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Abstract – Numerical multi-linear algebra, in which instead of matrices and vectors the higher-order 
tensors are considered in numerical viewpoint, is a new branch of computational mathematics. Although 
the linear numerical algebra is an extension of it, it has many essential differences and more difficulties 
than the linear numerical algebra. This paper presents an incomplete survey of state-of-the-art knowledge 
on this issue and shows new trends in further research. Our survey also includes an important part of a 
detailed bibliography. A new branch of computer maths is numerical multilinear algebra. It deals with the 
numerical handling by replacing matrix of higher-order tensors. Various computational issues related to 
the higher order tensors are included, such as decomposition of the tensor, tensor range calculation, 
own-value computation of the tensor, lower rank tensor approximations, numerical stability, and tensor 
calculation disturbance analysis, etc. This new business branch has a strong practical background and 
broad applications in the fields of digital image restore psychometrics, chemometrics, econometrics and 
multi-way data analysis. 
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INTRODUCTION 

The classical Multi-linear Algebra is branch and 
highlights how tensor-R operations work (over a 
commutative ring). It discusses associated algebra, 
external module algebra, symmetrical module algebra, 
coalgebra and hop algebras etc. However, more 
features of a higher-order tensor are required in 
modern multi-way data analysis and signal processing. 
For example, how to decompose the tensor into a total 
of vector products, how to approximate the tensor with 
a lower rank tensor, how to calculate the tensor value 
itself and its specific values, and how to apply higher 
range tensor in blind-source separating (BSS). All of 
these are a modern machine math branch — a 
multilinear numerical algebra. Almost all systems 
undergoing change can describe differential 
equations. Science and engineering, economy, social 
science, biology, business, healthcare and other 
things are ubiquitous. For hundreds of years several 
mathematicians have been studying the nature of 
these equations and many advanced solutions are 
available. Systems defined in differential equations are 
often so complex or systems so broad as to preclude 
traceability of a strictly analytical solution. Computer 
simulations and numerical procedures are useful in 
these complex systems. Techniques have been 
developed before programmable computers to resolve 
differential equations based on numerical 
approximations. During people (usually women) 
working on mechanical computers were commonly 

found in rooms where differential equation systems 
were numerically determined for military calculations. 
In addition, analogies to electrical systems were 
popular in order to design analogue computers to 
analyse mechanical, thermal or chemical systems 
before programmable computers. With 
programmable computers increasing in speed and 
lower costs, ever more complex differential equation 
systems can be solved using simple programmes 
written to work on a common PC. Currently, your 
desk computer can address issues that were only 5 
to 10 years ago inaccessible to the fastest 
supercomputers. 

Although it is a very young field, the multi linear 
numerical algebra has recently received much 
attention and dramatic developments, because the 
practical background and applications are strongly 
motivated. Different experts and experts in linear 
numerical algebra and engineering put their energies 
into this field. In the USA, in France, in Switzerland, 
there have been several international workshops and 
conferences on this new branch. For instance, the 
workshop on Tensor Decomposition was organised 
between 19th and 23rd July 2004 by Golub, Kolda, 
Nagy and Van Loan at the United States Institute in 
Palo Alto, California. Roughly 35 people – computer 
scientists, mathematicians and a wide variety of 
researchers who use tensor decay – came to the 
workshop from 11 countries. See this workshop's 
website and the SIAM News article. The CIRM 
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workshop, held in Luminy and Marseille France from 
29 August – 2, 2005, also was organised by De 
Lathauwer and Comon on the tensor decompositions 
and applications. The workshop was attended by 
about 43 people from 13 nations. The workshop will 
discuss the major problems, tensor area topological 
characteristics, tensor decompositions accurately or 
approximately, tensor decomposition mathematical 
characteristics, separate component analysis, 
telecommunications application, pattern analysis and 
statistical modelling, data analysis diagnostics and 
sensor arrays. Golub, Mahony, Drineas, Lim organised 
June 21-24, 2006 workshop on Modern Massive Data 
Set at the Stanford University to bridge the gap 
between numerical linear algebra, theoretical 
computer sciences, and data applications. The 
workshop attracted 232 participants, including 45 
lectures and 24 poster presentations. Tensor-based 
data applications were the subject of the last day of 
the workshop. Golub said that a new branch of applied 
math has been developed at the workshop's 
concluding address. The Minisymposium of ICIAM on 
'Numerical multilinear algebra: a new beginning' was 
recently held in Zurich, Switzerland from 16 to20 July 
2007 by Golub, Comon, De Lathauwer and Lim. Golub 
wrote: "There is still no common name for 'numeric 
multilinear algebra.' We generally define this as the 
testing and use in computational mathematics of 
tensors / multi linear algebra, symmetric tensors / 
symmetric algebra, alternating tensors / external 
algebra, spiners / clifford algebra. There was a 
mistake. This minisymposium is a great step towards 
defining and developing this new discipline in 
computer mathematics." It is our hope. 

FIRST ORDER SYSTEMS  

A simple first order differential equation has general 
form 

 

When dy/dt means the shift in y as far as time and f(y, 
t) is concerned, y and time are both functions. Note 
that the y variable derivatives depend on themselves. 
For d/dt there are several different scores, popular are 
y and y'. 

One of the simplest differential equations is  

  

We will focus on this equation in order to introduce the 
many definitions. The equation is convenient since the 
simple analysis solution allows us to verify the 
accuracy of our numerical method. It also controls the 
efficiency of a heating and a cooling procedure, 
radioactive decay of chemicals, drug absorption in the 
body, the charge of a condenser, and population 

growth only to name a few. This equation is also 
important. 

To analytically solve the equation, we first rearrange 
the equation as 

 

and integrate once with respect to time to obtain 

 

Where C is an integration constant. By taking the 
exponential of the entire equation we remove the 
normal log term  

 

which finally can be written as 

 

You can verify that this answer complies with the 
equation by replacing the solution in the original 
equation. Since we have obtained the solution via 
integration, an integration constant would still be 
established. This constant is defined according to 
the initial conditions or the initial state of the system 
(C in our above solution). We will continue with the 
initial condition for simplicity of this analysis that 

 

NUMERICAL ANALYSIS PRACTICE 
PROBLEMS 

The following issues are descriptive of the classroom 
approaches. They are representative of the 
problems that are going to be checked.  

1. Solving Equations  

Problem 1. Suppose that f : R → R is continuous 

and suppose that for a < b ∈ R, f(a) · f(b) < 0. Show 
that there is a c with a < c < b such that f(c) = 0. 

Problem 2. Solve the equation x
5
 − 3x

4
 + 2x

3
 − x

2
 + 

x = 3. Solve using the Bisection method. Solve using 
the Newton-Raphson method. How many solutions 
are there? 

Problem 3. The Bisection method and Newton 
Raphson method solve the equation x = cos x. What 
are the numbers of solutions? The sin(x) = cos x 
equation can be solved by means of bisection and 
Newton-Raphson. How many solutions are there? 
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Problem 4. Let h be a continuous function h : Rn → 

Rn . Let x0 ∈ Rn . Suppose that h n (x0) → z as n → 
∞. Show that h(z) = z.  

Problem 5. Solve the equation x 4 = 2 by the Newton-
Raphson method. How many real solutions are there? 
For which starting values x0 will the method 
converge? 

 

Problem 7. Show that the Newton-Raphson method 
converges quadratically. That is, suppose that the 
fixed point is z and that the error of the nth iteration is 

 for h small 
enough. 

 

Differential Equations  

Problem 1. Solve the differential equation for 

Solve using 
Picard iteration for five iterations. Solve using the 
Taylor method of order 3,4, and 5. Solve using the 
Euler method, modified Euler, Heun, and Runge-Kutta 

methods using  Compare the 
answers and the errors for each of these methods. 

Problem 2. How would you go about solving the 

differential equation with 

 with each of the methods 
listed in the previous problem. What changes would 
need to be made in the programs? Solve this problem 
as a linear differential equation using the linearode 

program. Solve on the interval [0, 1] with  

Problem 3. Consider the following differential 
equation. 

 

Solve on the interval [0, 1] using h = .1. 

Problem 4. Compare Euler, Heun, and Runge-Kutta 
on [0, 1] using h = .1. 

 

Problem 5. Use the Euler method to solve the 
following differential equation 

 

Solve on [0, 1] using  Do this by hand to show 

that  What does this say about the 
following limit 

 

NOTATIONS 

The N-way tensor, i.e. its entries, are accessed via 
the N index, say i1,i2, is an N-way array. ,iN range 
from 1 to Ik for every ik. For instance, a vector has 
an order 1 tensor and a matrix is an order 2 tensor. 
In this paper, variables are given their values in the 
real world, unless stated otherwise. However, in this 
complex field all statements remain valid. Bold 
lowercase letters (e.g. u) are denoted to vectors, 
while matrices are represented with uppercase 
letters (e.g. A). Calligraphic, uppercase letters 
denote higher-order tensors (e.g. A ). The array 
entries are scalar in size and labelled with single 
letters, such as ui or Ti,j,...,l, i,j,., l., l., T. After a 
change of coordinate system, an N-order tensor has 
the multilinearity property. To classify the ideas, 
consider T with the entruments Ti1i2i3, the inversible 
matrices A, B and C of three square squares with the 
elements Ai1j1, Bi2j2 and Ci3j3, respectively, and 
change of coordinates. To describe the ideas, 
consider T. The tensor T can be written as 

 

where  A, B and C 
are matrices of order 

 respectively. The 
Tucker model (or the Tucker product), is commonly 
used in factor analyses, multi-way data analysis and 
psychometrics. (2.1)-(2.2) is a tensor representation. 
Two vectors' external product is defined as 
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Given two tensors, 

 having the same 

first dimension , one can define the mode-1 
contraction product (or inner product) 

 

This product is caused by multiplication of the regular 
matrix. Indeed, if two matrices A and B are similar, 
then the regular matrix product if column number A 
and row number B are identic (= p), is 

 

which can be written in mode-1 contraction product 

 

with element 

 

Similarly, as long as the tensors A and B have the 
same p-th dimension, we can define a mode-p 
contraction product. The Tucker product (2.1) is 
therefore often known to be a contraction product and 
often is referred to as by 

 

where ×k denotes summing on ik. This representation 
also induces several higher-order rank-factorization 
and higher-order singular value decomposition.  

Given two tensors  of order N with the same 
dimensions. One defines their Hadamard product 

 with element as 

 

It says that the Hadamard product of two tensors gives 
a tensor with the same order and same dimension with 
A and B. As usual, the Kronecker product of two 
vectors u and v of m × 1 and n × 1, respectively, is 
defined as the vector of mn × 1 with all the possible 
cross-product as follows: 

 

We can give some definitions of super symmetric 
tensor, tensor scalar product and tensor Frobenius 
norm, which are the generalization of matrix case in 
a straightforward way. 

CONCLUSION  

In this study, we discuss the motivation with the 
context and development of the key areas of the 
multi-linear numerical algebra. We have examined 
decompositions of tensors (for example, 
decomposition in high-order, decomposition of high-
order singular value, canonical and pseudo-
canonical decomposition, decomposition of tensors, 
etc.), best approximation for rank 1 and rank rank r, 
related high-order value-adding problems, 
polynomial optimization in multiple variations, and 
typical applications of tensors; (for example, BSS, 
BD, SDP, and other optimization problems). The 
growth of this field is currently greatly stimulated by 
various applications of digital image restore, signal 
processing, wireless communications, psychometry, 
and multi-way data analysis and high-order statistics. 
So far, the first move is only beginning with several 
topics in the field. There are also minimal numerical 
analysis and numerical performance. 
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