

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

45

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 5, July-2018, ISSN 2230-7540

A Study in Release Time Application

Somkant Khare*

Research Scholar, Department of Mathematics, SVN University Sagar (MP)

- X -

1. INTRODUCTION

Software Quality Characteristics

Quality is built into the software; it does not just
happen to be there because the developers did a good
job. Quality assurances practices are concurrent with
all process activities.

Quality is defined as ―the degree of excellence of
excellence of something‖. This implies a subjective
factor; any project can be found lacking if measured
against a vague notion of what high quality is.

Software quality in the contex of software engineering
measures how well software is designed (quality of
desing), and how well the software conforms to that
desingn (quality of conformance) [Musa et al., 1990],
(quality of desingn) measures how valid the desingn
and and requirements are in creating a worthwhile
product [Triantafillou et al., 1995] whereas (quality of
conformance) is concerned with implementation.
Software quality is measured via a set of attributes that
are characteristics of high-quality software.

Then we build into the requirements the attribute that
desired in the final product. It is not always possible to
measure each attribute directly, but some form of
relative measurement must be made. Common among
the characteristics are: completeness, correctness,
dependability, efficiency, reliability, maintainability,
portability, robustness (the ability to minimize the
impact of external factors, such as user errors or
adverse environmental conditions), testability, and
usability, but the is not limited to these.

2. RELIABILITY AS A QUALITY
ATTRIBUTE

Software reliability is an important facet of software
quality. It is defined as ―the probability of failure-free
operation of a computer program in a specified
environment for a specified to the successful use of
computers. It is necessary that the reliability of
software should be measured and evaluated, as it is in
hardware. One of reliability‘s distinguishing
characteristics is that it is objective, measurable, and
can be estimated, whereas much of software quality is

subjective criteria. This distinction is especially
important in the discipline of Software Quality
Assurance. These measured criteria are typically
called software metrics.

There are many different models for software quality,
but in almost all models, reliability is one of the
criceria anribute or characteristic that is incorporated.
The IEEE defmes reliability as the ability of a system
of component to perform its required functions under
conditions for a specified period of time. To most
project and software development managers,
reliability is related to correctness, that is, they look
to testing and the number of ―bugs‖ found and fixed.
While finding and fixing bugs discovered in testing is
necessary to assure reliability, a better way is to
develop a robust, high quality product through all of
the stages of the software lifecycle. That is, the
reliability of the delivered code is related to the
quality of all the processes and products of software
development; the requirements documentation the
code, test plan, and testing.

3. SOFTWARE RELIABILITY GROWTH
MODEL

Since computers are being used increasingly to
monitor and control both safety-critical and civilian
systems, there is a great demand for high quality
software products. Reliability is a primary concern for
both software developers and software users.

Software reliability engineering (SRE) has generated
quite a bit of interest and research in the software
reliability modeling.

A Software Reliability Growth Model (STGM) is a
relationship between the number of faults removed
from a software and the execution time/CPU time
/calendar time. Several attempts have been made to
represent the actual testing environment through
SRGMs [Goel, 1985 ; Kapur and Garg, 1990; Kapur
et al., 1999. Yamada et al., 1986]. These models
have been used to predict the fault content,
reliability and release time of a software. SRGMs
have also been used to manage the testing phase.
This chapter will present some of the important
models that have appeared in the recent literature.

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

46

 A Study in Release Time Application

But before considering the models we‘ll first provide a
historical perspective of the development of this field
and some needed theoretical results from reliability
theory, which we,ll use in model development. We‘ll
then go into the models.

With Cost and Reliability Criteria under Penalty
Cost [Yamada et ., 1984]

Here we introduce the concept of delivery time (time at
which software is supposed to released for use). If
the manufacturer fails to release the software at the
scheduled delivery time, he has to pay a price termed
as penalty cost. Let Ts (the scheduled delivery time)
be a random variable (pdf) g (t). if pc(t) is the penalty
cost in (0,t] due to delay is software release, then the
expected penalty cost in (T, ,T) is expressed as.

A Software Cost Model with Warranty and Rist
Costs [Pham et al., 1999]

Hare we discuss a cost model which considers the
testing cost, cost of removing errors detected during
testing phase, cost of removing errors detected during
the warranty period, and risk cost due to software
failure. A software reliability model based on NHPP is
used.

The optimal release policies to minimize the expected
total software cost are discussed.

This model can be used to estimate realistic total
software cost for several applications, such as
telecommunication, customer service, etc., and to
determine the optimal testing release policies of the
software system.

Notations

R(x|T) reliability function of software by time T for a
mission time x.

T software testing time.

T‘ optimal software release time.

C0 set - up cost for software testing.

C1 software test cost per unit time.

C2 cost of removing an error per unit time during
testing period.

C3 cost of removing an error per unit time during
warranty period.

C4 lost due of software failure.

E (T) expected cost of software systems at time T.

Y variable of time to remove an error during testing
phase.

µy expected time to remove an error during testing
phase.

W variable of time to remove an error during warranty
period in operation phase.

µw expected time to remove an error warranty period
in operation phase, which is E(W).

Tw period of warranty time.

Assumptions

1. There is a set-up cost at the beginning of the
software development process.

2. The cost to do testing is a power function of
testing time. In other words, at the beginning
of the testing, the cost increases with a higher
gradient, the growth slows down later.

3. The cost to remove errors during debugging
period is proportional to the total time of
removing all errors detected during this
period.

4. The cost to remove errors during warranty
period is proportional to the total time of
removing all errors detected in the time
interval [T ,T + Tw].

5. There is a risk cost due to the software
failure after release the software.

6. It takes time to remove errors and we
assume that the time to remove each error
follows a truncated exponention distribution.

Modeling Software Reliability with Multiple
Failure-Typing and Imperfect Debugging [Lynch
et al., 1994]

Software developers have determined two main
characteristics of the software development process:
(1) no progranner is perfect, and thus when an error
is removed, new errors can be introduced into the
program; and (2) not all errors are created equal;
that is, different errors have different implications and
thus need different handling. A number of software
reliability models [Kareer et al. 1990, Kapur et al.
1992 Leung et al. 1992, Yamada et al. 1984-1986, W
.Kuo, 1983] incorporate one of these characteristics,
but until now none has included both. When a failure
occurs, the cause of the failure is identified and
removed.

To ensure that the cause is perfectly fixed, the
software is tested is for the same input and if a
failure occurs again, the code is checked again. Two
possibilities occur. The fault, which was thought to
be perfectly fixed, has been imperfectly repaired and
caused same type of failure again when checked on

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

47

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 5, July-2018, ISSN 2230-7540

the same input . However, it may also happen some
other kind of failure occurs which might be due to the
fact that the fault was perfectly removed but some
other fault was generated while removing the cause of
the failure. This is called error generation/introduction,
which can be known only during the removal phase.
On this sevtion, we have incorporated the effect of
latter type of imperfect debugging on the removal
process. Hare we present a model with multiple failure
types and imperfect debugging for prediction of
software reliability. In addition, the paper discusses
cost models that can be used to determine the optimal
time to be spent debugging. The software reliability
model allows for three different types of errors: critical,
major, and mainor errors.

Critical errors are the most difficult to detect and the
fairly expensive to remove. Mainor errors are easy to
detect and inexpensive to remove. The model also
allows for the introduction of any of these types of
errors during the removal of an error.

Software Reliability Model

Notations

M(t) : expected number of failures by time t; m(t)=E
[N(t)].

N(t) : counting process representing the cumulative
number of failures detected by time t.

N(0) : number of failures a t time t = 0 .

a : expected initial error content.

b : error detection rate per error at an arbitrary
testing time .

bl : error detection rate per type ʝ error , ʝ = 1,2,3.

P
l
 : content proportion of type ʝ errors .

d(t) : error detection rate per error at testing time ʝ ;

d(t) = (t) /[a-m(t)] .

di(t) : error detection rate per type ʝ error at testing
time ʝ .

(t) ntensity function or error detection rate ; (t) =
d[m(t)] / dt .

Ni(t) cumulative number of failures of type ʝ error .

n(t) the expected number of error detected plus the
expected number of error remaining at time t.

βi type ʝ error introduction rate that satisfies, 0 ≤ βi <
1.

Mi(t) expected number of type ʝ errors by time t .

Software Cost Model

To determine when a software package should be
released for use, we must determine a cost model that
accurately describes the cost incurred during the
lifetime of a program.

Here a software cost model is discussed under the
following assumptions :

1. The cost of debugging an error is cheaper
during the development phase than during
the operational phase.

2. The cost of removing a particular type of
error is constant during the debugging
phase.

3. The cost of removing a particular type of
error is constant during the operational
phase .

4. Critical error are more expensive to remove
than major errors, which in turn are more
expensive to remove than minor errors.

5. There is a continuous cost incurred during
the entire time of the debugging period.

Notations

Tu : useful life span of software (software life cyclr
length).

T : release time.

Tj : debugging time required to attain a given value of
ʝ errors remaining in the program ʝ = 1,2,3.

Tr : debugging time required to attain a given
reliability.

Trel : debugging time required to attain maximum
reliability subject to a cost constant .

4. RESULT

Cost-reliability Optimal Release Policy for
Software Reliability Models Incorporating
Improvements in Testing Efficiency [Huang,
2005]

Hare we give a brief review of the SRGM with a
generalized logistic testing effort function. Further, if
the software managers wish to detect more faults
that are difficult to find during regular testing, it is
advisable to introduce new techniques. Also, we
study the effect of introducing these new techniques

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

48

 A Study in Release Time Application

or consultants for increasing the testing efficiency .
Finally, we discuss the optimal software release time
problem based on minimizing cost subject to achieving
a given level of reliability considering the extra cost of
introducing new techniques during testing .

SRGM with Generalized Logistic Testing-Effort
Function

Notations

M(t) : expected mean number of faults detected in
time (0,t) .

(t) : failure intensity for m(t) .

W(t) : cumulative testing-effort consumption at time t .

W(t) : cumulative testing-effort consumption at time t .

a : expected number of initial faults.

r : fault detection rate per unit testing-effort .

N : total amount of testing effort eventually consumed
.

a : consumption rate of testing effort expenditures in
tha general logistic testing-effort function .

A : consumption parameter in the generalized logistic
testing effort function .

K : structuring index .

Table .1

Relationship between the cost optimal release time

T’o C (T’o) and p based on Co (T) =1000+1019
100

 w
(t) dt

P Optimal
release time
T’o

Total
expected
cost C (T’o)

0.01 19. 738 5574.05

0.02 20. 002 5114.50

0.03 20. 289 5254.74

0.04 20. 607 5094.77

0.05 20. 965 4934.60

0.06 21. 975 4774.24

0.07 21. 854 4613.69

0.08 22. 446 4452.94

0.09 23. 203 4292.02

0.10 24. 284 4130.91

0.11 29. 111 3969.62

Table . 2

Relationship between the cost optimal release time

T’o , C(T’.) and p based on Co (T) =1000+10﴾19
100

w(t) dt)
1.2

P Optimal
release time

T’o

Total
expected

cost C (T’o)

0.01 19.601 5573.46

0.02 19.750 5414.07

0.03 19.750 5254.54

0.04 19.916 5094.88

0.05 19.299 4935.07

0.06 20.522 4775.13

0.07 20.768 4615.04

0.08 20.044 4454.81

0.09 21.354 4294.43

0.10 21.709 4133.91

0.11 22.123 3973.24

Table. 3

Relationship between the reliability optimal
release time T’l and P based on Co based on the

frist measure of software reliability Ro=0.9

P Optimal
release time
T’l (Δt=0.1)

Optimal
release time
T’l (Δt=0.2)

0.01 20.927 22.580

0.02 20.952 22.604

0.03 20.976 23.541

0.04 20.999 23.588

0.05 21.024 23.611

0.06 21.047 23.636

0.07 21.070 23.657

0.08 21.093 23.679

0.09 21.116 23.702

0.10 21.139 23.724

0.11 21.161 23.746

5. CONCLUSION

This chapter incorporates fault removal efficiency
into software reliability assessment.

Imperfect debugging is considered in the sense that
sense all faults can be removed complete, and new
faults can be introduced while removing existing
ones. Both the fault removal efficiency and the fault
introduced function can take a time –varying from.

Data collected from real applications [Lyu, 1996]
show that proposed model provides the best fit and
prediction (both the SSE and the AIC values are the
lowest among all models), it also provides both, the
information reliability measures, and also, some
important in-process metrics including the fault
removal efficiency and fault introduction rate. These
metrics offer very usful information about the

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

49

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 5, July-2018, ISSN 2230-7540

development project management. With more careful
data collection, more sophisticated analyse can be in
this area.

We also presented a SRGM with generalized logistic
TEF. It is a much more realistic model and more
suitable for describing the software fault detection and
removal process.

On the other hand, in practice, sometimes it is difficult
for software developers to locate the faults log and test
anomaly documents. Sometimes software managers
may require in the developers has to detect more
faults due to schedule pressure. In this case, it is
advisable to introduce new test techniques, which are
fundamentally different from the methods in use.
These test techniques can help developers get their
product done quicker and more reliably. Thus, we
further study the efficiency. Finally, we discussed the
optimal release policy based on cost and reliability
considering testing effort and efficiency. The
procedure for determining the optimal release time has
been discussed in detail and the optimal release time
time has been shown to finite.

REFERENCES

Hou R.H., Kuo S.Y . and Chang Y.P (1997). “Optimal
Release Times for software systems with
Scheduled Delivery Time Based on the
HGDM,‘‘ IEEE Trans. Computers, vol. 46 no,
2, pp. 216-221.

Huang C. Y. (2005). ―Cost –reliability Optimal Release
policy for Software Reliability Models
incorporating improvements in Testing
Efficiency‖, The jouranal of Systems and
software , vol. 77, pp. 139-155.

IEEE Standard 982.2 (1987). Guide for the Use of
Standard Dictionary of Measures to Produce
Reliable Software.

Kapur P. K . and Garg R.B. (1990). ―Cost reliability
optimum release policies for a software
system with testing effort,‖ OPSEARCH, vol.
27, No.2, pp. 109-118.

Kapur P.K. and Bhalla V.K. (1992). ―Optimal release
policies for a flexible software reliability growth
model‖, Reliability Engineering and System
Safety, vol. 35, pp. 45-54.

Kapur P.K. and Garg R.B. (1990). Optimal software
release policies for software reliability growth
models under imperfect debugging‖,
R.A.I.R.O. 24 (3), pp. 295-305.

Kapur P.K., Agarawala S. and Garg R.B. (1994).
―Bicriterion release Policy for an exponential

software reliability growth model‖, R.A.I.R.O.,
vol . 28, pp.165-180.

Kapur P.K., Bai M. and Bhushan S. (1992). ―Some
stochastic models in software reliability based
on NHPP‖, In Contribution to Stochastic, (Ed.)
N. Venugopal, Wiley Eastern Limited, New
Delhi.

Kapur P.K., Grag R.B. (1992). A software reliability
growth model for an error removal
phenomenon‖, Software Engineering Journal,
7; pp. 291-294.

Kareer N., Kapur P.K. and Grover P.S. (1990). ―An
S-Shaped software reliability growth model
with two types of errors‖, Microelectronics
and Reliability, vol. 30, no. 6, pp. 1085-1090.

Corresponding Author

Somkant Khare*

Research Scholar, Department of Mathematics, SVN
University Sagar (MP)

