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Abstratct – This paper will introduce the reader to the concept of metrics and metric spaces. A lot 
emphasis has been given to motivate the ideas under discussion to help the reader develop skill in using 
his imagination to visualize the abstract nature of the subject. Variety of examples along with real life 
applications have been provided to understand and appreciate the beauty of metric spaces. 
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INTRODUCTION 

Many of the arguments you have seen in several 
variable calculus are almost identical to the 
corresponding arguments in single variable calculus, 
especially arguments concerning convergence and 
continuity. The reason is that the notions of 
convergence and continuity can be formulated in 
terms of distance, and that the notion of distance 
between numbers that you need in single variable 
theory, is very similar to the notion of distance 
between points or vectors that you need in the theory 
of functions of severable variables. In more 
advanced mathematics, we need to find the distance 
between more complicated objects than numbers 
and vectors, e.g. between sequences, sets and 
functions. These new notions of distance leads to 
new notions of convergence and continuity, and 
these again lead to new arguments surprisingly 
similar to those you have already seen in single and 
several variable calculus. 

After a while it becomes quite boring to perform 
almost the same arguments over and over again in 
new settings, and one begins to wonder if there is 
general theory that covers all these examples { is it 
possible to develop a general theory of distance 
where we can prove the results we need once and 
for all? The answer is yes, and the theory is called 
the theory of metric spaces. 

A metric space is just a set X equipped with a 
function d of two variables which measures the 
distance between points: d(x; y) is the distance 
between two points x and y in X. It turns out that if 
we put mild and natural conditions on the function d, 
we can develop a general notion of distance that 
covers distances between numbers, vectors, 
sequences, functions, sets and much more. Within 
this theory we can formulate and prove results about 
convergence and continuity once and for all. The 
purpose of this chapter is to develop the basic theory 

of metric spaces. In later chapters we shall meet 
some of the applications of the theory. We now 
introduce the idea of a metric space, and show how 
this concept allows us to generalise the notion of 
continuity. We will then concentrate on looking at 
some examples of metric spaces. 

DEFINITIONS AND EXAMPLES 

As already mentioned, a metric space is just a set 

X equipped with a function  that 
measures the distance d(x, y) between points 

 For the theory to work, wc need the 
function d to have properties similar to the distance 
functions we are familiar with. So what properties 
do wc expect from a measure of distance? 

First of all, the distance d(x, y) should be a 
nonnegative number, and it should only be equal to 
zero if x = y. Second, the distance d(x,y) from x to y 
should equal the distance d(y, x) from y to x. Note 
that this is not always a reasonable assumption - if 
we, e.g., measure the distance from x to y by the 
time it takes to walk from x to y, d(x,y) and d(y,x) 
may be different - but we shall restrict ourselves to 
situations where the condition is satisfied. The third 
condition we shall need, says that the distance 
obtained by going directly from x to y, should 
always be less than or equal to the distance we get 
when we go via a third point z, i.e. 

 

It turns out that these conditions are the only ones 
we need, and we sum them up in a formal 
definition. 



 

 

Sandeep* 

w
w

w
.i
g

n
it

e
d

.i
n

 

402 

 

 An Analysis upon Various Aspects of Metric Spaces in Real Analysis: Some Solutions 

Definition 1. A metric space (X,d) consists of a non-

empty set X and a function  such 
that: 

(i) (Positivity) For all  we have  
with equality if and only if x = y. 

(ii) (Symmetry) For all  we have 

 

(iii) (Triangle inequality) For all  we 

have  

A function d satisfying conditions (i)-(iii) is called a 
metric on X. 

Comment: When it is clear - or irrelevant - which 
metric d we have in mind, we shall often refer to “the 
metric space X'' rather than “the metric space (X.d)''. 

Let us take a look at some examples of metric 
spaces. 

Example 1: If we let  then  is a 
metric space. The first two conditions are obviously 
satisfied, and the third follows from the ordinary 
triangle inequality for real numbers: 

 

 

Example 2: If we let 

 

then is a metric space. The first two 
conditions are obviously satisfied, and the third 
follows from the triangle inequality for vectors the 
same way as above : 

 

 

Example 3: Assume that we want to move from one 

point  in the plane to another  
but that we are only allowed to move horizontally and 

vertically. If we first move horizontally from  to 

 and then vertically from  to , the 

total distance is  

This gives us a metric on R
2
 which is different from 

the usual metric in Example '2. It is often referred to 
as the Manhattan metric or the taxi cab metric. 

Also in this case the first two conditions of a metric 
space are obviously satisfied. To prove the triangle 

inequality, observe that for any third point  

we have 

 

where we have used the ordinary triangle inequality 
for real numbers to get from the second to the third 
line. 

GEOMETRY OF METRIC SPACES 

Before we look at what it means for a sequence to 
be convergent with respect to a given metric, we 
spend a little time discussing one way of gaining 
some understanding about the geometric meaning 
of a given metric. 

In the last subsection, we met three different 
metrics: the discrete metric, the taxicab metric on 
the plane and a mixed metric on the plane (which 
was formed from the usual distance in R together 
with the discrete metric). 

An easy way to gain some insight into the 
behaviour of a metric is to look at the balls around 
a given point. For the usual Euclidean distance in 

 a ball of radius r around a point  consists 
of all those points whose distance from a is at most 
r, and this definition naturally extends to general 
metric spaces. However, in the following definition 
we take care to distinguish between balls that 
include points at exactly distance r from the centre 
a and those that do not. 

Definition 1 Open and closed balls 

Let (X, d) be a metric space, and let  and  

The open ball of radius r with centre a is the set 

 

The closed ball of radius r with centre a is the set 
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The sphere of radius r with centre a is the set 

 

When r = 1, these sets are called respectively the 
unit open ball with centre a, the unit closed ball with 
centre a and the unit sphere with centre a. 

Worked Exercise 1 

Let {X.d) be a metric space, and let . Show that 

 and  

Solution 

It follows from (Ml) that 

 

and 

 

We now discover what open balls, closed balls and 
spheres look like for some of the metric spaces we 
have met already. 

Let us start by determining the open and closed balls 
for the discrete metric,  

Worked Exercise 2 

Let X be a non-empty set and . Determine 
 Solution 

Let  and suppose that  

Since  and  unless 
a=x 

(when it is 0), we conclude that 

 

Worked Exercise 3 

Consider the metric space - that is, the plane 
with the taxicab metric. Find the unit open ball 

 

 

Solution 

The centre is  and we want to find all points 

 that satisfy 

 

We first consider points in the first quadrant, where 

 

We want to find those points where  

Consider the line  or equivalently 

 In the first quadrant, this line connects 
the points (0,1) and (1,0). The points on this line 

segment have coordinates  All points 
below the line segment have coordinates  with 

 and all points on or above it have 
coordinates  with  Hence the points 

where  are those strictly below the line 
segment, making up the shaded region. 

By use of a similar argument for each of the other 
three quadrants, or by appealing to the symmetry 
of the situation, we obtain triangular regions in 
each quadrant. Combining these, we obtain the 
diamond-shaped region; the open ball  is the 
set of points strictly inside this diamond, shown 
shaded in the figure. The dashed boundary 
indicates that it is not included in the set. 

SEQUENCES IN METRIC SPACES 

Now that we have several examples of metric 
spaces available to us, we return to the problem of 
defining continuous functions between metric 
spaces. 

Since the definition of a general metric space is 
modelled on the properties of the Euclidean metric 

 on  and we defined continuity of functions 
between Euclidean spaces in terms of convergent 
sequences, it is natural to attempt to extend our 

ideas about convergent sequences in  to 
general metric spaces. In fact, we did much of the 
hard work when we generalised from the notion of 
convergence for real-valued sequences to that of 

convergence of sequences in it is now only a 
short step to develop these concepts for the metric 
space setting. 

We observed that a real sequence can be thought 

of as a function  given by  Note 

that the only role played by  here is as the 

codomain of the function  the structure of 

 becomes relevant only when convergence is 
considered. Since the codomain of a function is 
simply a set, the following definition is a natural 
generalisation. 
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Definition 1 Sequence in a metric space 

Let A be a set. A sequence in X is an unending 
ordered list of elements of X: 

 

The element a* is the kth term of the sequence, and 

the whole sequence is denoted by  

Note that this definition of a sequence does not 
require that we impose any additional structure (such 
as a metric) on the set X. 

The definition of what it means for a sequence to 
converge in a metric space (X, d) is closely based on 

the definition of convergence in  

Definition 2 Convergence in a metric space 

Let (X.d) be a metric space. A sequence (ak) in X d-
converges to  if the sequence of real numbers 

 is a null sequence. 

We write  as  or simply  if the 
context is clear. 

We say that the sequence  is convergent in (X,d) 
with limit a. 

A sequence that does not converge (with respect to 
the metric d) to any point in X is said to be d-
divergent.. 

Exercise 1 

Let  be the plane with the taxicab metric, and 
let  be the sequence given by Show that  

converges to (1,2) with respect to e1.  

Convergent sequences in  have unique limits 
- that is, a sequence cannot simultaneously converge 
to two different limits. The next result establishes this 
as a fact in any metric space. 

Theorem 1 Uniqueness of limits in a metric space 

Let (X, d) be a metric space and let . If  is 
a sequence in X that d-converges to both a and b, 
then a = b. 

Proof We use proof by contradiction. 

Suppose that the sequence  d-converges to both 

a and b in X, with  Thenby property (Ml) of 
Definition 1.1 for d,  and so if we let 

 then  

Since we are supposing that the sequence  
converges to both a and b, the sequences of real 

numbers  and  are both null. Hence 

there is  for which  and  

whenever  

The Triangle Inequality (property (M3) for d) tells us 
that, for each , 

 

by the definition of But this is impossible; hence 
our initial assumption that a sequence could 
converge to two distinct limits must be wrong. We 
conclude that any d-convergent sequence has a 
unique limit. 

CONTINUITY IN METRIC SPACES 

Now that we know what it means for a sequence to 
converge in a metric space, we can formulate a 
definition of continuity for functions between metric 
spaces. 

Definition 1 Continuity for metric spaces 

Let (X, d) and (Y, e) be metric spaces and let 

 be a function. 

Then f is (d, e)-continuous at  if: 

Whenever  is a sequence in X for which  

as  then the sequence  as  

If f does not satisfy this condition at some - 
that is, there is a sequence  in X for which 

 as  but  does not converge to 
 then we say that f is (d, e)-discontinuous at a. 

A function that is continuous at all points of X is 
said to be (d, e)-continuous on X (or simply 
continuous, if no ambiguity is possible). 

Our next worked exercise shows that this definition 
can make some surprising functions continuous. 

Worked Exercise 1 

Let  be a function and let  Prove that 

f is always -continuous at a. 

Solution 

Let  and suppose that  is a sequence in  
that is -convergent to a. 

Then we deduce that there is  so that for 

,  But then for   and 
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so for such k,  Hence 

 is a 

real null sequence and we conclude that f is -
continuous at a. 

This is a rather artificial example and it tells us that 

every function from  to  is -continuous 

on  However, it does illustrate that our intuitive 
notion of what continuity means breaks down when 
looking at metrics different from the Euclidean ones, 
and so highlights the importance of working from the 
definition. 

Worked Exercise 2 

Let  be given by  Prove that 

f is -continuous on  

Solution 

Let  We must show that if (x*) is a 

sequence in the plane that -converges to a, then 

 is a real null sequence. 

Suppose that  is a sequence in the 

plane that -converges to a, that is, a sequence for 

which  is a real null sequence. Then 

 by definition of 

f and  

 

But  for every k and we are 

assuming that  is a real null sequence. 

Hence by the Squeeze Rule,  as 

 That is,  is also a real null 

sequence and so f is -continuous at a. 

Since  was an arbitrary point in  we 

conclude that f is -continuous on  

At the moment our stock of metric spaces is quite 
small: Euclidean spaces, the plane with the taxicab 
metric, the plane with a particular ‘mixed

5
 metric, and 

arbitrary sets with the discrete metric. In the next 
chapter we will look at more examples of metric 
spaces and examine further the notion of continuity. 
What we can do at this point, though, is prove a 
useful result that applies to all continuous functions 
and which is an extension of the Composition Rule 
for continuous functions between Euclidean spaces. 
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