A Theoretical Analysis of Literature of Accelerating and Anisotropic Cosmological Models in Certain Modified Theories of Gravitation
DOI:
https://doi.org/10.29070/rj08t588Keywords:
Cosmology, General Relativity, anisotropyAbstract
Cosmology is the scientific study of the relationship between space and time, with an emphasis on the origin, structure, and nature of the universe. The universe has evolved through numerous stages, revealing its entire complexity. To fully fathom the nature of our world, we must first understand its origins, evolution, and ultimate fate. The process of creating mathematical models of the universe. Einstein's theory of general relativity explains the force of gravity, whilst other theories investigate gravitational consequences in a Bianchi universe. The class of cosmological models that are intrinsically homogeneous but not isotropic on spatial slices is named after Luigi Bianchi, a mathematician who categorised these spaces in three dimensions. After doing theoretical research, it is determined that infinitesimally tiny singularities do not entirely meet the energy density constraint, and instead, a rebound occurs in place of the universe's original singularity. The solutions have densities that exceed the maximum density and are effective for connecting anisotropic solutions, even in the absence of shear at the bounce.A cosmological model of the Bianchi type II that is both spatially homogeneous and totally anisotropic. In the context of general relativity, the model is filled with pressure-less matter and anisotropic modified Ricci dark energy, as well as an attracting massive scalar field.
A solution to Einstein's field equations using Bianchi type II space-time, which provides a logical explanation for the inflationary state and isotropy in the absence of singularities or particle boundaries.
References
Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BVRI light curves for 22 Type Ia supernovae. Astron. J. 1998, 116, 1009.
Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565.
Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.H.; Zehavi, I.; Bahcall, N.A.; et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501.
Allen, S.W.; Schmidt, R.W.; Ebeling, H.; Fabian, A.C.; Van Speybroeck, L. Constraints on dark energy from Chandra observations of the largest relaxed clusters. Mon. Not. R. Astron. Soc. 2004, 353, 457.
Bennett, C.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S.S.; Page, L.; Spergel, D.N.; Tucker, G.S.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. Ser. 2003, 148, 1–27.
Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145.
Copeland, E.J.; Sami, M.; Tsijikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753.
Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16.
Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606.
Capozziello, S.; Cardone, V.F.; Troisi, A. Reconciling dark energy models with f(R) theories. Phys. Rev. D 2005, 71, 43503.
Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, strin-inspires gravity, and its reconstruction. Phys. Rev. D 2006, 74, 046004.
Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 24020.
Adhav, K.S. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity. Astrophys. Space Sci. 2011, 339, 365–369.
Sharif, M.; Zubair, M. Study of Bianchi I anisotropic model in f(R,T) gravity. Astrophys. Space Sci. 2014, 349, 457–465.
Shamir, M.F. Bianchi type-I cosmology in f(R,T) gravity. J. Exp. Theor. Phys. 2014, 119, 242–250.
Ram, S.; Kumari, P. Bianchi types I and V bulk viscous fluid cosmological models in f(R,T) gravity theory. Open Phys. 2014, 12, 744–754.
Singh, G.P.; Bishi, B.K. Bianchi type-I Universe with Cosmological Constant and Quadratic Equation of State in f(R,T) Modified Gravity. Adv. High Energy Phys. 2015, 2015, 816826.
Sahoo, P.K.; Sivakumar, M. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity with Lambda (T). Astrophys. Space Sci. 2015, 357, 34.
Shamir, M.F. Locally rotationally symmetric Bianchi type I cosmology in f(R,T) gravity. Eur. Phys. J. C 2015, 75, 1–8.
Singh, G.P.; Bishi, B.K. Bianchi type-I transit Universe in f(R,T) modified gravity with quadratic of state and Λ. Astrophys. Space Sci. 2015, 360, 34.
Zubair, M.; Hassan, S.M.A. Dynamics of Bianchi type I, III and Kantowski-Sachs solutions in f(R,T) gravity. Astrophys. Space Sci. 2016, 361, 1–8.
Singh, G.; Bishi, B.K.; Sahoo, P. Scalar field and time varying cosmological constant in f(R,T) gravity for Bianchi type-I universe. Chin. J. Phys. 2016, 54, 244–255.
Sahoo, P.K. LRS Bianchi type-I string cosmological model in f(R,T) gravity. Fortschr. Phys. 2015, 64, 414–415.
Shukla, P.; Jayadev, A. LRS Bianchi Type-I Cosmology with Gamma Law EoS in f(R,T) Gravity. Appl. Appl. Math. 2016, 11, 229–237.
Kanakavalli, T.; Rao, G.A. LRS Bianchi type-I string cosmological models in f(R,T) gravity. Astrophys. Space Sci. 2016, 361, 206.
Zubair, M.; Hassan, S.M.A.; Abbas, G. Bianchi type I and V solutions in f(R,T) gravity with time-dependent deceleration parameter. Can. J. Phys. 2016, 94, 1289–1296.
Aktas, C. Magnetised strange quark matter in reconstructed f(R,T) gravity for Bianchi I and V universes with cosmological constant. Turk. J. Phys. 2017, 41, 469–476.
Calgar, H.; Aygun, S. Bianchi type-I Universe in f(R,T) Modified gravity with Quark Matter and Λ. In Proceedings of the Turkish Physical Society 32nd International Physics Congress (TPS32), Bodrum, Turkey, 6–9 September 2017; Volume 1815, p. 80008.
Tiwari, R.K.; Beesham, A.; Singh, R.; Tiwari, L.K. Time varying G and Λ cosmology in f(R,T) gravity theory. Astrophys. Space Sci. 2017, 362, 143.
Bishi, B.K.; Pacif, S.; Sahoo, P.K.; Singh, G.P. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750158.
Solanke, D.T.; Karade, T.M. Bianchi type I universe filled with scalar field coupled with electromagnetic fields in f(R,T) theory of gravity. Indian J. Phys. 2017, 91, 1457–1466.