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Abstract – Memory function appearing in the Mori’s memory function formalism has been used to evaluate 
the Shear viscosity of Lennard - Jones (LJ) fluids. The functional form of this memory function depends 
upon the thermodynamic state and at the same time it may be mentioned that the memory function is 
derivable from a equation of motion for the development of time correlation function (TCF). The results so 
obtained are compared with Molecular Dynamics simulation results. 
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INTRODUCTION 

In past four decades a considerable progress has 
been made to provide more and more accurate 
microscopic theories for the prediction of transport 
coefficients of fluids like shear viscosity. One of the 
approach which has been extensively used is through 
the time evolution of the time correlation function. The 
exact calculation of time correlation function for all 
times is not possible for a fluid, particles of which are 
interacting via realistic interaction potential, as it 
involves the solution of many body system. Therefore, 
in the past Mori‘s equation

1
 of motion has been used. 

The Mori‘s equation reduces the problem of calculation 
of TCF to a problem of calculation of memory function 
which appears in the equation of motion. Though, 
there exists microscopic expression for the memory 
function, its exact evaluation is again not possible. 
Therefore the approximations based on mode coupling 
approach and kinetic theory have been employed in 
the past. These microscopic approaches have not yet 
been coupled with microscopic expressions for the two 
particle‘s contribution to TCF. 

The second approach is to choose more and more 
appropriate phenomenological form of the memory 
function. In the past memory function like gaussian, 
simple exponential, hyperbolic secant and square of 
hyperbolic secant have been used to predict transport 
coefficients of classical fluids. It has been noticed, in 
all these attempts, that none of phenomenological 
function corresponding to gaseous and liquid state of 
the system predicts transport coefficients with uniform 
accuracy over complete range of densities and 
temperatures. Therefore, search for functional form of 
memory function which changes its form with density 
and temperature, a form of memory function

2
 which 

satisfy these properties. In this paper the functional 

form of memory function and frequency sum rules 
of transverse stress correlation function are used to 
calculate shear viscosity of LJ fluids over a wide 
range of density and temperature. The results 
obtained are in good agreement with the computer 
simulation results. 

THEORY 

Transport coefficients can be written as time 
integral of appropriate time correlation function in 
terms of Green Kubo relation given by 

 

where  is representing any transport coefficients, 
C(t) is an associated time correlation function  and 

K is some thermodynamic quantity. For example  
will be self-diffusion coefficient when C(t) is TCF of 
velocity of a tagged particle. Mori‘s equation of 
motion which determines the time evolution of C(t) 
is given as 

 

where M1(t) is first order memory function. The M1(t) 
satisfies  an equation similar to equation 
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Writing M2(t) in terms of M3(t) in a same way as that in 
equation (3) and using it in the time derivative of 
equation (3)  we obtain 

 

With  2 = M2(0). This equation is still an exact relation. 
Using some plausible approximation for third order 
memory function we obtain an equation which is given 
as 

 

Here  is some constant to be determined and 3 = 
M3(0). The Solution of this equation is given by 

 

with 

 

This is new form of memory function which we shall be 

using. Here the parameter  which is related to sum 
rules which in turn depends upon density and 
temperature. This will determine the functional form of 
memory function. Here, it may be noted that for very 

large value of  this memory function exactly 

reproduces the gaussian model, whereas for =1 and 
2 it represents hyperbolic secant form and square of 
hyperbolic secant form of memory function. 

The memory function given by equation (6) combined 
with equation (1) and (2) provide an expression for the 
transport coefficient given as 

 

These n  are  related to sum  rule  of  corresponding 
TCF upto 2n

th
 order. On the other hand if  the same 

procedure is used at one step before i.e. at equation 
(2) instead of equation (3) we obtain expression of 
transport coefficient given as 

 

 

Fig.1: Variation of shear viscosity(reduced units) 
vs  reduced density for four reduced temperatures. 

Full curves –our results. Dots are simulation 
results. 

RESULTS AND DISCUSSION 

The expressions discussed above can be used to 
calculate the appropriate transport coefficients with 
the use of frequency sum rules at various 
temperatures and densities of the fluid. The 
numerical results for the sum rules transverse stress 
correlation (TSC) function are already available

3
. 

Using these results for sum rules of TSC function 
and equation (9) with K=1/VkBT, where V is volume, 
kB Boltzmann constant and T is temperature. 

The shear viscosity  
(=

2
(m)

-1/2
) for different 

value of T
*
 (=kBT/) and n

*
(=n

3
) is calculated. The 

comparison of results with the computer simulation 
results are shown in Fig.1, where solid dots 
represent simulation results of Heyes

4
 and lines 

represent results calculated by using the above 
formalism . It is seen from the figure the agreement 
is quite good. Here it may be noted that for all these 

densities and temperatures  has been found to be 
less than one. 
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