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Abstract – Despite the variety of graph coloring models discussed in published papers of a theoretical 
nature, the classical model remains one of the most significant and widely applied in practice. The NP-
hardness of the coloring problem gives rise to the necessity of using suboptimal methods in a wide 
range of practical applications. Moreover, the large range of problems solved by classical coloring, as 
well as the variety of graph families with practical significance in this field aids the evolution and 
development of new suboptimal algorithms.  

There exist several relatively simple methods, which are regarded as classical due to their date of 
creation or scope of practical application. As the implementation of a particular algorithmic solution 
requires the selection of at least one coloring method, it is essential to formulate criteria for the 
assessment of the suitability of coloring algorithms.  
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INTRODUCTION 

Speed of operation, measured through 
computational complexity, is obviously one of the 
most important features which are taken into 
consideration when selecting a graph coloring 
approach. For suboptimal methods, the algorithm‘s 
performance guarantee is another characteristic 
feature, describing how accurate, or more precisely 
how inaccurate the obtained results may be. The 
analysis of the smallest hard to color graphs is yet 
another criterium, which in a certain sense 
complements the performance guarantee. 

The development of heuristic graph coloring methods 
is necessary due to the computational complexity of 
optimal algorithms. Graph coloring is an NP-hard 
problem in the case of most non-trivial coloring 
models; in particular there are no known optimal 
polynomial-time solution. However, the large number 
of existing suboptimal algorithms necessitates the 
usage of tools and methods which enable the 
examination and assessment of performance of such 
heuristics. 

The analysis of coloring methods may take either a 
quantity or quality oriented form. It may concern 
computational complexity and the closely connected 
algorithm run time, or the quality of generated 

solutions. The analysis of the quality of graph 
coloring methods is usually conducted for graphs of 
order tending to infinity. 

The performance guarantee enables the 
assessment of the behavior of an algorithm for the 
worst-case input data of a given size. Such 
analysis is usually of an asymptotic nature and can 
be regarded as an indicator of the outcome of 
graph coloring for graphs of order n → ∞. 
Unfortunately, in the case of some of the more 
complex methods analysis of algorithm 
performance may turn out extremely difficult. What 
is more, even a known performance guarantee 
does not describe the behavior of the algorithm in 
the average case. Neither does the performance 
guarantee correspond to the behavior of the 
coloring method for relatively small graphs, which 
may undergo theoretical analysis. Consequently it 
may not be used to determine all the classes of 
graphs colored in a suboptimal way by a given 
method. When judging the performance of heuristic 
methods, the relevant characteristics of a method 
include not only computational complexity and 
accuracy of generated solutions for large values of 
n, but also the level of complexity of graphs for 
which the method leads to suboptimal solutions. 
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The search for hard-to-color graphs is usually 
conducted simultaneously in manifold ways. 
Frequently, theoretical analysis of the properties and 
mechanism of a particular heuristic proves to be 
helpful. The first hard-to-color graphs were found in 
the 1990‘s. Unfortunately, the development and 
refinement of coloring methods and, most of all, their 
rising level of complexity make analysis more and 
more arduous. Therefore the usage of computer 
techniques to find the weak point of coloring 
algorithms appears to be a natural solution. 

SIGNIFICANCE OF LINE AND COMPLETE 
GRAPH WITH A REFERENCE OF N-
COLOURED GRAPHS 

An exhaustive search of the space of all colorings 
generated by a particular method gives absolute 
certainty of detecting any number of hard-to-color 
graphs for the considered method. Unfortunately, the 
duration time of such an operation may turn out a 
serious obstacle. One has to realize that even for a 
relatively small number of vertices n the number of 
possible graphs spanned on these vertices is very 
nearly astronomical, as it is expressed by a super-
exponential function of n. 

In addition, for a single graph there may exist 
numerous and essentially different legal 
implementations of a given method, yielding different 
colorings, which drastically increases the size of the 
search space. Hard-to-color graphs discovered by 
means of computer methods later undergo intensive 
theoretical research, aiming at the verification of the 
correctness of the obtained results. The theoretical 
search and analysis of hard-to-color graphs enable 
the estimation of the anticipated effectiveness of the 
method and — what is most important — often 
suggest improvements which contribute to the 
development of new, more effective graph coloring 
methods. Furthermore, they enable the comparison 
of graph coloring algorithms, as more effective 
algorithms as a rule have larger hard-to-color graphs 
than less optimal algorithms. 

Many new algorithms for heuristic graph coloring use 
different approaches, often determined by the 
specific features of the problem, which leads to 
serious difficulties in testing the effectiveness of such 
algorithms. On the whole, there are two general, 
sensible approaches to testing algorithms, and they 
do not rule each other out. The first approach relies 
on the choice of such families of hard-to-color graphs 
which are connected with dedicated coloring 
methods used for certain classes of problems, or 
such families of hard-to-color graphs which are 
connected with characteristic input data sets. The 
second approach is based on a separate search and 
analysis of hard-to-color graphs for entire families of 
coloring methods. Such graphs are called 
benchmarks. Likewise, we define weak benchmarks 
as slightly hard-to-color graphs for many algorithms. 

The aforementioned approaches to the analysis of 
graph coloring methods also provide other 
supplementary information. By testing a heuristic 
method on general graphs or on a class of large 
graphs which are difficult for other methods, we can 
obtain an estimate of the method‘s behavior for such 
graphs. It is possible to measure the percentage of 
graphs from such a class which are colored sub-
optimally and judge how inaccurate the generated 
colorings may turn out. 

Classical graph coloring or, more precisely, the task 
of finding an optimal vertex-coloring as defined in the 
classical sense, is an NP-hard problem that is — 
informally speaking — a problem with no known 
polynomial solution. The fact, that even the task of 
estimating the value of the graph classical chromatic 
number by means of any k-relative or k-absolute 
approximation algorithm is NP-hard, may be 
regarded as some measure of the true difficulty of 
the analyzed problem. Moreover, classical coloring 
remains NP-hard even in spite of strong restrictions 
imposed on the class of graphs which are taken 
into consideration and on the number of colors 
used. Quite recently a proof of the NP-hardness of 
4-coloring of tripartite graphs was presented. 

The problem of determining whether a given planar 
graph with a degree not exceeding 4 is 3-colorable, 
is also NP-hard. On the other hand, there exist 
entire classes of graphs whose chromatic number 
can be given through a simple formula, or whose 
optimal coloring can be determined in polynomial 
time (interval graphs, for instance, fall into this 
category. 

In order to determine a simple bound on the graph 
chromatic number in the general case, it is 
sufficient to notice that the chromatic number of an 
empty graph is equal to 1, while the chromatic 
number of a complete graph of order n equals n. 

Apart from bounds for the chromatic number of 
general graphs, there exist certain trivial or 
nontrivial bounds for the chromatic number of 
particular classes of graphs. The most famous 
result in the theory of graph coloring, namely the 4- 
color theorem stating that any planar graph can be 
colored with four colors, is an appropriate example. 

DISCUSSION 

The high computational complexity of the graph 
coloring problem necessitates the use of heuristic 
approximation methods for the determination of 
suboptimal solutions in polynomial time. Color 
interchange is a relatively simple method of 
improving the effectiveness of any sequential 
coloring algorithm.   

The idea of coloring the edges of a graph has been 
investigated for many years due to the large 
number of its practical applications. The classical 
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edge-coloring model leads to an NP-hard 
optimization problem. 

The problem of coloring the edges of a graph 
belongs to the family of NP-hard problems, just as 
the problem of vertex-coloring. In fact, the task of 
determining an optimal edge coloring of graph G can 
be solved by finding an optimal vertex-coloring of a 
graph known as the line graph of G. 

The line graph of graph G, denoted by L(G), is a 
graph in which every vertex corresponds to exactly 
one edge of G, and any two vertices of graph L(G) 
are adjacent if and only if the corresponding edges of 
graph G are adjacent. Very strong bounds for the 
chromatic index are known despite the high 
computational complexity of the edge-coloring 
problem. 

Because the determination of the value of the 
chromatic index remains an NP-hard problem 
despite the strength of known bounds, and — more 
importantly — because numerous applications of 
edge-coloring require not only the value of the 
chromatic index but also an assignment of colors, 
effective heuristics solving the problem of edge-
coloring remain indispensable.  

CONCLUSION 

Overall, there are two different approaches to 
determining suboptimal edge-colorings of a graph. 
The first approach relies on the use of a wide variety 
of heuristic methods for coloring line graphs. The 
alternative approach concentrates on dedicated 
methods, designed especially for the edge-coloring 
of graphs. The naive (greedy) edge-coloring 
algorithm as well as Vizing‘s widely used method 
belong to the latter group. 
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