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INTRODUCTION 

If c be a non empty subset of x, where x be a Banach 
space. And let T a mapping from C to itself. The 
iteration scheme called Ishikawa Scheme is defined as 
follows: 

 

In above Ishikawa scheme,    nn ,   satisfy 

 

There are following two contractive conditions to be 
used. There exists a constant K, 0 < k < 1 such that for 
all x, y in x. 

(A)  

(B) At least one of the following conditions holds: 

 

In this paper it is shown that, for mapping T which 
satisfy conditions (A) or (B) above, if the sequence of 
Ishikawa iterates converges, it converges to the fixed 
point of T. These results extend the corresponding 
results of Rhoades [1] and Hicks and Kubicek [2]. 

Definition 1: A mapping T : XX  is called a 
quasicontraction if there exists a constant K, 0 < k < 
1 such that for each x, y ││ X, where X be a Banach 
space. 

 

Theorem 1: Suppose T: CC  be a mapping 
satisfying (A), {Xn} the sequence of the Ishikawa 
scheme associated with T are such that {││n} is 
bounded away from zero. If {xn} converges to p, then 
p is a fixed point of T, where X be a normed linear 
space and C be a closed convex subset of X. 

Proof: We have from {I1} that 
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Since  Since {││n} is bounded 

away from zero, . It also follows that 

 Since T satisfies (A) we have 

 

 

Thus 

 

We have by taking the limit as n , 

 

It follows that 

 

Using the definition (1) of T and the triangle inequality, 
we have 

 

Thus we obtain, by taking the limit as n , 

 

At least 

 

This means 

 

Definition 2: A mapping T : CC  is called strictly 
pseuiocontractive if for some k, 0 < k < 1, and all x, y, 
c, where X be a normed linear space and C be an 
non-empty subset of X. 

 

Definition 2.1: T is called pseuiocontractive if for all 
x,y ││C, 

 

Definition 2.2:  T is said to satisfy the condition (T) if 
for all x ││ C and y ││ F (T) 

 

It is clear that any strictly pseuiocontractive mapping 
is hemicontractive, any mapping satisfying condition 
(T) is demicontractive and a demicontractive 
mapping is hemicontractive but not conversely. 

Theorem 3: Let a mapping T : C C satisfies 

condition (T). Suppose F (T) is non-empty and  

diverges and  Then  for each 

xO ││ ││C ││ ││where 1nX   is defined as in the 
Ishikawa scheme. 

Proof: By using the condition (T), the mapping T is 
demicontractive for any constant K. We get for any x, 
y and z in H (Hillbert Space) and a real number. 

 

Therefore for  and each integar 

 

 

By using condition (T) we get 

 

By using demi contractiveness of T and definition of 
yn we get 

 

Hence, 

 

By induction, we obtain 
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Therefore 

 

We note that 

 

 

 

Therefore 

 

Hence 

 

which diverges. 

Therefore  diverges. And from (2.4) 
we get 
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