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Abstract – General topology has its basic establishments in real and complex investigation, which made 
critical vocations of the interrelated thoughts of open set, of closed set, and of a limit motivation behind 
a set. This article inspects how those three ideas developed and advanced during the late nineteenth and 
mid twentieth hundreds of years, because of Weierstrass, Cantor, and Lebesgue. Specific consideration 
is paid to the various types of the Bolzano–Weierstrass Theorem found in the last's unpublished talks. A 
fruitless early, unpublished introduction of open sets by Dedekind is inspected, just as how Peano and 
Jordan nearly presented that idea. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

The most punctual thought was that of the limit 
purpose of a set, due to Weierstrass be that as it 
may, scattered by Cantor, while that of a closed set 
(because of Cantor) emerged fairly later. The 
possibility of an open set (except for Dedekind's 
concise, unpublished work about it) came most 
recent of all. The exceptionally moderate dispersion 
of the idea of open set is astounding in perspective 
on its significance now.  

In the wake of examining how these thoughts 
created in analysis (where they were just observed 
as tools of analysis and not part of a different subject 
of topology), we think about the advancement of the 
idea of topological space. Such spaces are presently 
generally dependent on the idea of an open set. 
There was a time of development during which it was 
not clear what idea ought to be taken as crude and 
what aphorisms ought to be accepted for such a 
space. This advancement of the thought of a 
theoretical topological space started in 1904 with the 
introduction, by the French investigator Maurice 
Fréchet [1904], of his idea of a L-space, which took 
the limit of an endless grouping as the crude thought. 

For a couple of decades there was a challenge 
among ideas significantly more general than the one 
which in the end got prevailing and which is as yet 
predominant today under the name of "topological 
space." In analysis, the idea of a metric space was 
vital for quite a few years, especially during the 
1920s as Banach spaces (total normed vector 
spaces, where the standard gives the metric), until 
some other time by the more general idea of 
topological vector space.  

AN ABORTIVE APPROACH TO OPEN SETS  

Cantor alluded uniquely to a point "interior to" an 
interval or, a couple of years after the fact, to 
"interior points" of a continuous point-set. All things 
considered, Cantor's 1879 definition of interior 
guide was close toward that set forward by 
Giuseppe Peano in his book Geometric 
Applications of the Infinitesimal Calculus. Peano 
considered a point-set An (in a space of one, two, 
or three measurements) and described a point p to 
be inside to An if there is a positive number r to 
such a degree, that all of those focuses whose 
good ways from p isn't as much as r have a spot 
with A. In his next two definitions, Peano went past 
what Cantor had done and expressed that a point p 
was said to be exterior to An if p is interior to the 
supplement of A. At long last, p was said to be a 
boundary purpose of An if p was neither interior nor 
exterior to A. Peano realized that on the off chance 
that A contains a few yet not every one of the 
points of space, at that point An essentially has a 
boundary point, which could conceivably have a 
place with A.  

Peano's thoughts could without much of a stretch 
have prompted the idea of open set at the time, 
however in certainty didn't. He characterized the 
boundary of a set as the assortment of all its 
boundary points. At that point, had he wished to do 
as such, he could have characterized a set to be 
open on the off chance that it was indistinguishable 
from the set of all its interior points.  

Ironicly thoughts very like Peano's and Jordan's 
had been created numerous years sooner by 
Dedekind in an unpublished original copy, which 
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was first distributed in Dedekind's gathered works in 
1931, on account of Emmy Noether.  

LIMIT POINTS AND CONNECTEDNESS  

The possibility of connectedness of a point-set was 
engaged with that of a continuum in the mid-
nineteenth century, at once before any idea of closed 
or open set had been proposed. As Wilder 
commented, Bolzano's after death Paradoxes of the 
Infinite (1851) declared that "a continuum is available 
when, and just when, we have a total of basic 
elements (moments or points or substances) so 
organized that every individual from the total has, at 
every person and adequately little distance from 
itself, in any event one other individual from the total 
for a neighbor". Cantor strenuously questioned 
Bolzano's definition of a continuum since, under this 
definition, a set comprising of a few separated 
continua would be a continuum. It might be, in any 
case, that Bolzano's definition of continuum drove 
Cantor to plan what he called "connectedness," i.e., 
a set M is connected if for each positive ε and each 
an and b in M there is some limited n and a few 
points p1,p2, . . . , pn with the end goal that the 
distances ap1,p1p2, . . . , pnb are for the most part 
not exactly ε.  

Cantor's definition of connectedness imparted a few 
detriments to Bolzano's definition of continuum, 
albeit obviously nobody pointed them out at the time. 
For example, Cantor's definition made the set of 
every discerning number connected, and similarly 
the set of every unreasonable number; in Bolzano's 
terms, these two sets would be continua. (Afterward, 
topologists would view both of these sets as 
examples of "completely disconnected" sets.)  

A very unique definition of connectedness was 
proposed by Jordan in his 1892 article on distinct 
integrals. There, limiting himself to closed and 
bounded sets, he characterized a set E in to be 
connected ("d'un seul occupant") if and just if E can't 
be partitioned into two closed and "separated" sets. 
Jordan promptly proceeded to demonstrate that a 
closed and bounded set is connected in his sense if 
and just on the off chance that it is connected in 
Cantor's sense. He rehashed his discourse of such 
ideas (limit point, separated sets, closed set, 
connected set) in his Cours d'analyse. Plainly what 
we currently see as topological ideas were seen by 
Jordan as parts of analysis and as tools to be utilized 
in analysis, as opposed to as a different and 
unmistakable field of arithmetic.  

SERIOUS ERRORS ABOUT CLOSED SETS  

A number of genuine errors about closed sets were 
made when the new century rolled over, errors that 
were associated with the later idea of compactness. 
The first of these errors was expected to Hurwitz. 
The incongruity is that Schoenflies even refered to 
the proper page of Jordan, however didn't see that 

by forgetting about "unbounded," he had made the 
case bogus. This error was connected with 
Schoenflies' overemphasis on the significance of 
closed sets: "The most significant pointsets from the 
hypothetical perspective are the closed and the ideal 
sets. These are the ones most habitually 
experienced in analysis and geometry".  

A progression of related errors pursued. Schoenflies 
contended that the one–one continuous picture of an 
ideal set P is great. (In any case, this can come up 
short if P is unbounded.) His indicated evidence 
depended on the case that a vast set of points must 
have a limit point. (This is an erroneous type of the 
Bolzano–Weierstrass Theorem and comes up short, 
for example, if P is the set of characteristic numbers.) 
He made a comparative however more grounded 
case about closed sets, yet this is similarly as bogus 
as the case about flawless sets. At that point he 
contended that if a function is continuous at each 
purpose of an ideal set P , then the function is 
consistently continuous on P. Be that as it may, this 
fizzles if P is taken to be all nonnegative points on 
the real line and the function is f (x) = x2. Last, he 
affirmed that if Pn is closed and Pn+1 is a 
nonempty subset of Pn for every single positive 
whole number n, at that point the convergence of 
all the Pn is nonempty. In the event that he had 
required that P1 be bounded, at that point his 
declaration would have been valid, yet else it is 
effectively discredited. (Let Pn be the set of every 
single real number at the very least n.) 

HAUSDORFF AND GENERAL TOPOLOGY 

The possibility of an open set in a conceptual 
space (instead of n-dimensional Euclidean space, 
where the thought was expected to Baire and 
Lebesgue) was started by Felix Hausdorff with 
regards to his topological spaces. Nonetheless, 
what Hausdorff called a topological space is a 
more specific thought than what is currently all 
around called a topological space. What he utilized 
as a crude thought seems to be "neighborhood of a 
point." To keep away from vagueness, we will call 
his spaces "neighborhood spaces." Hausdorff 
characterized a local space to be a set E, whose 
individuals were designated "points," together with 
an assortment of subsets of E. These subsets were 
called neighborhoods and were dependent upon 
four aphorisms:  

(A) Every point x has a place with at any rate 
one neighborhood of x, and each area of x 
contains x.  

(B) If U and V are neighborhoods of x, at that 
point there is some local W of x with the 

end goal that W ⊆U ∩V .  
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(C) If a point y has a place with a local U of x, at 
that point there is some local V of y to such 
an extent that V is a subset of U.  

(D) If x and y are unmistakable points, at that 
point there is a local U of x and a local V of y 
to such an extent that U and V are disjoint.  

Following giving his sayings for a topological space, 
Hausdorff characterized what he implied by an 
"interior point" of a subset An of a topological space. 
Specifically, x is an interior purpose of An if some 
area of x is a subset of A. What's more, x was said to 
be a boundary purpose of An if x has a place with A 
yet isn't an interior purpose of A. At that point a set A 
was characterized to be an open set ("Gebiet") if the 
entirety of its points are interior points. At last, he 
indicated that the association of any family 
(countable or uncountable) of open sets is open and 
that the crossing point of limitedly many open sets is 
open. (By indicating that the association of any 
uncountable group of open sets is open, he went 
past what Lebesgue had done in 1905 with open 
sets.)  

It ought to be seen that Hausdorff's neighborhoods 
don't really compare to neighborhoods when, similar 
to the case today, the idea of open set is taken as 
crude for topological spaces. Specifically, for a local 
space E containing in any event two points, the 
entire space E need not be an area of any point, for 
in the event that the main neighborhood of any point 
x is simply {x}, at that point every one of Hausdorff's 
adages are fulfilled, in spite of the fact that the entire 
space X isn't an open set. Be that as it may, if the 
cutting edge idea of topological space with "open 
set" is taken as the crude thought, at that point an 
area of x is characterized to be any set V to such an 
extent that x has a place with some open subset of V 
. Consequently the entire space is then open and is 
an area of every one of its points, in inconsistency to 
our example of a Hausdorff neighborhood space. 
(What for Hausdorff was the set of neighborhoods of 
a space is today called an "area base" for the 
space.)  

In the wake of characterizing open sets regarding 
neighborhoods, Hausdorff went to collection points 
and closed sets. He characterized p to be a 
collection point ("Häufungspunkt") of a set B if each 
area of p contained unendingly numerous points of 
B. (This was in finished concurrence with Cantor's 
idea of limit point.) A set was characterized to be 
closed on the off chance that it contained all its 
amassing points. At that point Hausdorff 
demonstrated that the crossing point of any group of 
closed sets was closed and that the association of 
any limited number of closed sets was closed.  

Hausdorff received from Fréchet the name "reduced" 
(which, above, we called "Fréchet-smaller") for any 
set every one of whose unending subsets has an 

amassing point. What Hausdorff called the "Borel 
Theorem" was the suggestion that if a closed and 
Fréchet-smaller set M is a subset of the association 
of an unbounded succession S of open sets, at that 
point M is as of now a subset of the association of 
some limited subset of S.  

Hausdorff's second adage of countability (i.e., the set 
of all neighborhoods is countable) had different 
ramifications for the open and closed sets. One of 
these outcomes was what is presently known as the 
countable chain condition: any set of disjoint open 
sets is countable. Another was that the set of every 
single open set has a similar cardinality as the set of 
every single closed set, to be specific that of the 
set of every single real number. Besides, this 
saying inferred a more keen type of the Borel 
Theorem, with S having any interminable 
cardinality instead of fundamentally being 
countable.  

TOPOLOGICAL SPACES  

In the past sections, we examined the convergence 
of successions, the progression of functions, and 
the compactness of sets. We communicated these 
properties regarding a metric or standard. A few 
sorts of convergence, for example, the pointwise 
convergence of real-esteemed functions 
characterized on an interval, can't be 
communicated as far as a metric on a function 
space. Topological spaces give a general system 
to the investigation of convergence, coherence, 
and compactness. The principal structure on a 
topological space isn't a distance function, however 
an assortment of open sets; thinking 
straightforwardly as far as open sets regularly 
prompts more noteworthy clarity as well as more 
prominent generality.  

Definition 1 A topology on a nonempty set X is an 
assortment of subsets of X, called open sets, to 
such an extent that: 

(a) the empty set  and the set X are open; 

(b) the union of an arbitrary collection of open 
sets is open; 

(c) the intersection of a finite number of open 
sets is open. 

(d) A subset An of X is a closed set if and just 

if its supplement,  is open. 

(e) All the more officially, an assortment  of 
subsets of X is a topology on X if: 

(f) (a)  
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(g) (b) on the off chance that  for  at 

that point  

(h) (c) on the off chance that  for 

 at that point  

(i) We call the pair  a topological space; in 

the event that  is obvious from the unique 
circumstance, at that point we regularly 
allude to X as a topological space.  

(j) Example 1 Let X be a nonempty set. The 

assortment,  comprising of the vacant 
set and the entire set, is a topology on X, 
called the minor topology or rash topology. 

The power set  of X, comprising of all 
subsets of X, is a topology on X, called the 
discrete topology.  

(k) Example 2 Let (X, d) be a metric space. At 
that point the set of every single open set 
characterized in Definition 1 is a topology on 
X, called the metric topology. For example, a 
subset G of  is open as for the standard, 
metric topology on  if and if for each  
there is an open interval I with the end goal 

that  and  

Example 3 Let  be a topological space and Y a 
subset of X. Then 

S = {.  for some } 

is a topology on Y. The open sets in Y are the 
intersections of open sets in X with Y. This topology 
is called the induced or relative topology of Y in X, 
and (Y,S) is called a topological subspace 

of .For instance, the interval [0,1/2) is an open 
subset of [0,1] with respect to the induced metric 

topology of [0,1] in R, since  

A set  is a neighborhood of a point  if there 

exists an open set  with  We do not 

require that V itself is open. A topology  on X is 
called Hausdorff if every pair of distinct points 

 has a pair of nonintersecting neighborhoods, 

meaning that there are neighborhoods of x and  
of y such that  (see Figure 4.1). When 
the topology is clear, we often refer to X as a 
Hausdorff space. Almost all the topological spaces 
encountered in analysis are Hausdorff. For example, 
all metric topologies are Hausdorff. On the other 
hand, if X has at least two elements, then the trivial 
topology on X is not Hausdorff. 

We can express the notions of convergence, 
continuity, and compactness in terms of open sets. 
Let X and Y be a topological spaces. 

Definition 2 A sequence  in X converges to a limit 

 if for every neighborhood V of x, there is a 
number N such that  for all  

This definition says that the sequence eventually lies 
entirely in every neighborhood of x. 

Definition 3 A function  is continuous at 

 if for each neighborhood W of f(x) there exists 

a neighborhood V of x such that  We say 
that f is continuous on X if it is continuous at every 

 

Theorem 1 Let  and (Y,S) be two topological 

spaces and  

Then f is continuous on X if and only if  for 

every  

Thus, a continuous function is characterized by the 
property that the inverse image of an open set is 
open. We leave the proof to Exercise 4.4. 

Definition 4 A function  between 
topological spaces X and V is a homeomorphism if 

it is a one-to-one, onto map and both f and  are 
continuous. Two topological spaces X and Y are 
homeomorphic if there is a homeomorphism 

 

Homeomorphic spaces are indistinguishable as 

topological spaces. For example, if is a 
homeomorphism, then G is open in X if and only if 
f(G) is open in Y, and a sequence (xn) converges to 
x in X if and only if the sequence (f(xn)) converges 
to f{x) in Y. 

A one-to-one, onto map f always has an inverse 

 but  need not be continuous even if f is. 

Example 4 We define  by , where 

 with the topology induced by the usual 

topology on  and  is the unit circle with the 
topology induced by the usual topology on C. Then, 
as illustrated in Figure 4.2, f is continuous but  is 
not. 

Definition 5 A subset if of a topological space X is 
compact if every open cover of K contains a finite 
subcover. 

It follows from the definition that a subset K of X is 
compact in the topology on X if and only if K is 
compact as a subset of itself with respect to the 
relative topology of K in X. This contrasts with the 

fact that a set  may be relatively open in Y, yet 
not be open in X. For this reason, while we define 
the notion of relatively open, we do not define the 
notion of relatively compact. 
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BASES OF OPEN SETS 

The collection of all open sets in a topological space 
is often huge and unwieldy. The topological 
properties of metric spaces can be expressed 
entirely in terms of open balls, which form a rather 
small subset of the open sets. In this section we 
introduce subsets of a topological space that play a 
similar role to open balls in a metric space. 

Definition 1 A subset B of a topology  is a base for 

 if for every  there is a collection of sets  

such that  A collection of neighborhoods of 

a point  is called a neighborhood base for x if 
for each neighborhood V of x there is a 

neighborhood  such that  A topological 

space X is first countable if every has a
 countable neighborhood base, and second 
countable if X has a countable base. 

Example 1 The collection of all open intervals (a, b) 

with is a base for the standard topology on 

 The collection of all open intervals  with 
rational endpoints  is a countable base for the 

standard topology on  Thus, the standard topology 
is second countable. 

Example 2 Let X be a metric space and A a dense 
subspace of X. The set of open balls  with 

 and  is a base for the metric topology 
on X. 

A metric space is first countable, and a separable 
metric space is second countable. 

Example 3 If X is topological space with the discrete 
topology, then the collection of open sets 

 is a base. The discrete topology is first 
countable, and if X is countable, then it is second 
countable. 

It is often useful to define a topology in terms of a 
base. 

Theorem 1 A collection of open sets  is a base 

for the topology  on a set X if and only if contains 

a neighborhood base for x for every  

Proof. Suppose  is a base for If N is a 

neighborhood of , then there is an open set 

 such that  Since  is a base, there 

are sets  such that  Therefore, there is 

an such that  and  It follows 

that contains a neighborhood base for x. 

Conversely, if a collection of open sets  contains a 

neighborhood base for every  then for every 

open set  and every  there exists  

such that  Therefore, so  is a 
base for the topology.  

Example 4 Suppose that X is the space of all real-
valued functions on the interval [a, b]. We may 

identify a function  with a point  in 

 so  is the [a, 6]-fold Cartesian product of 

 Let , where  and 

, where  be finite subsets of [a, 6] 

and  respectively. For  we define a subset 

 of X by 

 (1) 

The topology of pointwise convergence is the 

smallest topology on X that contains the sets  

for all finite sets  and  We 
have  with respect to this topology if and only 

if  for every  If  and 

 then the sets  form a neighborhood 

base for  This topology is not first 
countable. 

The set in (1) is called a cylinder set. It has a 
rectangular base 

 

in the coordinates, and is unrestricted 
in the other coordinate directions. More 

picturesquely, is sometimes called a ―slalom 
set,‖ because it consists of all functions whose 

graphs pass through the ―slalom gates‖ at with 

radius and center  

A base for the topology of pointwise convergence 
is given by all finite intersections of sets of the 

form In fact, it is sufficient to take the sets of 
the form 

 (2) 

where  and 

 The sets of functions in (2) with intervals of 

variable width generate the same topology 
as the sets with intervals of a fixed width because 

 with  is contained inside the 
set in (2). 

We say that a topological space  is metrizable 
if there is a metric on X whose metric topology 

is . For a metrizable space, we can give 
sequential characterizations of compact sets, 
closed sets (Proposition 1.41), and continuous 
functions. These sequential characterizations may 
not apply in a nonmetrizable topological space. 
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There is, however, a generalization of sequences, 
called nets, that can be used to express all the above 
properties in an analogous way. We will not make 
use of nets in this book. 

For example, the closure  of a subset A of a 
topological space X is the smallest closed set that 
contains A. If X is metrizable, then  is the set of 
limits of convergent sequences whose terms are in 
A, but if X is a not metrizable, then this procedure 
may fail. We call the setof limit points of sequences 

in A the sequential closure of A and denote it by  
The sequential closure is a subset of the closure, but 
it may be a strict subset, as illustrated by the 
following example. 

Example 5 Consider the space of all functions 

 with the topology of pointwise 

convergence. For each , we let 

 

We define functions and / by the pointwise limits, 

 

Let . Then these limits show that 

 

It is possible to show that the pointwise limit of a 
sequence of continuous functions on [0,1] is 
continuous on a dense subset of [0,1]. Since f is 
nowhere continuous in [0,1], it is not the pointwise 
limitof any subsequence of the continuous functions 

 Therefore,  but  This example 
shows that the topology of pointwise convergence on 
the real-valued functions on [0,1] is not metrizable. 

A linear space with a topology defined on it, which 
need not be derived from a norm or metric, such that 
the operations of vector addition and scalar 
multiplication are continuous is called a topological 
linear space, or a topological vector space. The 
space of real-valued functions on a set with the 
topology of pointwise convergence is an example of 
a topological linear space. Topological linear spaces, 
such as the Schwartz space, also arise in connection 
with distribution theory. 
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