Studies of Extension of Fixed Point Theorem of Rhoades Using Ishikawa Iteration Process

Dr. Upendra Kumar Singh¹* Dr. Sunil Kumar²

¹ PhD, Department of Mathematics, Magadh University, Bodh Gaya

² PhD, Department of Mathematics, Magadh University, Bodh Gaya

Abstract – In this paper we have extension of fixed point theorem of Rhoades using ishikawa iteration process has been proved.

Keywords: Fixed point, ishikawa iteration process, L_P Space

INTRODUCTION

If c be a non empty subset of x, where x be a Banach space. And let T a mapping from C to itself. The iteration scheme called Ishikawa Scheme is defined as follows:

$$X_{n+1} = (1 - \alpha_n)x_n + \alpha_n Ty_n, n \ge 0$$
 ... (I₁)

$$y_n = \beta_n T x_n + (1 - \beta_n) x_n, n \ge 0$$
 ... (I₂)

x ε C ... (I₃)

In above Ishikawa scheme, $\{\alpha_n\}, \{\beta_n\}$ satisfy

- (i) $0 \le \alpha_n \le \beta_n \le 1$ for all n, $\lim_{n \to \infty} \beta_n = 0$
 - And $\sum \alpha_n \beta_n = \infty$.
- (ii) $\underline{\lim} \alpha_n = \alpha > 0$
- (iii) $\lim_{n \to \infty} \beta_n = \beta < 1.$

There are following two contractive conditions to be used. There exists a constant K, $0 \le k \le 1$ such that for all x, y in x.

- (A) $||Tx Ty|| \le k \max \{||x y||, ||x Tx||, ||y Ty||, ||x Ty|| + ||y Tx||\}$
- (B) At least one of the following conditions holds:

- $(i) \qquad \| \, x Tx \, \| + \| \, y Ty \, \| \leq a \, \| \, x y \, \|, l \leq a \leq 2, \ \text{for each } x, y \ \text{in } x,$
- (ii) $||x Tx|| + ||y Ty|| \le b [||x Ty|| + ||y Tx|| + ||x y||] \frac{1}{2} \le b \le \frac{2}{3}$, and d for each x, y in X.
- $$\begin{split} (iii) \qquad & \| \, x Tx \, \| + \| \, y Ty \, \| + \| \, Tx Ty \, \| < c \Big[\| \, x Ty \, \| + \| \, y Tx \, \Big] \le c \le & \frac{3}{2} \\ & \text{and for each } x, y \text{ in } X. \end{split}$$
- (iv) $|||Tx Ty|| \le k \max \{||x y||, ||x Tx||, ||y Ty||\},$ $|||x - Ty|| + ||y - Tx||]/2, 0 \le k \le 1$ for each x, y in X.

In this paper it is shown that, for mapping T which satisfy conditions (A) or (B) above, if the sequence of Ishikawa iterates converges, it converges to the fixed point of T. These results extend the corresponding results of Rhoades [1] and Hicks and Kubicek [2].

Definition 1: A mapping T : $X \rightarrow X$ is called a quasicontraction if there exists a constant K, $0 \le k < 1$ such that for each x, y | | X, where X be a Banach space.

$$||Tx - Ty|| \le k \max \{||x - y||, ||x - Tx||, ||y - Ty||, ||x - Ty||, ||y - Tx||\}$$

Theorem 1: Suppose T: $C \rightarrow C$ be a mapping satisfying (A), $\{X_n\}$ the sequence of the Ishikawa scheme associated with T are such that $\{| |_n\}$ is bounded away from zero. If $\{x_n\}$ converges to p, then p is a fixed point of T, where X be a normed linear space and C be a closed convex subset of X.

Proof: We have from $\{I_1\}$ that

$$\mathbf{x}_{n+1} - \mathbf{x}_n = \alpha_n (\mathbf{T}\mathbf{y}_n - \mathbf{x}_n).$$

Since $x_n \rightarrow p$, $||x_{n+1} - x_n|| \rightarrow 0$. Since $\{| |_n\}$ is bounded away from zero, $||Ty_n - x_n|| \rightarrow 0$. It also follows that $||p - Ty_n|| \rightarrow 0$. Since T satisfies (A) we have

$$\begin{split} \| \, Ty_n - Tx_n \, \| &\leq k \max \, \left\{ \! \| \, y_n - x_n \, \| , \| \, x_n - Tx_n \, \| , \| \, y_n - Ty_n \, \| , \\ & \| \, x_n - Ty_n \, \| + \| \, y_n - Tx_n \, \| \right\} \end{split}$$

$$\begin{split} \parallel y_n - x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - x_n \parallel \leq \beta_n \parallel x_n - T x_n \parallel \\ \leq & \parallel x_n - T x_n \parallel \leq \parallel x_n - T y_n \parallel + \parallel T y_n - T x_n \parallel; \\ \parallel y_n - T y_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T y_n \parallel \leq \beta_n \parallel T x_n - T y_n \parallel + (1 - \beta_n) \parallel x_n - T y_n \parallel \\ \leq & \parallel x_n - T y_n \parallel + \parallel T x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T y_n \parallel; \\ \parallel y_n - T x_n \parallel = & \parallel \beta_n T x_n + (1 - \beta_n) x_n - T x_n \parallel \leq \| x_n - T x_n \parallel = \| x_n$$

Thus

$$||Tx_n - Ty_n|| \le \frac{2k}{1-k} ||x_n - Ty_n||$$

We have by taking the limit as $n \rightarrow \infty$,

$$||Tx_n - Ty_n|| \rightarrow 0$$
.

It follows that

a

$$\begin{split} &\|x_n - Tx_n \| \le \|x_n - Ty_n\| + \|Ty_n - Tx_n\| \\ & \text{nd} \quad \|p - Tx_n\| \le \left(\|p - x_n\| + \|x_n - Tx_n\| \right) \to 0 \text{ and } n \to \infty \end{split}$$

Using the definition (1) of T and the triangle inequality, we have

$$\begin{split} \| \operatorname{Tx}_{n} - \operatorname{Tp} \| &\leq k \max \left\{ \| x_{n} - p \|, \| x_{n} - Tx_{n} \|, \| x_{n} - p \| \right. \\ &+ \| x_{n} - Tx_{n} \| + \| \operatorname{Tp} - Tx_{n} \|, \| p - Tx_{n} \| \\ &+ \| x_{n} - Tx_{n} \| + \| \operatorname{Tx}_{n} - Tp \| \\ \end{split}$$

Thus we obtain, by taking the limit as $n \rightarrow \infty$,

 $||Tx_n - Tp|| \rightarrow 0$

At least

$$||P-Tp|| \leq ||p-Tx_n|| + ||Tx_n - Tp|| \rightarrow 0$$

This means

 $\mathbf{p} = \mathbf{T}\mathbf{p}.$

Definition 2: A mapping T : $C \rightarrow C$ is called strictly pseuiocontractive if for some k, $0 \le k < 1$, and all x, y, c, where X be a normed linear space and C be an non-empty subset of X.

$$||Tx - Ty||^{2} \le ||x - y||^{2} + k ||(I - T)x - (I - T)y||^{2}$$

Definition 2.1: T is called pseuiocontractive if for all $x,y \mid \mid C$,

$$||Tx - Ty||^{2} \le ||x - y||^{2} + ||(I - T)x - (I - T)y||^{2}$$

Definition 2.2: T is said to satisfy the condition (T) if for all $x \mid | C$ and $y \mid | F (T)$

$$\|\operatorname{T} \mathbf{x} - \mathbf{y}\| \leq \|\mathbf{x} - \mathbf{y}\|.$$

It is clear that any strictly pseuiocontractive mapping is hemicontractive, any mapping satisfying condition (T) is demicontractive and a demicontractive mapping is hemicontractive but not conversely.

Theorem 3: Let a mapping T : C \rightarrow C satisfies condition (T). Suppose F (T) is non-empty and $\sum \alpha_n \beta_n$ diverges and $\beta_n \rightarrow \beta < 1$ Then $\lim_{n \to \infty} \|x_n - Tx_n\| = 0$ for each $x_0 \| \| \| C \| \| \|$ where X_{n+1} is defined as in the Ishikawa scheme.

Proof: By using the condition (T), the mapping T is demicontractive for any constant K. We get for any x, y and z in H (Hillbert Space) and a real number.

$$\|\lambda x + (1-\lambda)y - z\|^2 = \|x - z\|^2 + (1-\lambda)\|y - z\|^2 - (1-\lambda)\|x - y\|^2$$

Therefore for $p \Box F$ (T) and each integar

n, 0 ≤
$$||x_{n+1} - p||^2 = ||\alpha_n Ty_n + (1 - \alpha_n)x_n - p||^2$$

= $(1 - \alpha_n)||x_n - p||^2 + \alpha_n ||Ty_n - p||^2 - \alpha_n (1 - \alpha_n)||x_n - Ty_n||^2$
≤ $(1 - \alpha_n)||x_n - p||^2 + \alpha_n ||Ty_n - p||^2$

By using condition (T) we get

$$\| x_{n+1} - p \|^2 \le (1 - \alpha_n) \| x_n - p \|^2 + \alpha_n \| y_n - p \|^2.$$

By using demi contractiveness of T and definition of \boldsymbol{y}_n we get

$$\parallel \boldsymbol{y}_n - \boldsymbol{p} \parallel^2 \leq \parallel \boldsymbol{x}_n - \boldsymbol{p} \parallel^2 - \beta_n \big(l - \beta_n - k \big) \parallel \boldsymbol{x}_n - T \boldsymbol{x}_n \parallel^2$$

Hence,

$$\begin{split} & 0 \leq ||x_{n+1} - p||^2 \leq (1 - \alpha_n) ||x_n - p||^2 + \alpha_n ||x_n - p||^2 \\ & -\alpha_n \beta_n (1 - \beta_n - k) ||x_n - Tx_n ||^2 \\ & = ||x_n - p||^2 - \alpha_n \beta_n (1 - \beta_n - k) ||x_n - Tx_n ||^2 \,. \end{split}$$
(3.1)

By induction, we obtain

Journal of Advances and Scholarly Researches in Allied Education Vol. 15, Issue No. 7, September-2018, ISSN 2230-7540

$$||x_{0} - p||^{2} - \sum_{i=0}^{n} \alpha_{i}\beta_{i}(1 - \beta_{1} - k)||x_{i} - Tx_{i}||^{2} \ge 0$$

Therefore

$$\sum_{n=0}^{n} \alpha_{n} \beta_{n} (1 - \beta_{n} - k) \| x_{n} - T x_{n} \|^{2} \leq \| x_{n} - p \|^{2} \qquad \dots (3.2)$$

We note that

$$\beta_n (1 - \beta_n) \le \beta_n$$
$$(0 \le \beta_n \le 1).$$

 $\text{Let } \eta = 1 - \beta - k. \text{ Then } \eta > 0 \text{ and } \dots \text{ an integar } N \text{ s.t. } \beta + \frac{\eta}{2} > \beta_n \ \text{ for all } n \geq N.$

Therefore

$$\left(1-k-\beta-\eta/2\right)=\eta/2<1-\beta_n-k.$$

Hence

$$\sum \alpha_n \beta_n (1-\beta_n-k) \ge \frac{\eta}{2} \sum \alpha_n \beta_n$$

which diverges.

Therefore $\sum \beta_n \alpha_n (1 - \beta_n - k)$ diverges. And from (2.4) we get

$$\underline{\lim} || \mathbf{x}_n - \mathbf{T}\mathbf{x}_n || = 0,$$

REFERENCES:

- 1. Chidume, C.E. : J. Nigerian Math. Soc. 4 (1985) P. 1-11
- 2 Rhoades, B.E. : Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (1976). 741-750
- 3. Chidume, C.E. : J. Nigerian Math. Soc. 7 (1988) P. 1-9
- 4. Ciric, L.B.: Proc. Amer. Math. Soc. V. 45 (1974), P. 267-273.
- Ishikawa, S.: Fixed points by a new iterative method. Proc. Amer. Math. Soc. 149 (1974) P. 147-150
- Rhoades, B.E. : Souchow J. Math. 19 (1993) P. 377-80

- 7. Mann, W.R.: Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), P. 506-510.
- Rhoades, B.E.: Trans. Amer. Math. Soc. 196 (1974) P. 161-76.
- 9. Reich, S. : Nonlinear Analysis, 2 (1978) P. 85-92.

Corresponding Author

Dr. Upendra Kumar Singh*

PhD, Department of Mathematics, Magadh University, Bodh Gaya