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Abstract – Differential equations (PDE/ODEs) form the basis of many mathematical models of physical, 
chemical and biological phenomena, and more recently their use has spread into economics, financial 
forecasting, image processing and other fields. It is not easy to get analytical solution treatment of these 
equations, so, to investigate the predictions of PDE models of such phenomena it is often necessary to 
approximate their solution numerically.  

In most cases, the approximate solution is represented by functional values at certain discrete points 
(grid points or mesh points). There seems a bridge between the derivatives in the PDE and the functional 
values at the grid points. The numerical technique is such a bridge, and the corresponding approximate 
solution is termed the numerical solution. 
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INTRODUCTION 

The term ‗spline‘ is derived from the flexible device 
used by shipbuilder &draftsmen to draw a curve 
through pre-assigned points (knots) in such a way that 
not only the curve is continuous but also its slope and 
curvature are continuous functions .Draftsman attach 
the wooden or metal strip with weights called ducks, 
which can be adjusted to keep the strip in required 
shape. So weights are attached with the strip to keep it 
in the required shape. 

In order to resolve the problem of working with higher 
degree polynomials the idea of piecewise polynomial 
come into existence .Instead of using polynomial for 
the entire domain ,the function can be approximated 
by several polynomials defined over the sub-domains. 
A polynomial which is presented over a certain domain 
by means of several polynomials defined over its sub-
domains called a piecewise polynomial. The piecewise 
polynomial approximation allows us to construct highly 
accurate approximations, but because some 
approximation functions are not smooth at the point 
connecting separate piecewise polynomial 
approximation. Sometimes, while the polynomial is 
continuous, it may not be continuously differentiable 
on the interval of approximation and the graph of the 
interpolant may not be smooth. Splines are an attempt 
to solve this problem. 

The underlying core of the Spline is its basis 
function. The defining feature of the basis function is 
k not sequence i x . Let X be a set of N+1 non 
decreasing real numbers. N N x ≤ x ≤ x ≤ ≤ x ≤ x 0 1 
2 −1 ... .Here x s i ' are called knots , the set X is the 
knot sequence which represents the active area of 
real numbers line that defines the spline basis ,and 
the half –open interval[ ) 1 , i i+ x x the th i knot span. 
If the knots are equally spaced .,.( ) i 1 i ei x − x + is 
a constant for 0 ≤ i ≤ N − ),1 the knots vectors or the 
knot sequence is said to be uniform; otherwise, it is 
called non-uniform. Each spline function of degree k 
covers k +1 knots or k intervals. 

Spline methods are a high-performance alternative 
to solve partial differential equations (PDEs). This 
paper gives an overview on the principles of Spline 
methodology, shows their use and analyzes their 
performance in application examples, and discusses 
its merits. Tensors preserve the dimensional 
structure of a discretized PDE, which makes it 
possible to develop highly efficient computational 
solvers.  

NUMERICAL MODELLING OF APPLICATION 
OF HIGHER ORDER ACCURATE AND 
COMPACT NUMERICAL SCHEME 

In this study, we consider the Spline method 
concerning the partial differential equations: 
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 (1) 

 (2) 

The nonlinear part F(u) is of Spline type such that 

 where 

 

Here A is a non-zero real number and  is a positive 
number less than the space dimension n. 

The equations (4.1) and (2) can be rewritten in the 
form of the integral equations 

 (3) 

 (4) 

where  and the associated unitary group U(t) 
is realized by the transform as 

 

where  denotes the Fourier transform of g defined 

by  

The operators cos  and sin  are defined by 

replacing  with  and  
respectively. 

If the solution u of (1) or (3) has a decay at infinity and 
smoothness, it satisfies two conservation laws: 

 (5) 

Where  is the complex inner product in L
2
. Also the 

solution of (2) or (4) or satisfies the conservation law: 

 (6) 

The main concern of this study is to establish the 
global well-posedness and scattering of radial 
solutions of the equations (1) and (2). 

The study of the global well-posedness (GWP) and 
scattering for the semi- relativistic equation (1) has not 

been long before. In (E. Lenzmann) GWP was 
considered with a three dimensional Coulomb type 
potential which corresponds to . The first and 
second authors of the present study showed GWP 

for  if and  if n=1, for  if 
, and small data scattering for if In this 

study we tried to fill the gap  for GWP under 
the assumption of radial symmetry. For further study 
like blowup of solutions, solitary waves, mean field limit 
problem for semi-relativistic equation, see the 
references. 

The first result is on the GWP for radial solutions of (3). 

Theorem 1. Let 1  for n = 3 and  for . 
Let  be radially symmetric and assume that  is 
sufficiently small if . Then there exists a unique 
radial solution such that of (3) 
satisfying the energy and L

2
 conservations (5). 

We mean by  and  by . Hereafter, the space 

 denotes  for  and  its norm for 
some Banach space B. If , we use  for 

 with norm . We also denote  for 
all  by  

The next result is on the small data scattering of 
radial solutions of (4.3) for  

Theorem 2. Let  for n = 3 and    for . 

Then there is a real number and such that 

 (7) 

For fixed such  and , let be 
radially symmetric 

data. Then if  is sufficiently small, 
then there exists a unique radial solution 

 to (4.4). Moreover, there exist radial 

functions  and such that 

 

Where  is the solutions to the Cauchy problem 

 (8) 

In the definit ion of initial data space  the space 
 can be slightly weakened by the homogeneous 

Sobolev space . In fact,  for . 

Let  be the weak ened space . Then one 
can easily show that the solution   and 
then the existence of scattering operator of (2) on a 
small neighborhood of the origin in . For 
details see Remark M below. 
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The lower bound  of  is caused by the condition 
(J?J) which follows from the relation between the 
weight  and the L

2
 estimate of Bessel function 

such that 

 

For the finiteness, the assumption  is inevitable 

because  as  and  as . 

For more explicit formula, see the identity below. 
Hence for the present it seems hard to improve the 
range of  for the small data scattering. From the 
perspective of negative result for the scattering

1
, it will 

be very interesting to show the scattering up to the 
value of  greater than 1. 

CONCLUSION 

In the last few years another numerical technique has 
been increasingly used to solve mathematical models 
in engineering research, the spline Method. The spline 
Method has a few distinct advantages over the Finite 
Element and Finite Difference Methods. The 
advantage over the Finite Difference Method is that 
the spline Collocation Method provides a piecewise-
continuous, closed form solution. An advantage over 
the Finite Element Method is that the spline collocation 
method procedure is simpler and easy to apply many 
problems involving differential equations. 

Our experimental results nicely confirm the excellent 
numerical approximation properties of Spline and their 
unique combination of high computational efficiency 
and low memory consumption, thereby showing huge 
improvements over standard finite-element methods. 
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