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Abstract – The subject of Linear Programming enlarges past the Simplex Method calculation, much as 
Linear Algebra enlarges past Gaussian Elimination, and the hypothesis behind it has enough substance to 
make study beneficial. This hypothesis serves to demonstrate why the Simplex Method moves ahead as 
it does, infers substitute methodologies to explaining Lp‘s, and might be utilized to formally demonstrate 
that a certain result is an ideal The presentation of simplex subordinates in example seek methods can 
prompt a noteworthy decrease in the amount of capacity assessments, for the same nature of the last 
emphasizes. 
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INTRODUCTION 

Linear Programming in a general form is the problem 
of maximizing a linear function in d variables subject 
to n linear inequalities. If, in addition, we require all 
variables to be nonnegative, we have an LP in 
standard form which can be written as follows. 

 

where the cj, bi and aij are real numbers. By defining 

 

this can be written in more compact form as 

 

where the relations <= and >= hold for vectors of the 
same length if and only if they hold component wise. 

The vector c is called the cost vector of the LP, and 
the linear function z : x -> c

T
 x is called the 

objective function. The vector b is referred to as the 
right-hand side of the LP. The inequalities                 

 

for i = 1; : : : : ; n and xj >= 0, for j = 1; : : : ; d are 
the constraints of the linear program.  

The LP is called feasible if there exists a non-
negative vector x‘ satisfying Ax‘ <= b such an x‘ is 
called a feasible solution; otherwise the program is 
called infeasible. If there are feasible solutions with 
arbitrarily large objective function value, the LP is 
called unbounded; otherwise it is bounded. A linear 
program which is both feasible and bounded has a 
unique maximum value cT x‘ attained at a (not 
necessarily unique) optimal feasible solution x‘. 
Solving the LP means finding such an optimal 
solution x‘ (if it exists). To avoid trivialities we 
assume that the cost vector and all rows of A are 
nonzero.  

SIMPLEX ALGORITHM  

The simplex algorithm starts of by introducing slack 
variables xd+1,……, xd+n to transform the inequality 
system Ax <= b into an equivalent system of 
equalities and additional nonnegativity constraints 
on the slack variables. The slack variable xd+i 
closes the gap between the left-hand side and 
right-hand side of the i-th constraint,   
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for all i = 1…… n. The i-th constraint is then 
equivalent to  

 

and the linear program can be written as 

 

 

 

or in a more compact form as 

 

where A is the n X (d + n) - matrix  

 

c is the (d + n) - vector  

 

and x is the (d + n)-vector  

 

where xO is the vector of original variables, xS the 
vector of slack variables. 

Together with the objective function, the n equations 
for the xd+i in (1.3)  contain all the information about 
the LP. Following tradition, we will represent this 
information in tableau form where the objective 
function denoted by z is written last and separated 
from the other equations by a solid line. In this way 
we obtain the initial tableau for the LP. 

 

The compact form here is 

 

An example illustrates the process of getting the 
initial tableau from an LP in standard. 

Example 1.1 Consider the problem 

 

After introducing slack variables x3; x4; x5, the LP in 
equality form is 

 

From this we obtain the initial tableau 

 

Abstracting from the initial tableau (1.7), a general 
tableau for the LP is any system T of n + 1 linear 
equations in the variables x1,.. , xd+n and z, with the 
properties that 

(i)  T expresses n left-hand side variables xB 
and z in terms of the remaining d righthand 
side variables xN, i.e. there is an n-vector 
β, a d-vector γ, an n X d-matrix Λ and a 
real number z0 such that T is the system 

 

(ii) Any solution of (1.12) is a solution of (1.8) 
and vice versa. 

By property (ii), any tableau contains the same 
information about the LP but represented in a 
different way. All that the simplex algorithm is about 
is constructing a sequence of tableaus by gradually 
rewriting them, finally leading to a tableau in which 
the information is represented in such a way that 
the desired optimal solution can be read off 
directly. We will immediately show how this works 
in our example. 
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Here is the initial tableau (1.11) to Example 1.1 
again. 

 

By setting the right-hand side variables x1, x2 to zero, 
we find that the left-hand side variables x3, x4, x5 

assume nonnegative values x3 = 1, x4 = 3, x5 = 2. 
This means, the vector x = (0, 0, 1, 3, 2) is a feasible 
solution of (1.10) and the vector x0 = (0, 0) is a 
feasible solution of (1.9). The objective function value    
z = 0 associated with this feasible solution is 
computed from the last row of the tableau. In 
general, any feasible solution that can be obtained 
by setting the right-hand side variables of a tableau 
to zero is called a basic feasible solution (BFS). In 
this case we also refer to the tableau as a feasible 
tableau. The left-hand side variables of a feasible 
tableau are called basic and are said to constitute a 
basis, the right-hand side ones are nonbasic. The 
goal of the simplex algorithm is now either to 
construct a new feasible tableau with a 
corresponding BFS of higher z-value, or to prove that 
there exists no feasible solution at all with higher z-
value. In the latter case the BFS obtained from the 
tableau is reported as an optimal solution to the LP; 
in the former case, the process is repeated, starting 
from the new tableau. 

In the above tableau we observe that increasing the 
value of x1 i.e. making x1 positive will increase the z-
value. The same is true for x2, and this is due to the 
fact that both variables have positive coefficients in 
the z-row of the tableau. Let us arbitrarily choose x2. 
By how much can we increase x2 ? If we want to 
maintain feasibility, we have to be careful not to let 
any of the basic variables go below zero. This 
means, the equations determining the values of the 
basic variables may limit x2's increment.  

Consider the first equation  

 

Together with the implicit constraint x3 >= 0, this 
equation lets us increase x2 up to the value x2 = 1 
(the other nonbasic variable x1 keeps its zero value). 
The second equation 

 

does not limit the increment of x2 at all, and the third 
equation 

 

allows for an increase up to the value x2 = 2 before 
x5 gets negative. The most stringent restriction 
therefore is x3 >= 0, imposed by (1.13), and we will 
increase x2 just as much as we can, so we get x2 = 1 
and x3=0. From the remaining tableau equations, the 
values of the other variables are obtained as 

 

To establish this as a BFS, we would like to have a 
tableau with the new zero variable x3 replacing x2 
as a nonbasic variable. This is easy, the equation 
(1.13) which determined the new value of x2 relates 
both variables. This equation can be rewritten as: 

 

and substituting the right-hand side for x2 into the 
remaining equations gives the new tableau 

 

with corresponding BFS x = (0, 1, 0, 3, 1) and 
objective function value z = 1. 

DISCUSSION 

This process of rewriting a tableau into another one 
is called a pivot step, and it is clear by construction 
that both systems have the same set of solutions. 
The effect of a pivot step is that a nonbasic variable 
(in this case x2) enters the basis, while a basic one 
(in this case x3) leaves it. Let us call x2 the entering 
variable and x3 the leaving variable. 

In the new tableau, we can still increase x1 and 
obtain a larger z-value. x3 cannot be increased 
since this would lead to smaller z-value. The first 
equation puts no restriction on the increment, from 
the second one we get x1 < = 3 and from the third 
one x1 <= 1. So the third one is the most stringent, 
will be rewritten and substituted into the remaining 
equations as above. This means, x1 enters the 
basis, x5 leaves it, and the tableau we obtain is 
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with BFS x = (1, 2, 0, 2, 0) and z = 3. Performing one 
more pivot step (this time with x3 the entering and x4 
the leaving variable), we arrive at the tableau 

 

with BFS x = (3, 2, 2, 0, 0) and z = 5. In this tableau, 
no non-basic variable can increase without making 
the objective function value smaller, so we are stuck. 
Luckily, this means that we have already found an 
optimal solution. Why? Consider any feasible 
solution x‘ = (x‘1,………, x‘5) for (1.10), with objective 
function value z0. This is a solution to (1.11) and 
therefore a solution to (1.14). Thus, 

 

must hold, and together with the implicit restrictions 
x4; x5 ¸ 0 this implies z0 <= 5. 

CONCLUSION 

The tableau even delivers a proof that the BFS we 
have computed is the unique optimal solution to the 
problem: z = 5 implies x4 = x5 = 0, and this 
determines the values of the other variables. 
Ambiguities occur only if some of the non-basic 
variables have zero coefficients in the z-row of the 
final tableau. Unless a specific optimal solution is 
required, the simplex algorithm in this case just 
reports the optimal BFS it has at hand. 
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