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Abstract – The present paper deals with charged fluid sphere in Einstein-Cartan theory. In this paper, we 
have studied the interior field of a static spherically symmetric charged fluid distribution with spin. 
Assuming that the spin of the individual particles compositing the fluids are all aligned along radial 
direction, we have obtained solutions by choosing metric potential α(r) and β(r) on different suitable 
forms or conditions. Pressure and density have been also calculated for the distribution and the physical 
constants appearing in the solution have been evaluated by matching the solutions to the Reissner-
Nordstrom metric at the boundary. It is found that for a realistic model p > 0, p > 0, which will impose 
further restrictions on our solutions. 
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1. INTRODUCTION 

Various authors have made their attempts to 
investigate the problem of charged fluid spheres in E-
C theory. Nduka [7], Singh and Yadav [10], Prasanna 
[8], Kopenzynski [3, 4] and Raychaudhari [9] have 
considered the generalization of Maxwell‘s equations 
in space having torsion but this idea leads to a 
breakdown in the gauge invariance and charge 
conservation principle. However, Raychaudhari [9] and 
Nduka [7] have taken the equation in a form so as to 
mepressure the charge conservation principle. With 
this formulation Raychaudhari [9] has investigated the 
possibility of bounce in the pressure of magnetic field 
for Bianchi type I universe with   p = 0 and p = 0. 
Further Singh and Yadav [10] have discussed the 
static charged fluid sphere in E-C theory and have 
found that the pressure is discontinuous at the 
bounding of the fluid sphere. Some other workers in 
this line are Krori et al. [3], Mehra and Gokhroo [6]. 
Suh [12], Som and Bedron [11]. Yadav and Prasad 
[13]. Thomas, Maurya, Pant, Patel, Ratanpal, et al. 
[14-21]. 

In the paper, we have studied the interior field of a 
static spherically symmetric charged fluid distribution 
with spin. Assuming that the spins of the individual 
particles compositing the fluid area all aligned along 
radial direction, we have obtained solutions by 
choosing metric potential α(r) and β(r) in different 
suitable forms. Pressure and density have been also 
calculated for the distribution and physical constants 
appearing in the solution have been evaluated by 
matching the solutions to the Reissner-Nordstrom 
metric at the boundary. 

2. THE FIELD EQUATION 

The Einstein Cartan Maxwell equations are 

(2.1) 

i i i

j j j

1
R R 8 T

2
    

 

(2.2) 

k k l k l k

ij i jl j il ijQ Q Q 8 S    
 

(2.3) 

1/ 2 ij 1/ 2 i 1/ 2 ig F i ( g) J ( g) u         

(2.4) 
ijF ;k 0     

Where Rij is the Ricci Tensor of asymmetric 
connection and also the energy momentum tensor tij 
is not symmetric, Fij is the electromagnetic field 
tensor, Q

ij
 is torsion tensor, S

ij
 is spin tensor,  is 

charge density and j
 
is current four vector (we have 

set C and gravitational constant also equal to unity) 

Now we have se the static spherically symmetric 
metric 

(2.5) 
2 2 2 2 2 2 2 2ds e dt e dr r d r sin d         

Where α and β are functions of r only. 
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For the system under study the symmetric energy 

momentum tensor 
i i

j jT and E
for matter and 

electromagnetic field respectively as 

(2.6) 

i i i

j j jT T E  
 

where, 

i i i

j j jT ( p)u u p  
 

i iY i lm

j jY j lm

1
E F F F F

4
   

 

we use comoving co-ordinates so that 

1 2 3 4 / 2u u u 0 u e   
 

The non-vanishing components of the energy 
momentum tensor are 

1 2 3 4

1 2 3 4T T T p and t    
 

We can then write the field equations 

(2.7) 
2 2

1 1
8 p E e

r r r

  
     

   

(2.8) 

2

8 p E e
2 4 4 2r

            
      

   

(2.9) 
2 2

1 1
8 E e

r r r

  
     

   

Here following Hehl [1, 2], we have defined effective 

density 


 and effective pressure 
p

as 

(2.10)  

2 22 k and p p 2 k     
 

(2.11)  
/ 2k He  

Here H is constant and dashes denotes differentiation 
with respect to r. 

(2.12)  

41

41E F F 
 

and 

(2.13)  

41 41
41 / 2dF 2F

4 F e
dr r 2

    
      

    

3. SOLUTION OF THE FIELD EQUATIONS 

Using the equation (2.7) – (2.9), we get 

(3.1)  

2

2 2

e 3 1 1
8 p

2 2r 2 4 4 2r r 2r

            
        

   

(3.2)  

2

2 2

e 1 1
E

2 2 4 4 2r 2r r 2r

            
       

   

(3.3)  

2

2 2

3 1 1
8 e

4r 4 8 8 4r 2r 2r

            
        

   

Equation (3.1) and (3.3) using (2.10) gives pressure 
and density as 

(3.4)  

2
2 2

2 2

e 3 1 1
8 p 16 k

2 2r 2 4 4 2r r 2r

            
          

   

(3.5)  

2
2 2

2 2

5 1 1
8 e 16 k

4r 4 8 8 4r 2r 2r

            
          

   

With three equation (2.7)- (2.9) in five variable (p, E, 
p, α, β) the system determinate, we require two more 
equations or relations. For this we choose α and β 
as 

(3.6) 
2ar c    

(3.7) 
2

1dr k  
 

(3.8) 
2 2 2

1k H exp{ (dr k )}  
 

(3.9) 

22 2 2 (ar c)

1

1
16 p 32 H exp{ (dr k )} e

2

      
 

2

2 2

1 1
4d a dr (a d)

r 2r

 
     

   

(3.10)  

22 2 2 (ar c)

1

1
16 p 32 H exp{ (dr k )} e

2

      
 

2

2 2

1 1
3a rd (a d)

r 2r

 
    

   

(3.11)  

2(ar c) 2 2

2 2

1 1 1
E e d(1 rd ) a(1 rd )

2 r 2r

   
       

   

(3.12)  

2
1(dr k )41 41

41 2
dF 2F

4 r(a d)F e
dr r

 
     

   

Also using boundary condition at r = r0, we have 
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(3.13)  

2
0

2
(ar c) 0

2

0 0

2M Q
e 1

r r

   
   
   

(3.14)   

2
0 1

2
(dr k ) 0

2

0 0

2M Q
e 1

r r

   
   
   

(3.15)  

2
0 1

2
(dr k ) 0

0 2 3

0 0

M Q
2dr e 2

r r

   
  

   

(3.16)   

 2
0 1

2
0

dr k

(ar c)2

02

0

e 1 1
H 16 e

32 2r 2



 
 

    
    

2

0 2

0

1
3a r d (a d)

r

 
    

   

4. DISCUSSION 

In this paper we have studied the interior field of a 
static spherically symmetric charged fluid distribution 
with spin. Assuming that the spins of the individual 
particles compositing the fluid area all aligned along 
radial direction, we have obtained solutions by 
choosing metric potentials α(r) and β(r) in different 
suitable forms. Pressure and density have been also 
calculated for the distribution and physical constants 
appearing in the solution have been evaluated by 
matching the solutions to the Reissner-Nordstrom 
metric at the boundary. Further for a realistic model p 
> 0, p > 0 which will impose further restrictions on our 
shlutions. 
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