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Abstract – Vector spaces are the subject of linear algebra and their dimension is well-characterized, 
approximately defining the number of independent spatial directions. Naturally, in mathematical analysis, 
infinite-dimensional vector spaces exist as function spaces, which have functions. In general, these vector 
spaces are endowed with several additional structures, including a topology that permits exploring 
problems of proximity and continuity. These are more widely used topologies described by a standard or 
an internal product (with a notion of distance between two vectors). This is especially the case for Banach 
and Hilbert spaces, which in mathematical analysis are important. Vector spaces in mathematics, science 
and engineering are increasingly being used. They are the best linear-algebraic definition for systems of 
linear equations. They provide a basis for expansion of Fourier, used in the compression of images, and 
provide an environment for partial differential equations for solution techniques. 
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INTRODUCTION 

A vector space (also called a linear space) is a 
collection of objects called vectors, which may be 
added together and multiplied ("scaled") by numbers, 
called scalars. Scalars are mostly called true numbers, 
but vector spaces with scalar multiplication by complex 
numbers, rational numbers, or typically a field are also 
present. The operations involving vector addition and 
scalar multiplication must follow certain criteria known 
as vector axioms. The terms real vector space and 
complex vector space are also used to determine that 
the scalars are real or difficult numbers. 

Some sets of Euclidean vectors are common vector 
space examples. They are physical numbers, such as 
forces, in which a third may be added to generate any 
two forces (of the same type), and the multiplication of 
an actual multiplier by a force vector is a second force 
vector. Vectors representing flat or tridimensional 
space shifts often form vector spaces in the same vein 
(but more geometrically). In vector spatial space 
vectors need not necessarily be arrow-like objects, as 
they appear in the above examples: vectors are known 
as abstract mathematical objects with unique 
properties, which can be interpreted as arrows in 
certain cases. 

One of the fundamental branches of mathematics is 
linear algebra. In many practical problems, quantities 
to be measured are connected to measurable 
quantities by linear equations and can thus be 
evaluated using the traditional row operating methods. 
In many cases the methods to be used are the most 
obvious (and most important). Further refinement of 
the theory's vector space leads to methods of solving 

linear differential equations, and even necessarily 
nonlinear equations are typically approached by a 
repeated solution of the required linearly equation in 
order to find a convergent sequence of approximate 
solutions. Vector space is a vector set V which has 
two operations and is called addition and scalar 
propagation which is called vector objects. In 
addition, in many other branches of mathematics 
the theory of the vector spaces originally generated 
to solve linear equations is widespread and built on. 

Historically, the first ideas which have led to vectors 
can be traced to the analytical geometry, matrices, 
systems of linear equations and Euclidean vectors 
of the 17th century. In 1888, Giuseppe Peano 
proposed his new, more abstract study, involving 
more general objects than the Euclidean space; 
however, most of the theories can be considered an 
extension of classical geometric ideas such as 
lines, planes and higher-dimensional analogues. 
The concept of vector space will first be explained 
by describing two particular examples: 

First example: arrows in the plane 

The first definition of a vector space is a fixed plane 
with arrows beginning at a specified point. This is 
the explanation of forces or speeds in physics. 
Given the two flips, v and w, there is one diagonal 
arrow in the parallelogram of the two arrows, which 
also begins at the origin. In the case of two arrows 
on the same side, the sum of this new flat is the 
arrow with a length that corresponds to the total or 
difference in length, depending on whether or not 
the arrows have the same direction. This flat is the 
total of both arrows and the length of the arrow. [1] 
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Another operation that can be performed with arrows 
is the scaling process. Given any positive number as 
the arrow that is dilated or shrunk in the same direction 
as v, is called the multiplication of v by a, because of 
its length. It's referred to as av. Av is defined, if an is 
negative, as the flew pointing the other way. 

The following shows a few examples: if a = 2, the 
resulting vector aw has the same direction as w, but is 
stretched to the double length of w (right image 
below). Equivalently, 2w is the sum w + w. Moreover, 
(−1)v = −v has the opposite direction and the same 
length as v (blue vector pointing down in the right 
image). 

 

Second example: ordered pairs of numbers 

The pairs of real numbers x and y are a second key 
example of a vector space. (The sequence is 
important for the components x and y, so that such a 
pair has been often referred to as the ordered pair.) 
The sum of two such pairs and multiplication of a pair 
with a number is defined as follows: 

 

A vector space over a field F is a set V together with 
two operations that satisfy the eight axioms listed 
below. In the following, V × V denotes the Cartesian 
product of V with itself, and → denotes a mapping 
from one set to another. 

► The first operation, called vector addition or 
simply addition + : V × V → V, takes any two 
vectors v and w and assigns to them a third 
vector which is commonly written as v + w, 
and called the sum of these two vectors. (The 
resultant vector is also an element of the set 
V.) 

► The second operation, called scalar 

multiplication · : F × V → V， takes any scalar 

a and any vector v and gives another vector 
av. (Similarly, the vector AV is a V set unit. It 
should not be confused with the scalar 
product, also known as the internal product or 
point product, which has an additional 
structure in some unique vector spaces but 
does not exist in all of them. Scalar 
multiplication is a scalar multiplication of a 
vector; the other means two vectors which 
generate a scalar.) 

Elements of V are commonly called vectors. Elements 
of F are commonly called scalars. Common symbols 
for denoting vector spaces include U, V and W.[1] 

The field is the field of actual numbers in the two 
examples above, and the set of vectors is composed 
of planar arrows with fixed starting point and pairs of 
real numbers. 

The set V and the add-in / multiplication operations 
must comply with several criteria called axioms to be 
considered a vector space[2]. These are shown in the 
following table, with u, v and w indicating arbitrary V 
vectors and b and a denoting scalar of F. Indeed, the 
result of addition of two ordered pairs (as in the 
second example above) does not depend on the order 
of the summands: 

 

In the geometric example, v + w = w + v as the 
vector‟s space total parallelogram is not in the order 
of the vectores. v + w = w + v. In both cases, all 
other axioms can be tested similarly. Thus, the 
description combines these two and many more 
examples in one notion of vector space by 
disregarding the unique existence of the particular 
form of vector space. 

Subtraction of two vectors and division by a (non-
zero) scalar can be defined as  

 

The vector space is called a true vector space if the 
scalar F is the real R number. The vector space is 
called complex vector space if the scalar field is the 
complex C number. The two cases in the 
engineering industry are most common. The overall 
vector space concept requires the scalar elements to 
be part of a fixed F field. The word F-vector space or 
vector space over F is then defined. A field is 
basically a set of numbers with operations to add, 
deduct, multiply and divide. Rational numbers, for 
instance, form a field. 

There is no concept of proximity, angles or lengths, 
as opposed to the vector intuition in the plane and 
higher dimensional situations. Special forms of 
vector spaces are implemented for such matters; see 
§ Vector spaces for more information below with 
additional structures. 

Vector spaces  

A vector space is a non-empty set V, whose objects 
are referred to as vectors, fitted with two operations 
called addition and scalar multiplication: there are 
uniform vectors u + v and cu in V of each of the two 
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vectors u, v, and a scalar c, to satisfy the following 
properties. 

 

By definition of vector space it is easy to see that for 
any vector u and scalar c, 

0u = 0, c0 = 0, −u = (−1)u. 

For instance, 

 

Example 1.  

(a) The Euclidean space R n is a vector space 
under the ordinary addition and scalar 
multiplication.  

(b) The set Pn of all polynomials of degree less 
than or equal to n is a vector space under the 
ordinary addition and scalar multiplication of 
polynomials.  

(c) The set M(m, n) of all m × n matrices is a 
vector space under the ordinary addition and 
scalar multiplication of matrices.  

(d) The set C[a, b] of all continuous functions on 
the closed interval [a, b] is a vector space 
under the ordinary addition and scalar 
multiplication of functions. 

Example 2.  

(a) For a vector space V, the set {0} of the zero 
vector and the whole space V are subspaces 
of V; they are called the trivial subspaces of V 
.  

(b) For an m × n matrix A, the set of solutions of 
the linear system Ax = 0 is a subspace of R

n
. 

However, if b 6= 0, the set of solutions of the 
system Ax = b is not a subspace of R

n
.  

(c) For any vectors v1, v2, . . . , vk in R
n
, the span 

Span {v1, v2, . . . , vk} is a subspace of R n.  

(d) For any linear transformation T : R
n 

→ R
m
, the 

image 

 

of T is a subspace of R
m
, and the inverse image 

 

is a subspace of R
n
. 

Alternative formulations and elementary 
consequences 

Scalar multiplication are vector additions and scalar 
multiplication, which satisfy the closure properties: u + 
v and av are in V for all an in F, and u, v in V. 

In the abstract algebra language, the first four 
axioms are analogous to the fact that the vector set 
should be an abelian group. The other axioms 
include a structure of this category with an F-
module. In other words, the ring homomorphism f 
from field F into the vector group endomorphism 
ring. The scalar multiplication av, then (f(a))(v) is 
defined[6]. 

The vector space axioms have some direct 
implications. Some come from the basic group 
principle, applied to the vector group additive. For 
example, the 0 vector of 0 is unique and the reverse 
additive v of any vector v is unique. Additional 
properties follow those for scalar multiplication, for 
example av is equal to 0 if and only if the 
distributive law is equal to 0 or v. 

Complex numbers and other field extensions 

The set of complex numbers C, that is, numbers 
that can be written in the form x + iy for real 
numbers x and y where i is the imaginary unit, form 
a vector space over the reals with the usual addition 
and multiplication: 

 for real numbers x, y, a, b and c. The different 
axioms of a vector space are based on the 
assumption that the same laws apply to complex 
arithmetic numbers. 

Indeed, the definition of a complex number (i.e., 
isomorphically) is basically the same for the vector 
space of the ordained actual number pairs 
described previously: when we consider the 
complex number x + iy to be the ordered pair (x , y) 
in the complex plane, we can see that there is a 
direct connexion between the additions and the 
scale-producing rules of the above case. 

Field extensions typically provide another class of 
vector space examples, in algebra and algebraic 
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numeric theory in particular; field F which contains a 
field E is an E-vector space, due to the multiplication 
and the addition of F. Field extensions are given. For 
example, the complex numbers are a vector space 

over , and the field extension  is a vector 
space over Q. 

Function spaces 

Functions from any fixed set Ω to a field F also form 
vector spaces, by performing addition and scalar 
multiplication point wise. That is, the sum of two 
functions f and g is the function (f + g) given by 

 

and similarly for multiplication. In certain geometric 
situations such functional spaces occur when a ren is 
the actual line, an interval, or other sub-sets of R. 
Various principles in topology and analysis, such as 
continuity, integrability or differentiability, are well 
preserved as regards linearity: the sums and scalar 
multiples of functions with this sort of property still 
have the property [17]. The methods of functional 
analysis, see below, are discussed in more detail. 
Algebraic constraints also yield vector spaces: the 
vector space F[x] is given by polynomial functions: 

 where the coefficients 

 

 

Addition of functions: The sum of the sine and the 
exponential function 

Linear equations 

Main articles: Linear equation, linear differential 
equation, and Systems of linear equations 

Systems of homogeneous linear equations are closely 
tied to vector spaces. For example, the solutions of 

 

are given by triples with arbitrary a, b = a/2, and c = 
−5a/2. The vector space is generated by the sums of 
these triples and scalar multiples; they are both 
solutions, and yet satisfy the same proportion of the 
three variables. Matrices can be used for condensing 
several linear equations into a single vector equation 
as above, namely 

Ax = 0, 

Where  

 

x is a vectour (a, b , c), Ax denotes the sum of the 
matrix and 0 = (0, 0) is the zero vector. Ax is the matrix 
of the equations. The solutions of uniform linear 
differential equations, in a similar way, form vector 
spaces. For example, 

 

yields  where a and b are 
arbitrary constants, and ex is the natural exponential 
function. 

Linear maps and matrices 

In linear map or linear transformation can express 
the relationship of two vector spaces. They represent 
the space structure vector, that is to say, maintain 
amounts and scalar multiplication: 

 for all v and 
w in V, all a in F. 

An isomorphism is a linear map f : V → W such that 
there exists an inverse map g : W → V, which is a 

map such that the two possible compositions f ∘ g : 

W → W and g ∘ f : V → V are identity maps. 
Equivalently, f is both one-to-one (injective) and onto 
(surjective). If an isomorphism occurs between V and 
W, both spaces would be isomorphic and are 
basically identical as vector spaces since all 
identities containing V are transported via V to 
similar spaces in W and vice versa via g. 

For instance, the input "plane arrows" and "ordered 
numbers pairs" are isomorphic: the x- and y-
component of the arrow can be taken into 
consideration by the planned arrow v which starts at 
the beginning of the (fixed-) co-ordinate system in an 
ordered pair. In comparison, if a pair (x , y) is seen, 
the arrown is x to the right and y up (down, where y 
is negative) to x to the left. Linear maps V → W 
between two vector spaces form a vector space 
HomF(V, W), also denoted L(V, W). The space of 
linear maps from V to F is called the dual vector 
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space, denoted V∗.Via the injective natural map V → 

V∗∗, any vector space can be embedded into its 
bidual; the map is an isomorphism if and only if the 
space is finite-dimensional. 

 

Describing an arrow vector v by its coordinates x 
and y yields an isomorphism of vector spaces 

Once a basis of V is chosen, linear maps f : V → W 
are completely determined by specifying the images of 
the basis vectors, because any element of V is 
expressed uniquely as a linear combination of them. If 
dim V = dim W, a 1-to-1 correspondence between 
fixed bases of V and W gives rise to a linear map that 
maps any basis element of V to the corresponding 
basis element of W. It is an isomorphism, by its very 
definition. Therefore, two vector spaces are isomorphic 
if their dimensions agree and vice versa. Another way 
to express this is that any vector space is completely 
classified (up to isomorphism) by its dimension, a 
single number. In particular, any n-dimensional F-
vector space V is isomorphic to Fn. There is, however, 
no "canonical" or preferred isomorphism; actually an 
isomorphism φ : Fn → V is equivalent to the choice of 
a basis of V, by mapping the standard basis of Fn to V, 
via φ.  

CONCLUSION  

Vector spaces stem from affine geometry, via the 
introduction of coordinates in the plane or three-
dimensional space.  By defining solutions to an 
equation of two variables with points on a plane curve, 
mathematicians René Descartes and Pierre de Fermat 
created analytical geometry. Vectors were checked 
when Argand and Hamilton introduced complex 
numbers and the latter started quaternions. These are 
R2 and R4 elements; they are handled using linear 
combinations and specified linear equation systems. 
There are definitions of linear autonomy and 
dimension as well as scalar products. The 1844 work 
of Grassmann actually goes beyond the vectors, 
because his careful reproduction often leads him to 
what today are referred to as algebras. The first to give 
a modern description of vector spaces and linear maps 
was the Italian mathematician Peano. The construction 
of functional spaces by Henri Lebesgue is a significant 
advancement of vector spaces. Algebra and the new 
area of functional analysis began interacting at the 

time , especially with key concepts such as P-
integrable spaces and Hilbert spaces. The first 
experiments on infinite dimensional vector spaces 
were also carried out at this time.  
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