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Abstract – This study is primarily concerned with the use of moving mesh methods for the approximate 
solution of non-linear partial differential equations of parabolic type. Such methods have become a 
popular means for the solution of problems which may contain sharp features that are hard to 
approximate. Whilst efficiently managing computational overheads. Initially, a novel moving grid 
technique known as Contour Zoning is discussed. This 'static' method is able to reduce numerical 
resources by grouping together sets of nodes as a moving contour of the solution. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

The use of adapted meshes in the numerical solution 
of partial differential equations (PDEs) has become a 
popular technique for improving existing approximation 
schemes. In problems in which features with large 
solution variations are common. Such as steep fronts 
and sharp variations, the choice of a non-uniform 
mesh can not only retain the accuracy but also 
improve the effciency of an existing method by 
concentrating mesh points within regions of interest. 
This study is primarily concerned with the use of such 
methods for the solution of non-linear parabolic PDEs 
of the form 

 

In particular, we shall be considering problems 
involving non-linear diffusion and solution blow-up. 

The advantages of such an approach go hand in hand. 
Firstly, since such areas of interest in the mesh 
inevitably involve large variations in the solution, for 
any numerical scheme a smaller spatial resolution in 
the mesh is essential for a reliable approximation and 
accurate representation. However, to enforce this 
requirement over the entire grid will be an expensive 
process, especially in higher dimensions. It becomes 
obvious then, that for efficiency it is desirable to 
concentrate nodes and hence computational effort in 
those parts of the grid that require most attention. A 
successful approach will then ensure suitable mesh 
resolution whilst retaining computational efficiency. 

In general there are three classifications of grid 
adaption. The first, h-refinement, adds extra nodes 
to an existing mesh to improve local grid resolution. 
A second technique, p-refinement, employs higher 
order numerical schemes to improve local accuracy 
as well as to approximate troublesome derivatives. 
The third approach is refinement, which maintains 
the existing number of nodes globally but relocates 
them strategically and, more importantly, efficiently 
over the domain, It is this latter idea that we shall be 
concerned with in the course of this study. 

For static methods, the approximate solution is 
defined initially on a given mesh. During the 
calculation a new mesh, which may or may not 
have the same number of nodes, is generated using 
an existing grid generation technique. The solution 
is then interpolated onto the new mesh, so the 
redistribution and/or addition of grid points and the 
interpolation are all carried out at a fixed time in the 
solution process. Although successful, these 
methods carry large computational overheads, due 
to the intermittent changes in the data structure 
describing the mesh in any arithmetic code. 

In dynamic methods, a mesh equation is employed 
to prescribe the speeds of nodes in order to move a 
mesh in such a way that gridpoints remain 
concentrated in regions of rapid variation as the 
solution evolves with time. In general in these 
methods the number of nodes in the grid remain the 
same. For this type of moving mesh method two 
coupled equations need to be considered, the 
moving mesh equation controlling the development 
of the mesh and that associated with the underlying 
problem. The mesh then develops continuously with 
no interpolation steps required. During this study we 
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shall look at both types of moving mesh method, with 
the principle interest lying in the former. 

Both static and dynamic methods require some 
underlying motivation for their distributive strategies. It 
seems that in general the principles behind moving a 
grid through time employ the same techniques 
involved in generating a stationary mesh, for example 
a static method may redistribute grid points via an 
equidistribution principle. Indeed, many dynamic 
methods are derived by introducing a time derivative 
into an existing grid generation technique. For 
instance, in the functional minimisation approach to 
grid generation moving mesh equations can be 
derived from solving the gradient flow equations 
associated with the minimal grid functional, see Huang 
and Russell. 

This study begins by outlining some of the existing 
literature on both grid generation and moving mesh 
methods. The next chapter will introduce both the 
equidis, tribution and functional minimisation 
approaches to grid generation. It is hoped that the 
reader, by first understanding the aims and means of 
grid generation, will find it easier to grasp the 
implementation of these techniques when applied to 
moving mesh problems. We will introduce some self, 
similar theory with specific reference to the porous 
medium equation. PME for which an analytical solution 
exists in. We shall take advantage of both these 
particular solutions and the selfsimilar qualities in later 
chapters to verify our numerical computations. 

GRID GENERATION AND MOVING MESH 
METHODS 

In general, moving mesh methods are derived from 
introducing node speeds, i.e. velocities of 
computational nodes, into existing algorithms for 
generating computa tionally advantageous meshes for 
steady state problems. An obvious example of this 
development is the several variations of moving mesh 
partial differential equations (MMPDES). Here a simple 
equidistribution relation in one spatial dimensional is 
differentiated with respect to time in order to derive 
equations prescribing the correct velocities of nodes in 
order to preserve the equidistribution principle as the 
solution and grid evolve. In higher dimensions due to 
the lack of a strict extension of the equidistribution idea 
in more than one spatial dimension, a popular idea is 
to evolve mesh speeds by attempting to keep a 
functional concerned with static grid generation 
minimal. 

Grid Generation Methods and Techniques- 

The simplest place to start an exposition of the basic 
philosophy behind the use of an adapted, irregular grid 
is in one dimension. The most widely used method is 
the equidistributed mesh. The principles of the method 
were later applied to generating efficient computational 
grids for the numerical solution of steady PDEs. For 
example White used a transformation to arc-length 

coordinates to generate equidistributing meshes for 
the numerical solution of two-point boundary value 
problems. In another approach where the one-
dimensional mesh was iterated by trying to reduce the 
truncation error of the solution of the underlying PDE 
after each iteration. This is a convenient point at which 
to formally introduce and dene the equidistribution 
principle. 

The main strategy behind the equidistribution idea is 
quite self-explanatory. The idea is to choose a mesh 
such that a measure of either the geometry of the 
represented function, or of the error of the numerical 
solution, is distributed equally between adjacent 
nodes. This measure is prescribed via a user-defined 
function known as the monitor, a positive-definite 
function of the solution u and/or its derivatives 

of the form. 

 

Later on in this section, we shall introduce various 
choices of monitor function and illustrate their effect 
on the resulting mesh. However, we begin by 
stating how this measure is distributed over the grid 
in a formal definition. 

Given a mesh representing a physical space in one-

dimension  mesh points 

 such that  the 
equidistribution principle can be written 

 

However, in most grid generation applications it is 
often more convenient to think of the 
equidistribution idea as one of a coordinate 
mapping from a computational, space to a physical 
one. The goal of the grid generation problem then 
becomes one of finding a suitable coordinate 
mapping or transform. This approach is common 
and forms the basis of most grid generation 
techniques. and, indeed, moving mesh methods. 
Concentrating still on one dimension, we define the 

computational space , so that the mesh 
points in physical space are related to the (usually 

regularly spaced) grid points  in the 
computational domain. Written formally, x is then a 

mapping from  to x 

 

Within this framework the equidistribution idea is 
written as 
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or 

 

Differentiating (2.3) with respect to  once gives the 
equation differentiating yet again yields the equation. 

 

Following this approach, the solution of (2.5) with 
Dirichlet boundary conditions 

 

produces an equidistributed grid for the given monitor 
function However, equation (2.5) is non-linear since M 
depends not only on x but also on the solution u. To 
overcome this, an iterative approach is suggested 
using the algorithm 

 

which may be discretised in a semi-implicit style as 
follows. 

 

The resulting tridiagonal system is easily solved using, 
for example, a Jacobi-iteration method. 

When generating an equidistributed grid for good 
representation of a function or initial condition, the 
values of the monitor are known exactly and the 
iteration is usually quick and successful. However 
when using this type of iterative process for adapting a 
mesh to give a better numerical solution to an 
underlying differential equation, it is common to use an 
interleaving approach where the grid and solution are 
alternately updated, with the solution being 
interpolated between changing states of the mesh. 

Moving Mesh Methods - 

In the previous section, we have outlined the aims and 
some techniques behind the generation of irregular 
grids. We now turn our attention to methods which aim 
to move the mesh in time to solve non-steady 
differential equations. whilst retaining the properties 
(and hence the numerical benefits) of the ideas 
presented above. 

An early incorporation of the equidistribution idea into 
a moving mesh method is outlined by Petzold. Here a 
natural extension of the interleaving numerical solution 

approach for a stationary, adaptive grid is presented. 
Since the solution of the problem now develops with 
time, the equidistribution part of the interleaving 
solution approach is undertaken at intervals, usually 
chosen by some predetermined error measure, during 
the forward integration in time. In other words, at 
certain times throughout the numerical solution of the 
equation, the grid is reequidistributed, hence moving 
the nodes throughout time, the solution on the new 
grid being found via some interpolation process. In a 
slight variation on this technique Blom et al used a 
predictive step, reequidistribute the grid using the 
prediction and then update the solution on the new 
grid. The update step is written in a Lagrangian form, 
involving the movement of the nodes in the 
redistribution, hence no interpolation step is 
required. The Blom approach bridges the gap 
between the static, regridding technique of Petzold 
and more dynamic traditional moving mesh 
methods. The major difference between the two is 
the interpretation of mesh speeds included within 
the solution procedure. We continue this theme 
further and explore the various forms of this 
continuously moving mesh idea. 

We now turn our attention to the work of Huang Ren 
and Russell. In contrast to the work by Dorfi & Drury 
the moving mesh equation is derived directly from 
the equidistribution principle.  In several moving 
mesh partial differential equations (MMPDE's) are 
derived in this manner, with the aims of the resulting 
algorithm being simple, easy to program and 
relatively insensitive to the hoice of user-defined 
parameters. In all seven of these MMPDE's are 
constructed using three different approaches, the 
first two of which are motivated by equidistribution. 
Using the one-dimensional computational and 
physical coordinate systems as described in 
Section 2.1 two quasistatic equidistribution 
principles (QSEP's), are obtained by differentiating 
the integral form of the equidistribution principle 

(2.3) with respect to  once and twice 
respectively. 

 

and 

 

To introduce node movement into the picture, time 
differentiation is undertaken. Several mesh 
movement equations have been produced by, for 
example Anderson  Hindman & Spencer and Ren & 
Russell the former two papers being early attempts 
with the transformation between physical and 
computational space, first in one and later in two 
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dimensions  owever some of these earlier forms 
include time differentiation of the integral quantity 

 

Huang, Ren & Russell state, without supporting 

argument, that the quantity  or ts time 
derivatives are too complicated to include in actual 
computation. However, by first differentiating the 
original equidistribution principle with time and then 
with,  twice we obtain 

 

which can be written as (MMPDE1) 

 

so giving a moving mesh equation without reference to 
 In the same paper an alternative set of moving 

mesh equations, MMPDE's 2-4 are derived by 
considering (2.21) and requiring that the mesh satisfy 

the condition at the later time (where ) 
instead of at time t i.e. 

 

This equation is thought to be a strong enough 
condition to regularize the mesh movement by Huang 
et al. Substituting the expansions 

 

into (2.2) and dropping higher order terms gives 
MMPDE 2 (2.23) which in fact is MMPDE1 with an 
additional 'correction' term 

 

The extra term is a measure of how well the current 
grid is equidistributed and hence MMPDE 2 moves the 
grid towards an equidistributed state even when M is 

independent of t. For this reason, terms involving  
are less important for MMPDE 2 than MMPDE 1 and 
disregarding these terms leads to MMPDE's 3 and  
respectively, i.e. 

 

and 

 

The remaining MMPDE's (5-7) are devised by 
considering attraction and repulsion pseudo-forces 
between nodes. Here the mesh movement is 
specifically motivated by taking the monitor to be some 
error measure, so nodes are attracted together when 
the error is larger than average and repelled when the 
measure is below average. The error is then 

expressed as an integral over each cell, , usually 
taking the form 

 

MMPDE's (5-7) stem from this relation and all 
involve the correction term mentioned above. which 
seems to be a key term as it can determine the 
time-scale for the mesh movement and hence can 
be adapted to suit the problem in hand. Moreover 
since the correction term can be derived from the 
equidistribution idea, its inclusion in the latter mesh 
equations suggests that the error is evenly 
distributed over the mesh and the equidistribution 
and attraction/repulsion ideas are therefore thought 
to be closely related. Huang, Ren & Russell also 
provide theoretical analysis suggesting that the 
MMPDE's cannot produce instances where nodes 
cross paths when the MMPDE is solved exactly, 
indicating stability of the resulting meshes. The 
stability analysis follows early work by Flaherty et al. 
In particular it is noted that for MMPDE 1 the mesh 
would be stable if the measure 

 

were to remain bounded. However for most choices 
of M, L(t) is likely to increase, Li et al, went on to 
discuss the stability of such moving mesh systems 
in greater detail. 

A so-called Moving Mesh Differential Algebraic 
Equation (MMDAE) is developed by Mulholland, Qiu 
& Sloan Instead of using the an MMPDE, the mesh 
movement is prescribed by a QSEP (2.20 & 2.21) 
written in terms of an algebraic equation involving 
the stationary grid points and the monitor function 
M. In fact the algebraic relation is the 
equidistribution relation written previously in Section 
2.1 equation (2.6) This is coupled with the moving 
grid Lagrangian form of the underlying PDE and 
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integrated forward in time using a first-order backward 
Euler method (used since these systems tend to be 
stiff). In this technique is used in conjunction with a 
pseudo-spectral processing of the solution of 
hyperbolic problems, Qiu & Sloan continue the work, 
comparing the method and in particular the stability 
with the established MMPDE 5 of Huang et al. Of 
particular interest is the stability of the discrete solution 
of the steadystate solution to Burgers, equation by 
examining possible steady solutions arising from the 
two adaptive discretisations of the unsteady problem. 

MOVING MESH METHOD IN ONE-DIMENSION 

In this chapter we present amoving mesh method to 
take care of these difficulties. The method stems from 
observations on equidistribution and geometric 
conservation laws. In the following sections we shall 
follow the development of the method from its initial 
state equidistributing integrals of mass through to the 
introduction of more complex monitor functions. All 
stages of the development of the algorithm are 
supplemented and illustrated with numerical results. 
The method is presented first in one-dimension and 
with explicit reference to the PME. 

Mass Conservation and Equidistribution 

For instance, Qiu & Sloan developed a specialist 
monitor (2.26) for the solution of a reaction diffusion 
type problem where more traditional monitors failed. Of 
particular interest when considering the PME is the 
work of Budd et al  whose choice of monitor was 
heavily influenced by the theoretical invariance 
properties of the underlying PDE. In particular the 

mass monitor, , was singled out as a 
sensible choice for the PME since it too was invariant 
under scaling and would conserve mass. 

Seizing upon this, it is noted that by choosing this 
monitor we can derive a moving mesh method without 
the need for the use of a computational or reference 
grid. The resulting mesh x and solution u can then be 
coupled in such a way that only the mesh needs to be 
integrated forward in time with the solution being 
recovered from the current grid positions together with 
an integral quantity relating to the chosen monitor. 

1. A Moving Mesh Equation 

We begin with a simple equidistribution principle, 

working on a grid comprising of N +1 nodes  
and, using notation in line with the existing literature, 
we have that 

 

As previously noted, many moving mesh methods are 
derived from introducing node speeds into existing grid 

adaption statements. When considering the PME with 
its mass conservation property direct time 
differentiation of the above equidistribution rule (5.1) 
leaves us with the simple expression. 

 

Substituting in the PME (2.30) and simplifying the 
integral term on the left-hand side leaves us with the 
moving mesh equation. 

 

It is crucial to note, with this specific choice of 

monitor , that  becomes independent 
of time since the PME is mass conserving. Hence, 
the zero right hand side in (5.3). Moreover, due to 
the symmetry of our porous medium solution, we 

have that , so the above equation, 
when rearranged, leads to the sequence of ordinary 
differential systems (ODEs) for the grid co-
ordinates. 

 

To discretise the system we use an upwinding 
approximation for the space derivative terms, i.e. 

 

We choose this style of discretisation, since upon 
expansion the PME can be written in a hyperbolic 
form for which an upwind approximation is deemed 
suitable, namely 

 

Obviously our solution is not complete, since we 
have not yet stated how to evaluate the values of u 
at the current grid positions. The next section shows 
how the solution can be obtained from the current 
state of the mesh and a discrete integral of u 
relating to the original equidistribution idea. 

2. The Porous Medium Solution 

The moving mesh equation presented above (5.4 
with 5.5) has already coupled together the 
prescription for the motion of the grid and the 
dynamics of the PME. Due to (5.2) the resulting 
system of ordinary differential equations should 
move the grid in such a way that, as the material is 
diffused, computational cells hold an equal quantity 
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of mass. Restating the equidistribution principle above, 
our grid should then, at all times, satisfy 

 

Using a trapezium rule approximation for the 

equidistributed mass  we have that a piecewise 
linear approximation will satisfy 

 

Since u = 0 at the foot of the moving boundary we can 
rearrange equation (5.6) to give us a sequence of 
algebraic equations yielding the approximate solution 
u in terms of the current grid co-ordinates and the 

constant mass . 

 

Alternatively these algebraic relations can be written 
explicitly for u in summation form as 

 

Some compensation has to be made between the 
exact conserved equidistributed mass as used when 
deriving the system (5.4) and the discrete conserved 

mass  used above However if we start with a grid 
that has equidistributed discrete mass such that (5.6) 
old overall cells, then appropriate discretisations of the 
ODE system will move the grid in such a way that this 
discrete approximation to the mass will be 
equidistributed and conserved. This is easily achieved 
by using a linearised form of the monitor function when 
generating the initial grid to complement the trapezium 
rule approximation used in (5.6). We now proceed to 
deal with the moving boundary involved in the PME, in 
particular correctly approximating the speed of the 
moving front. 

MOVING MESH METHOD FOR FURTHER 
APPLICATIONS 

Whilst the principles of the mesh movement are viable 
when tackling other problems, the existence of a 
known solution value, e.g. u = 0, at the moving 
boundary in the PME allowed us to recover the global 
solution directly from the calculated grid via an 
algebraic equation. The method also took advantage 
heavily of the mass conservation properties of the 
equation. For these reasons the method could be seen 
to be too problem specific and lacking in robustness. 
The study illustrates how the method can be extended 

to solve problems without these inherent properties. 
The equation does conserve mass but has a Neumann 
boundary condition imposed at the fixed boundaries, 
hence we do not know a value of u at any of these 
points from which to construct our resulting solution. 

The SemiConductor Problem Revisited - 

It was concluded in Chapter 4 that for a numerical 
method to adequately solve the emiconductor problem 
the method itself must conserve mass exactly. With 
this n mind the dynamic grid method introduced in the 
previous chapter seems to suit his application 
perfectly. However, the solution will now have a time 
dependent olution value at both boundaries. When 
considering the PME the zero value of  at the moving 
boundary permitted an obvious computational saving 
since the olution could be derived directly from the grid 

and the quantity  via an algebraic elation (see 
Sections 5.1.2, 5.3.1 and 5.4), without a separate 
time integration for the solution u. Ideally we would 
like to retain this characteristic of the existing 
lgorithm. 

Solution Technique - We begin by recalling the 
model semiconductor problem. Defined on the fixed 

region , the diffusion of a dopant through 
silicon is modelled by the equation 

 

being a constant of the order 
2

1

10  Neumann 
conditions are imposed at each boundary, x = 0 and 
x = 1, and the dopant has initial Gaussian 
distribution 

 

Previously we have chosen  to have a value of 
50 and we continue to do so. 

The combination of a fixed domain and Neumann 
boundary conditions force u to fluctuate away from 
a value of zero at x = 1. In order for our method to 
allow us to trace back from this point and form the 
solution from the grid, we need to have a handle on 
this value u at this point. Due to the low 
concentration and gradient at this region of interest, 
we propose to make use of the resulting low 
temporal changes in u at this boundary and 
implement a local explicit finite-difference solution. 
We begin by deriving an expression for the time 
derivative of u at this point 

We shall again be using a grid consisting of N +1 

nodes numbered  where and 
. With reference to Section 3.2.1. Chapter 3, 

we consider the integral form of equation 6.1 in the 
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localised region of the control volume of node . As 
before this region is formally defined as the length 

between  and the cell midpoint . 

Given the Neumann conditions imposed at the right 
hand boundary we have that 

 

Discretising in an upwind manner as before we derive 
an approximate expression for ut via 

 

Despite the low gradient of the solution at x = 1, a 
reasonable mesh spacing will always be required near 
that point during the solution to ensure accuracy of the 
value uN and hence the global solution. Taking this 
into consideration, we propose a further modification to 
the combination monitor used in the previous chapter. 
We now need to ensure that the mesh is adequately 
represented over the regions of low concentration that 
initially lies away from the Gaussian maximum value. If 
we consider the combination monitor used previously it 
is obvious that the value of the monitor will diminish 
quickly in regions of low concentration. 

Numerical Results - We shall analyse the 
performance of the moving mesh method in this 
application by computing an approximate solution on a 
stationary regular mesh consisting of 100001 nodes. 
The solution is generated using a semi-implicit scheme 
with an adaptive time-stepping approach, as outlined 
for the solution of this problem in Chapter 3. We have 
computed these stationary mesh solutions for three 

different values  for comparison with 
the moving mesh solutions. Before we look at the 
resulting solutions and the effect of adjusting the 
leakage of material in the concentration profile, we turn 
our attention to the error in the semiconductor solution 
with reference to our fine scale computation. 

CONCLUSION 

Grid adaption and the use of moving meshes has 
evolved dramatically over recent years, becoming an 
essential tool in the successful numerical solution to a 
wide variety of applications. The ability of a mesh to 
automatically adjust its distribution in order to resolve 
steep or sharp solution variations can aid the 
numerical analyst in gaining effective control over 
computational resources. 

This study has illustrated two contrasting moving mesh 
methods for the solution of parabolic PDEs. To be 
more precise, deficiencies found when computing 
numerical solutions using an initial static method have 
motivated the development of a dynamic approach 
which was able to resolve difficulties found in the 
application of the former algorithm. This final chapter 
serves as a summary of the work presented and 
suggests possible future avenues of study. 
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