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Abstract – The present paper provides spherically symmetric solution of Einstein’s field equations for 
the perfect fluid with equation of state  where a [0, 1] has been obtained taking suitable choice of 
g11 or g44 (e.g. ). Many previously known solutions are contained herein as a particular case. 
Various physical and geometrical properties have been also studied. 
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1. INTRODUCTION 

In 916, Schwarzschild [10] considered perfect fluid 
spheres with homogenous density and isotopic 
pressure in general relativity and obtained the 
solutions of relativistic field equations. Tolman [16] 
developed a mathematical method for solving 
Einstein‘s field equations applied to a static fluid 
sphere in such a manner as to provide explicit 
solutions in terms of known functions. A number of 
new solutions were thus obtained and the properties of 
three of them were examined in detail. 

No stationary in homogeneous solutions to Einstein‘s 
equation for an irrotational perfect fluid have featured 
equations of state  (Letelier [14], Letelier and 
Tabensky [15] and Singh and Yadav [23]). Solutions to 
Einsteins equation with a simple equation of state 

have been found in various cases, e.g. for  
constant (Whittaker [7]) for = 3p (Klein [12], Singh and 
Abdussattar [11], Feinstein and Senovilla [1], Kramer 

[2]), for  constant (Buchdahl and Land [6], 

Alluntt [9]) and for   (Buchdahl [44]). But if 

one takes, e.g. olytropic fluid sphere  (Klein [12], 
Tooper [18], Buchdahl [5]) or a mixture of ideal gas 
and radiation (Suhonen [3]), one soon has to use 
numerical methods. Yadav and Saini [20] have also 
studied the static fluid sphere with equation of state 

 (i.e. stiff matter). Davidson [25] has presented a 
solution that provides a non stationary analog to the 

static case when  

In the present paper, we have obtained some exact, 
static spherically symmetric solutions of Einstein‘s field 
equations for the perfect fluid with equation of state 

 where  We have also taken  in one 

case while  in second case. For different values 

of a and n we get many previously known solutions. 
To overcome the difficulty of infinite density at the 
centre, it is assumed that distribution has a core of 
radius r0 and constant density which is surrounded 
by the fluid with the specified equation of state. 

2. THE FIELD EQUATIONS AND THEIR 
SOLUTIONS 

We take the line element in the form 

 

where A and B are functions of r only. 

The field equations 

 

for (2.1) are [1] 

 

 

 

where a prime denotes differentiation with respect to 
r. 

The energy momentum tensor for perfect fluid is 
given by 
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We choose the equation of state as 

 

where a is positive constant a [0,1]  

in this case we find that 

 

We use commoving co-ordinate so that 

 

The non-vanishing components of the energy 
momentum tensor are 

 

We can then write 

 

 

 

Using equations (2.7), (2.8) and (2.10) we get 

 

Case I : We choose 

A

1e k
(a constant) which 

reduces (2.11) to the form 

 

Integrating w.r.t.r, we get 

 

where k2 is a constant, Now (2.8) and (2.9) lead to k1 = 
2, so that 

 

Hence the metric (2.1) can be cast into the form 

 

Absorbing the constant k2 is the co-ordinate differential 
dt the metric (2.15) is reduced to the form. 

 

The non-zero components of Reimann-Christoffel 
curvature tensor Rhijk for the metric (2.16) are 

 

Choosing the orthonormal tetrad 
i

jA
 as 

 

The physical components R(abcd) of the curvature 
tensor defined by 

h i j k

(abcd) (a) (b) (c) (d) hijkR A A A A R
 

Are 

 

Since a is finite +ve constant, we see that 

 

Hence it follows that the space time is asymptotically 
homaloidal. 

For the metric (2.16) the fluid velocity u
i
 is given by 

 

The scalar of expansion 

i

ju 
is identically zero. 

The non vanishing components of the tensor of 

rotation ij
is defined by 

 

Are 
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The components of the shear tensor ij
defined by 

 

with the projection tensor 

 

Are 

 

while other components are zero. 

For the particular values of constant a, several 
previously known solutions are contained here in. 
When a = 1, results of this case reduce to that of 
Singh and Yadav [23]. Also in this case the relative 
mass m of a particle in the gravitational field of (2.16) 
is related to its proper mass m0 (Narlikar [24]) through 

 

k being a constant. As the particle moves towards the 

origin, m increases and r , m 0   i.e. the relative 
mass goes on decreasing continuously. 

The case when a = 3 gives the distribution of 
disordered radiation already obtained by Singh and 
Abdussattar [11]. 

Case II : From (2.11) we see that if B is known A can 
be obtained. So we choose 

 

where is constant 

Use of (2.27) reduces the equation (2.11) to the form 

 

We put 

Ay e
so that equation (2.28) is 

transformed to 

 

Which is a linear differential equations whose solution 
is 

 

where E is integration constant. 

Therefore we get 

 

Consequently the metric (2.1) can be put into that 
form 

 

Absorbing the constant in co-ordinate differential dt, 
the metric (2.32) goes to the form 

 

The non vanishing components of Reimann-
Christoffel curvature tensor Rhijk for the metric (2.33) 
are 

 

Choosing the orthonormal tetrad 

i

jA
as 

 

The physical components R(abcd) of the curvature 
tensor are 
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We see that (abcd) 0R as r 
. It follows that the space-

time is asymptotically homaloidal. 

Also the metric (2.33) the fluid velocity u
i
 is given by 

 

The scalar of expansion 

i

;iu 
is identically zero. 

The non vanishing components of the tensor of 
rotation 

 

The non-zero components of the shear tensor ij
are 

 

3. SOLUTION FOR THE PERFECT FLUID 
CORE 

Pressure and density for the metric (2.33) are 

 

It follows from (3.1) that the density of the distribution 
tends to infinity as r tends to zero. In order to get rid of 
the singularity at r = 0 in the density we visualize that 
the distribution has a core of radius r0 and constant 
density. The field inside the core is given by 
Schwarzschild internal solution. 

 

Where A and B  are constants and . 

The continuity conditions for the metric (2.33) and 
(3.2) at the boundary gives 

 

And the density of the core 

 

which complete the solution for the perfect fluid core 
of radius r0 surrounded by considered fluid. The 
energy condition Tij U

i
 Uj > 0 and the Hawking and 

Penrose condition (Hawking and Penrose, 1970). 

 

Both reduces to u > 0 which is obviously satisfied. 

For different values of a and n, solutions obtained 
above in case II provide many previously known 
solutions. For a = 1, n = 1, we get the results due to 
Yadav and Saini [20]. For n = 2 and by suitable 
adjustment of constant we get the solution due to 
Singh and Yadav [23]. Also for a = 3and n = 2 we get 
the solution due to Yadav and Purushottom [21] and 
Yadav et al. [22] by suitable adjustement of 
constants. 

4. DISCUSION 

In this paper the equation of state for the fluid has 

been taken as p=
a

 which (for a=1) describes 
several important cases, e.g. relativistic degenerate 
Fermi gas and probably very dense baryon matter 
(Zeldovich and Novikon [26]; Walecka [8]. The 

casual limit for ideal gas has also form 


=p 
(Zeldovich and Novkove [26]). 

Furthermore, if the fluid satisfies the equation of 

state p=


 and if in addition its motion is irrotational, 
then such a source has the same stress energy 
tensor as that of a m assless scalar field (Tabensky 
and Taub [19]. Also the solution in this case can be 
transformed to the solution of Brans-Dicke Theory in 
vacuum. (Dicke [17]). 
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