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Abstratct – In this examination , we spread Fermat Little Theorem, Euler's generalization of this theorem, 
and. Fermat's Little Theorem, and Euler's theorem are two of the most significant theorems of present 
day number theory. Since it is so crucial, we set aside the effort to give two proofs of Fermat's theorem: 
(I) the acceptance based proof, and (ii) the change based proof. The second of these sums up to give a 
proof of Euler's theorem. There is a third proof utilizing bunch theory, however we center around the two 
increasingly rudimentary proofs. We present a few ways to deal with a conceivable "basic" proof of 
Fermat's Little Theorem (FLT), which expresses that for all n more prominent than 2, there don't exist x, 
y, z to such an extent that xn + yn = zn, where x, y, z, n, are certain whole numbers. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

Fermat's 'little' theorem is one of the gems of 
Number Theory, and to stamp the 400"1 
commemoration of Fermat's introduction to the 
world, I offer this discussion. My discussion isn't 
proposed as a prologue to Number Theory, nor in 
fact even as a prologue to Maple, in spite of the fact 
that in the two cases it could fill in accordingly. 
Undoubtedly in the time accessible (somewhere in 
the range of 30 minutes) me will be able to cover just 
a little determination of the points recorded beneath. 
Any individual who is intrigued may get to the this 
Maple .mws record at my site, and furthermore a 
html content transformation (which might be perused 
by any individual who has an internet browser, and 
does not require having Maple); they are in the 
Public and Other Lectures area of the Maple 
segment of my website.  

Then again his little theorem - which was generally 
simple to demonstrate (however what number of 
could make a proof stomach muscle initio?) - has a 
tremendous scope of numerical results, and one 
noteworthy practical application.  

In this investigation we consider a portion of the early 
proofs of Fermat's Little Theorem. Our principle 
reference is History of the Theory of Numbers, 
Volume 1 by L.E. Dickson. Since a large number of 
the first sources to the proofs of these theorems are 
dark, we more often than not allude the peruser to 
Dickson. The grouping of the proofs shows up 
sequentially, so as to show how the proofs advanced 
all through the seventeenth twentieth hundreds of 
years.  

One of our principle objectives is to take crude, 
inadequate proofs laid out in Dickson and fill in the 
missing subtleties. We do, in any case, attempt to 
hold the first kind of the proofs as for 
documentation and phrasing. Another objective is 
to underscore the extraordinary assortment of 
strategies that were utilized to demonstrate the two 
theorems and their generalizations.  

THE USE OF 'LITTLE', THE THEOREM 
ITSELF, AND HOW IT ORIGINATED  

The - little' of the theorem: When did this theorem 
begin to be called 'Fermat's little theorem? Who (in 
English) first called it so?  

As a matter of fact not every person calls it so. In 
Vol I [1919] of Dickson's monumen¬tal three 
volume [.History of the] Theory of Numbers there is 
a whole part dedicated to 'Fermat's and Wilson's 
Theorems.' Hardy and Wright, Davenport, Nagell, 
... , basically use 'Fermat's theorem.' And Sierpinski 
calls it 'Straightforward The¬orem of Fermat' in his 
1964 .4 Selection of issues in the Theory of 
Numbers.  

Obviously everybody realizes what 'Wilson's 
theorem' is - since there is just a single such 
theorem (at the same time, presumably, somebody 
will compose and let me know of another!) - yet 
'Fermat'8 theorem'? Well there are a few 
petitioners: the lovely result - to name however one 
- that each prime p. with p= 1 (mod 4), is 
representable by p=a-+ t? for a few (remarkable; 
disregarding, obviously, change of signs, and 
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inter¬change) whole numbers an and b, could well 
profess to be 'Fermat's theorem.'  

The theorem itself : According to Dickson (and 
others: see Bibliography) Fermat previously declared 
his theorem in a letter to Mersenne, June (?), 1640.  

Fermat's 'little' theorem. Give p a chance to be 
prime, and a be any number with a 0 (mod p), at that 
point In non-coinciding language: let p be any prime, 
and a be any whole number not detachable by p. at 
that point leaves leftover portion 1 on division by p. 

 

A small hand performed illustration. Let p = 7 and a = 

2, then  

Maple examples (the meaning of each command 
should be clear). 

• restart; 

• p[l] := nextprime(120); 

• p, := 127 

• a[l] := 2; 

• ai := 2 

• 57 mod 5; # the remainder 57 leaves on 
division by 5 

• 2 

• a[l]"(p[l] - 1); 

•
 85070591730234615865843651857
942052864 

• a[l]"(p[l] - 1) mod p[l]; 

• 1 

• p[2] := nextprime(10~20 + randO); 

• p2 := 100000000427419669091 

• a[2] : = rand(); # Maple ha3 a 12-digit 
random number generator: 

• a2 := 321110693270 

• a[2] mod p[2]; 

• 321110693270 

• a[2]-(p[2] - 1); 

Error, integer too large in context 

Fermat's discovery of his little theorem was a direct 
outcome of his investigations concerning Euclid's 
theorem on perfect numbers. More specifically it 
originated from his investigations into the question of 
the primality or otherwise of . 

On occasion we say things to our students like: I'm 
not sure how such- and-such first happened, was 
discovered, but I think it happened like this... For 
example, I find myself telling my students how I think 
Euclid could have discovered his famous theorem on 
perfect numbers. Also, many years ago, I used to 
(wrongly) tell how I thought Fermat had discovered 
his 'little' theorem... ; I thought he had found it by 
thinking about the decimal expansions of rational 
numbers. In Section consider decimal and other 
expansions, and there you will see how anyone 
could have formulated Fermat's little theorem had 
he/she simply asked the right questions having 
investigated decimal expansions of certain rational 
numbers. 

DECIMAL (AND OTHER) EXPANSIONS OF 
RATIONAL NUMBERS  

Here the simple, and clear point I wish to make 
isn't just does Fermat's little theorem clarify, or help 
one to comprehend certain outstanding marvels 
regarding the decimal expansions of rational 
numbers, however that those very wonders 
themselves - with general bases being u»?d (and 
not simply decimal, for example base 10) - can 
lead somebody to re-finding of Fermat's little 
theorem. Specifically, on the off chance that one 
were working with youthful understudies, at that 
point, with appropriate direction, they could be 
directed to guess Fermat's little theorem. 

Specifically I refer to the quickly observed fact that 
the number of digits in the period of the decimal 

expansion of (where p is any prime 

with ) appears to an imestigator to be 
(and may be proved using Fermat's little theorem 
to be): 

• either ( p — 1) 

• or a divisor of ( p — 1) 

Start. Many sensitive young people are fascinated 
(or, at least, used to be!) with phenomena like: 

 

•  

• ... ad infinitum 
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•  

  

• ... ad infinitum 

 

• 142857 142857 ... ad infinitum [Here, and 
elsewhere, I make spaces to emphasise the 
periodic block.] 

 

285714 285714 ... ad infinitum and - as almost 
everyone who has ever investigated such matters 
(without knowing that it has all already long been 
discovered) - one quickly finds that 

• the rational number (where m and n are 
positive, m < n) has a periodic decimal 
expansion provided n is not divisible by 2 or 
5 

 

047619 047619 (I have deliberately made spao?s to 
emphasise the periodic block) ... 

• otherwise has an eventually periodic 
decimal expansion  

  

45 45 45 45 ... (here n is divisible by 2) 

 

054 054 054 ... (here n is divisible by 5) 

• Anyone who gets preoccupied with the 
lengths of these periodic blocks quickly makes an 

often made (re)discovery: for prime  
the length of the period of the decimal expansion 

of is either ( p— 1) or a divisor of ( p— 1). A 
sensitive eye gets quickly drawn towards the 'prime' 
element in all of this because the examples with long 
periods - long in relation to the size of the 
denominator - having encountered examples like: 

 

142857 142857 ... [period length 6] = 
.588235294117647©-10 588235294117647 ... 

[period length 16] = .5263157894736842le-1 0 
52631578947368421 ... [period length 18] 

and the other primes p. up to 100. for which has 
period length ( p— 1) are 23. 29, 47, 59. 61 and 97. 
Anyone who knows sufficient Number Theory will 
know that they are primes p for which ordp( 10) = p 
— 1; in other words they are primes for which 10 is a 
primitive root [See, too. Section on open problems]. 

As soon as the eye has got drawn in to  for p = 7, 
17. 19, 23. 29, etc, then the eye returns to look at the 
decimal expansions of the reciprocals of the other 
primes (not 2 or 5), and notices: 

 

3 3 3 3 3 ... [period length 1] = .9e-l 09 09 09 09 

... [period length 2] = ,76923e-l 076923 076923... 
[period length 6]= .32258064516129^1 0 

32258064516129 ... [period length 15]  

Maple has a command for computing those 
periodic decimals expansions, and it'8 called 
'pdexpand'. To access it one needs to load Maple's 
Number Theory package: 

• with(numtheory); 

Warning, new definition for M  

Warning, new definition for order 

• order(10, 7); 

• pdexpand(l/31); 

PDEXPAND(1, 0, []. [0. 3, 2. 2. 5, 8. 0. 6, 4, 5. 1, 6, 
1, 2, 9]) 

This is not a Maple tutorial, but anyone who wishes 
may consult what Maple has to say about 
"pdexpand" by executing the following line (first 
remove the and then execute): 

• # ?pdexpand 

• pdexpand(135/14); 

PDEXPAND(1, 9. [6]. [4, 2, 8. 5. 7, 1]) 

means that = 9.6 428571 428571 428571 ... ad 
infinitum. and 

• convert(PDEXPAND(-1, 2, [1, 1], [9, 0, 1, 
3]), rational); 

 

means that -2.11 9013 9013 9013 ... =  
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• pdexpand(1/7); PDEXPAND(1, 0, [], (1, 4, 2, 
8. 5, 7]) 

• pdexpand(l/21); PDEXPAND(1, 0, [], [0. 4, 7, 
6. 1, 9]) 

• pdexpand(l/22); PDEXPAND(1, 0. [0], [4. 5]) 

• pdexpand(1/185); PDEXPAND(1. 0. |0]. [0. 
5, 4]) 

In passing I cannot resist asking if from: = .9e-l 
0909 09 ... (A) my reader can determine the decimal 

expansion of ? In other words, what do you get if 
you square both sides of (A)? 

• pdexpand(l/ll); PDEXPAND(1, 0. 0, [0, 9]) 

• pdexpand(l/ll^2); 

PDEXPAND(1, 0. ||, [0, 0. 8. 2, 6. 4. 4, 6. 2. 8, 0, 9. 

9, 1, 7. 3, 5, 5. 3, 7, 1. 9|) And ? 

• pdexpand(l/ll^3); 

 

A suggestion for playing. Much fun may be had by 
investigating (and explaining what's going on with) 

decimal expansions of ; 

... ; etc. A knowledgeable practitioner 
should be able to quess, and prove results. 

A word of warning. One must be careful about saving 
ones before executing some commands!! 

Returning to above. And now to observe the obvious 
connection to Fermat's little theorem. All, I believe, 
becomes clear from almost one reflection; simply 

consider the decimal expansion of, say, : 

 

142857 142857 ... cut infinitum 

How does one prove that the non-terminating 
decimal on the right hand side is equal to the 

(rational) number Of course one needs to have 
studied infinite series to giw a precis? meaning to 
such an object... 

It's very simple, and straightforward, providing one 
knows that: 

 

 

and thus: 

 

 

 

etc 

Two points, now, are simply these: 

• Fermat's little theorem (with p = 7, a = 10) 
forcesto have the decimal (10) expansion 

that it has.  

• The decimal expansion of being what it 
is, forces Fermat's little theorem to hold for 
p = 7, a = 10. 

Why? It's simple; 

1. By Fermat's little theorem, with p = 7 and a = 10, 
we have 10

6
 = 1 (mod 7), and thus 7 divides ( 10

6
 

— 1). Performing the division by 7 we find that 10
6
 

- 1 = 7*142857, and so it follows that: 

 

= .142857 142857 142857 ... cut infinitum 

2. If one has determined that the decimal 
expansion of i is given by: 

 

142857 142857 ... ad infinitum 

then one has namely 10
6
 - 1 =7*142857. 

Thus 7 divides ( 

10
6
 - 1), and so it follows that 10

6
 = 1 (mod 7). 

I hardly need write any more on this? 

QUADRATIC AND OTHER CONGRUENCES 
MERSENNE AND FERMAT NUMBERS  

Here I begin with a famous empirical discovery of 
Fermat‘s: 

every odd prime divisor of ( x
2
 + 1) leaves 

remainder 1 on division by 4 

In the following, this is what I am doing: I first form 
a random x2 + 1, factor it, and then verify that 
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every odd prime divisor leaves remainder 1 on 
division by 4. Bear in mind that 

•  if x is odd then one of the primes dividing x
2
 

+ 1 will be 2 itself (and it is trivial that 22 will 
not be a factor), otherwise all the other prime 
factors will be odd (and, in extremis, there 
might only be one: 3

2
 + 1 = 2*5) 

•  if x is even then all primes dividing x
2
 + 1 will 

be odd (and, in extremis, there might only be 
one: 2

2
 + 1 = 5) 

> x := rand(); 

x := 343633073697 

> n := x^2 + 1; 

n := 118083689338447833247810 

> m := ifactor(n); 

m := (2) (5) (542340005228713697) (21773) 

> L := [op(m)]; 

L := [ (2), (5), (542340005228713697), (21773)] 

> r := nops(L); # how many prime factors there are 

r := 4 

• for k to r do 

• p[k] := op(L[k]) 

• od; 

p4 := 2 

p2 := 5 

p3 := 542340005228713697 

p4 := 21773 

• for k to r do 

• p[k] mod 4 

• od; 

2 

1 

1 

1 

All these odd primes (which will change every time 
the two commands are re-executed) are congruent to 
1 mod 4. Euler gave a proof based on Fermat's little 
theorem. 

An extension of that result is that every odd prime 
divisor of ( x

4
 + 1) leaves remainder 1 on division by 

4 

Here, numerical experimentation like the above 
(using rand()) would be problematic, since Maple - 
almost certainly - would have difficulty in performing 
the resulting factorisations (and, in fact, it is precisely 
the difficulty of factoring that is the basis of RSA 
public-key cryptography). 

Instead, I choose more modestly sized n's to factor: 

• x := randO mod 1234321; # to reduce the 
3ize of 'x': 

x := 57094 

• n := x^4 + 1; 

n := 10625806006435226897 

• m := ifactor(n); 

m := (17) (718040S874809) (87049) 

• L := [op(m>]; 

L := | (17). (71804(8874809), (87049)] 

• r := nops(L); # hou many prime factors 
there are 

r := 3 

• for k to r do 

• p[k] := op(L[k]) 

• od; 

p1 := 17 

p2 := 718040S874809 

p3 := 87049 

• for k to r do 

• p[k] mod 8 # note the change to mod 8 

• od; 

1 
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1 

1 

That result - re ( x
4
 + 1) - may be proved in the same 

way as the (x
2 
+ 1) result. In general one has: 

every odd prime divisor of   leaves 

remainder 1 on division by  

This result enables trial factoring of Fermat numbers 
to be eased, and there is another simple extension of 
it that saves a further 50%... 

Yet another application of Fermat's little theorem is 
to the trial factoring of Mersenne numbers ( Mp = 2

P
 

— 1, with p prime): Theorem. Every prime divisor q 
of Mp satisfies q = 1 (mod p). 

It is pleasing that that Theorem can be proved by 
using Fermat's little theorem, when it was precisely 
the very discovery of that theorem which led Fermat 
to discover his little theorem in the first instance. 

Comment. A great deal more about Mersenne 
numbers (including the Lucas- Lehmer test) is 
available in my 1995 Maple public lecture "The 
recently discovered record largest known prime," and 
a great deal more more about Fermat numbers 
(including the Pepin test) is available in my 1999 
Maple public lec- ture"The history of Fermat numbers 
from August 1641,* both at my web site. 

PRIMALITY TESTING  

Here I only remark that the modern study of primality 
testing really begins with the trail blaising work of 
Lucas, via Fermat's little theorem, and I urge any 
serious reader to rush to their bookdealer and obtain 
a copy of the wonderful book by Hugh C. Williams. 

I have briefly hinted at the sort of use that can be 
made of Fermat's little theorem to establish that a 
number is composite, but a great deal more is 
involved in using it as a starting point in proving that 
a number is prime. 

I refer the interested reader to my web site, where I 
have many Maple worksheets - in the 2nd and 3rd 
year, and Public and Other Lectures sections of my 
site's Maple section - devoted to primality testing. 

RSA PUBLIC-KEY CRYPTOGRAPHY 

Frequently it is (correctly) stated that a fundamental 
element in the renowned RSA cryptographic method 
is the use of the Fermat-Euler theorem: let n ( 1 < n) 
be a natural number, and a be any integer with 
god(a, n) = 1, then (mod n), where is the 
Euler p/ii-function (the number of integers between 1 
and n that are relatively prime to n). 

In fact it is only a very special case of this theorem 
that is needed for the RSA application, namely the 
case where n = pq, where p and q are distinct primes 
(in practical applications p and q are both large, and 
with some added refinements for security purposes). 
A fairly detailed exposition of the RSA method may 
be read in my Maple public lecture - Bill Clinton, 
Bertie Ahem, and digital signatures - in the Maple 
Public and Other Lectures section of my web site. 

The two prime version of Fermat's little theorem is 
simply this: let 

• p and q be distinct primes (in cryptographic 
applications they will be large, but not just 
merely large (as is sometimes incorrectly 
stated); to see why, refer to Section  ) 

• a be any integer with (mod p) 

and (mod q) 

then 

 

 

One may easily give a proof of the two prime 
version which is independent of the normal proof of 
the full Fermat-Euler result. 

Proofs of some important, consequences of 
Format's 'little' theorem. 

Euler's (Ivory's?) proof of Format's little theorem : 
This proof relies on the simple, but powerful 

observation that for prime p. and integer (mod 
p), one has 

 

(mod 
p) in some order 

A small prime numerical demonstration: 

► restart; 

► p := 23; 

p := 23 

► a := 12; 

a := 12 

► seq(a*k mod p, k=l..p-l); 

12. 1, 13. 2, 14. 3. 15. 4. 16. 5. 17, 6. 18, 7. 19, 8. 
20, 9. 21, 10. 22, 11 
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► sort([seq(a*k mod p, k=l..p-l)]); 

[1. 2. 3, 4, 5. 6, 7, 9, 10. 11, 12. 13, 14, 15. 16, 17. 
18. 19, 20. 21, 22] 

Then (mod p), from which it 

follows that  

(mod p). 

Euler's proof concerning ( x
2
 + 1) : 

Suppose (mod p) for some prime p with p = 
3 (mod 4). Then from (mod p) one 

has (mod p), giving 

 

 

But clearly  (mod p), and so by Fermat's little 
theorem 

 

 

and (i) and (ii) are incompatible for odd p, since they 
imply 2 = 0 (mod p). 

An easy proof of a 2-prime version of Fermat's little 
theorem : If one is in a hurry then this proof allows 
one to sidestep having to establish all the side work 
necessary to a proof of the full Euler-Fermat 
theorem; one merely has to make two applications of 
the standard Fermat little theorem. We have: 

 

 

and thus 

 

 

giving 

 

 

Similarly 

  

 

and thus 

 

 

since gcd(p. q) = 1. [End of proof.) 

As one quickly learns in RSA public-key 
cryptography, the 2-prime version of Fermat's 'little' 
theorem plays a central role. 

A GENERALIZATION OF FERMAT'S LITTLE 
THEOREM 

In this lecture, we cover Fermat Little Theorem, 
Euler's generalization of this theorem, and end with 
Wilson's theorem. Fermat's Little Theorem, and 
Euler's theorem are two of the most important 
theorems of modern number theory. Since it is so 
fundamental, we take the time to give two proofs of 
Fermat's theorem: (i) the induction based proof, 
and (ii) the permutation based proof. The second of 
these generalizes to give a proof of Euler's 
theorem. There is a third proof using group theory, 
but we focus on the two more elementary proofs. 

One form of Fermat's Little Theorem states that if p 
is a prime and if a is an integer then 

 

For example  divides 2
3
 — 2 = 6 and 3

3
 — 3 = 24 

and 4
3
 — 4 = 60 and 5

3
 — 5 = 120. Similarly, 5 

divides 2
5
 — 2 = 30 and 3

5
 — 3 = 240 et cetera. 

Obviously a
p
 — a factors as a(a

p-1
 — 1). So if p \ a 

then we have 

 

This gives another common form of Fermat's Little 
Theorem. For example,  divides 5

2
 — 1 = 24 and 4

2
 

— 1 = 15 and 2
2
 — 1 = 3. Also, 5 divides 2

4
 — 1 = 

15 and 3
4
 — 1 = 80 and 4

4
 — 1 = 255, and 7 

divides 2
6
 — 1 = 63 et cetera. 

After Gauss introduced congruences, the theorem 
was typically written 

 

or, equivalently, 
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Euler phi-function- 

In this section Definition, the Euler phi-function is 
defined as follows. 

Definition  (Stinson) Suppose and are 
integers. If gcd(a,m) = 1 then we say that a and m 
are relatively prime. The number of integers 

in that are relatively prime to m is denoted 

by  We set The function 

 

is called the Euler phi-function, or Euler totient 
function. Clearly, for m prime, we 

have Further, we state the following 
fact without proof, and leave the proof as an easy 
exercise. 

Fact. If m is a prime power, say, m = p
e
, where p is 

prime and p > 1, then 

 

CONCLUSION 

In this paper, we have presented an original proof of 
Fermat‘s Little Theorem. The significance of this 
proof lies in the fact that it relies only on 
mathematical techniques older than either the 
statement of the theorem by Fermat or the first proof 
by Euler. While the work detailed previously show 
how diverse the proofs of Fermat‘s Little Theorem 
can be, it is important to note the theorems‘ practical 
applications. In his text, An Introduction to 
Cryptography. 
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