It has broad applications in the natural sciences 
and the social sciences, because nonlinear models can sometimes be approximated by linear ones. 
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INTRODUCTION 

Graphs are the primary subjects of discrete 
mathematics analysis. They are generally defined as a 
collection of vertices, V, linked by a set of boundaries, 
E, each of which is a pair of vertices. Graphs encode 
ties and are one of the data representations most 
widely used. Mathematicians also abstractly describe 
graphs. For eg, we define a path graph as a vertex 

graph  and 

Or a number theory might 
consider a set of pairs for which I divide j = V = {1, ..., 
n}, and E. The public learns all about social network 
graphs where and individual is a summit and there are 
edges between couples who are "mates." Chemists 
look at graphs that bind the atoms to a molecule. 
Physicists consider diagrams illustrating molecular 
interactions. The graphs of one discipline which have 
nothing in common with that of another discipline. 

MATRIX REPRESENTATION OF GRAPHS 

The adjacent graph matrix  is a matrix n × 

n matrix   where n is the sum of vertices in 

 and dij  = number of edges from vi to 
vj. 

Specifically, dij = 0 if (vi, vj) is not a G edge. The matrix 
D is symmetrical, that is to say. DT = D. 

 

 

An adjacent matrix clearly defines a graph entirely up 
to an isomorphism. The adjacent matrix of graph G is 
D = (dij), in which case 

dij = number of arcs coming out of vertex vi into vertex 
vj 
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The non-vaulting and loop less Graph G = (V, E) matrix 
of all-vertex incidences is a n = m matrix A = (aij) where 
n represents the number of vertices in G, m is the 
number of borders in G and 

 

Example: 

 

 

The non-empty and looplessly oriented graph G all-
vertex incidence matrix is A = (aij), where 

 

Example: 

 

 

Since each column of an all-vertex matrix contains 
precisely two non-null numbers, combine multiple, we 
can remove a row and still have enough information to 
define the graph. By removing a row from the all-vertex 
incidence matrix, you obtain the incidence matrix of a 
graph. It is not unique because n rows can be removed. 
The vertex adjacent to the removed row is considered 
the reference vertex. 

Likewise, each column of two non-null numbers +1 and 
−1 on a digraph's all-vertex incidence matrix. A line 
from the all-vertex incidence matrix can be removed 
and the incidence matrix can be achieved. Note that the 
rows of an all-vertex matrix depend linearly because 
the rows sum is zero. 

Theorem 1. Whether a tree is a directed graph or not, 
the determinant of a nontrivial tree incidence matrix is 
±1. 

Proof. Proof. The number of vertices in the tree is 
used induction on n. 

Basis of induction: n = 2 and it is obvious. 

Hypothesis of induction: The theorem is true 

 

Assertion of Induction: The theorem is true  

 

Proof of induction: let T be a tree that has a vertical of 
k + 1 and let A be an arbitrary matrix of T. T has two 
vertices at least. We have chosen a pendant vertex vi 
which is not the vertex of reference A and the edge 
and which is the case on vi. Then, 

 

We're expanding |A| by the ith row: 

 

Where A′ is a minor equivalent to ait. We're writing 

 That's also a tree (vi is a vertex pendant). 

We use the induction assumption to obtain  
because A′ is obviously an incidence matrix of T ′. 

Corollary If the digraph G contains no loops; an all-
vertex frequency matrix is μ(G). 

Proof. If the all-vertex matrix rows or columns are 
rearranged, the matrix rank does not change. 
Reorganize the vertices and arcs according to 
components. The all-vertex incidence matrix is then a 
block diagonal matrix with an all-vertex incidence 
matrix of a component. 
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ni is the number of vertices in the i th part. Each part is a 
spanning tree whose incidence matrix by Theorem 1 
has a non-zero determinant. The all-vertex incidence 
matrix of the i th is obtained by adding columns and a 
row to the matrix incidence of the respective tree. The 
added row would rely linearly on other rows such that 
the rank of this matrix is the same as that of the matrix 
(= ni − 1). Note that the rank is 0 = 1 − 1 when a 
variable is trivial in the special case. Thus, the 

Rank of A = total of the part ranks 

 

Cut Matrix 

If all the breaks of a non-trivial loop are I1, , The cut 
matrix of G is then t × m matrix Q = (qij), where m is the 
number of edges of G and 

 

 

the cuts are I1 = {e1, e4}, I2 = {e2, e3, e4} and I3 = {e1, 
e2, e3}. The cut matrix is 

 

Remark. If the graph has n vertices, then it has 

 Breaks. Cuts. Typically, not 
many distinct edge sets are present. We just take one 
cut for the cut matrix referring to a collection of edges 
such that there are no replicated rows. Even, generally 
there are so many rows. 

If G is a loop less and nontrivial digraph, we add to 
each cut an arbitrary direction: orientation (V1, V2) is 
V1 to V2. In other terms, we consider oriented cuts and 
select just one path from the two choices. The cut 
matrix Q = (qij) is then 

 

For the digraph 

 

I1 = {e1, e2, e3, e4} in the direction of e1), I2 = {e3, e4, 
e5} (in the e3 direction), I3 = {e1, e2, e5} (in the e1 

direction) and I4 = ∅. in the direction of e4. The matrix 
is sliced 

 

Since   The cut for each vertex v, the 
all-vertex matrix incidence rows are Q rows. If you are 
working with directed graphs, you can have to 
multiply such rows by −1. 

Theorem 2. Each column of the cut matrix of a 
digraph can be interpreted in two different ways as a 
linear combination of the all-vertex incidence matrix. 
Correlation coefficient non-zero are = +1 or all = −1. 

Proof. Enable Q to be the cutting matrix of a digraph 
G = (V, E) and let A be the all-vertex matrix. Let (V1, 
V2) be the cut corresponding to Q in the I th row (note 
that it is oriented). If required reindexing, we may 
presume that 

 

We write 

 

We show that 
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which proves the theorem. Let  be the k
th
 arc of 

G. Then, 

element of the vector ap = 1, 

element of the vector aq = −1 

And 

 

We get four cases: 

•  

 

•  

 

•  

 

•  

 

The above statements are true for all k. 

Example. (Continuing from the previous example) The 
corresponding row of I1 is 

(1, −1, −1, −1, 0) = (1, −1, −1, −1, 0) = −(−1, 1, 0, 0, −1) 
− (0, 0, 0, 0, 0) − (0, 0, 1, 1, 1). 

Corollary. The rank of the diagram G matrix is Ś(G). 

Proof. Vector A of G is indeed a submatrix of the cut 
matrix Q of G. And (by Theorem 1 Corollary) 

 

On the other side, each Q row can be represented as a 
linear combination of the A rows in Theorem 2. 
Therefore, 

 

The effect is that the cut matrix Q can be represented 
as 

 

Where A1 elements are either 0 or ±1. The A1 matrix 
can also be built from the method in the Theorem 2 
argument. 

If the graph G is connected, it includes a T-covering 
tree and a related simple break. The simple cuts are 
often cutting (when cuts are viewed as boundary sets). 
The cut matrix Q of G therefore has a submatrix Qf that 
corresponds to these simple cut sets. This matrix is 
considered the essential matrix of the cuts. In a similar 
manner, the related digraph G has a simple matrix 
collection: if a basic cut is viewed as a set the path of 
the cut would be the same as that of the 
corresponding branch of T. If the edges of G are 
substituted such that the divisions are first and the 
basic cut sets are ordered in the same order, the 
basic matrix comes in the form 

 

Where   Is the n − 1 row identity matrix? The 

rank of Qf is therefore  

Example. (We took out the previous example's vertex 
v3) so we get a related digraph. We chose the 
spanning tree 

 

The basic cut sets are I2 = {e3, e4, e5} (in e3) and I3 = 
{e1, e2, e5} (in e1). And, Then Then 
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Circuit Matrix 

The loop less graph G = (V, E) comprising circuits is 
used. We mention circuits. , G: C1, . , Cℓ. The matrix of 
the circuit G is ℓ × m matrix B=(bij) 

 

(as usual, E = {e1, . . ., em}). 

The circuits in digit G are oriented, i.e. each circuit is 
driven randomly in order to determine the circuit matrix. 
After the orientations have been selected, the G circuit 
matrix is B = (bij). 

 

Theorem 3. For a digraph, (zero matrix). 

Proof. In the previous theorem, half of the non-zero 
numbers for each part of the BQ

T
 in the dot product are 

+1. The other non-zero numbers are −1. The dot 
product is thus = 0. 

If at least one circuit is found in digraph G, the rank of 
its matrix B is μ(G). Further, if G is associated then the 
B circuit matrix can be represented as B = B2Bf, in 
which 0's and ±1's compose of matrix B2, and the Q cut 
out matrix may be expressed as Q = Q1Qf, in which 0's 
and ±1's are the Q1 matrix. 

Proof. First, when G is associated, we consider the 
event. We pick a spanning tree T by G and arrange the 
m edges of G such that the T branches arrive first and 
the T ∗. We sort the simple cut sets in the same order 
as the divisions and ties. And, Then, 

 

The B blocks may be designed in the same way: 

 

Because Qf is a semi-matrix of Q and Bf is a sub-matrix 
of B, Theorem 3 notes that 

 

 

Hence 

 

Furthermore, since Qf is a submatrix of Q, we can use 
the same theorem to get 

 

 

Hence 

 

As claimed. Likewise, Q can be represented as Q = 
Q1Qf as claimed, which is simple anyhow, provided 
that the Q rank is n −1, with 0's and ±1's components. 
Each B set is a linear combination of the ranks that fit 
the simple circuits, and the rank B is at most 
equivalent to the rank Bf  ≥ m − n + 1. On the other 
side, as already stated, the grade B is − m − n + 1. 
Thus, for a related digraph, rank(B) = m − n + 1 (= 
μ(G)). 

When a digit G (with at least 1 circuit) is 
disconnection, it is divided into components (k ≥ 
2 components) and circuit B is divided into blocks of 
components (compare the corollary proof of Theorem 
1). 

 

Note that the data often includes the formula, 

, which connects the basic cut matrix with the 
basic circuit matrix. 

Matrices over GF (2) and Vector Spaces of Graphs 

The set {0, 1} is classified as a field if the addition and 
multiplications are described as follows (i.e. the same 
arithmetical rules as real numbers): 

 

−1 = 1 and 1 −1 = 1 in any situation. This is the GF 
(2) sector. 

Theorems 1 ,2, 3, and their corollaries often refer to 
"undirected graphs" if we consider elements 0 and1 of 
the total vertex occurrence, decomposition, 
fundamental cut, circuit and simple circuit matrices for 
a ("undirected") graph. (Note that the proofs are the 
same in area GF (2). The evidence is the same. 

Vector space for "undirected" graphs is above field 
GF (2). For graph theory (i.e. over field R) the vectors 
spaces are real. The area of the line of the cut matrix 
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is the space of the cut. Similarly, the circuit space is the 
row space of the circuit matrix. The component of the 
split area is the (di)graph and the circle space 
component is the (di)graph's nullity. In comparison, 
orthogonal complements are the space cut and the 
circuit space. (All these assertions are explicitly based 
on the following results.) 

We also use subgraphs to manage the above spaces, 
i.e. we define a vector with the subgraph formed by the 
respective arcs. With "undirected" diagrams, inserting 
GF (2) vectors refers to the activity of the ring sum. 

CONCLUSION 

It turns out that much graph knowledge is contained in 
these matrices. We may measure stuff from such 
graphs such as the number of spanning trees, the 
algebraic connectivity, etc. Most of these are well 
described problems in terms of their own value and 
thus can be computational. In this article we address 
the matrices and vector spaces in charts. 
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