Thermodynamic Stability and Bandgap Trends in Mixed Alkaline Earth Chalcogenides

Authors

  • Rinky Yadav Research Scholar, Department of Physics, J.S. University, Shikohabad, U.P.
  • Dr. Mohit Johri Professor, Department of Physics, J.S. University, Shikohabad, U.P.

DOI:

https://doi.org/10.29070/stwpzr15

Keywords:

Alkaline Earth Chalcogenides, Thermodynamic Stability, Bandgap Engineering, Mixed Cation-Anion Systems, Density Functional Theory

Abstract

Mixed alkaline earth chalcogenides (AECs) are a promising class of materials with tunable bandgap properties, making them highly suitable for applications in optoelectronics, thermoelectrics, and energy storage. This study investigates the thermodynamic stability and bandgap trends in mixed AECs, focusing on the effects of cation and anion mixing on their structural and electronic properties. Using density functional theory (DFT) calculations and experimental validation, we explore the stability and bandgap variations in mixed AECs. The results demonstrate that mixed AECs exhibit enhanced thermodynamic stability and tunable bandgaps, providing new opportunities for advanced material design.

References

Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., & Luitz, J. (2001). WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology.

Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133. https://doi.org/10.1103/PhysRev.140.A1133

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865

Tran, F., & Blaha, P. (2009). Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Physical Review Letters, 102(22), 226401. https://doi.org/10.1103/PhysRevLett.102.226401

Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118(18), 8207-8215. https://doi.org/10.1063/1.1564060

Sun, J., Ruzsinszky, A., & Perdew, J. P. (2015). Strongly constrained and appropriately normed semilocal density functional. Physical Review Letters, 115(3), 036402. https://doi.org/10.1103/PhysRevLett.115.036402

Zhang, X., Zhang, Y., & Wang, Y. (2020). Electronic structure and thermodynamic properties of mixed alkaline earth chalcogenides: A first-principles study. Journal of Materials Science, 55(12), 5201-5215. https://doi.org/10.1007/s10853-019-04190-5

Sharma, P., Verma, A., & Kumar, R. (2022). Bandgap engineering of alkaline earth chalcogenides: Experimental and computational insights. Journal of Physics: Condensed Matter, 34(20), 205702. https://doi.org/10.1088/1361-648X/ac573f

VASP Group. (2023). Vienna Ab initio Simulation Package (VASP): A first-principles simulation software. Retrieved from https://www.vasp.at

Tauc, J. (1974). Optical properties and electronic structure of amorphous semiconductors. Materials Research Bulletin, 9(7), 1041-1051. https://doi.org/10.1016/0025-5408(74)90127-2

Downloads

Published

2025-01-01

How to Cite

[1]
“Thermodynamic Stability and Bandgap Trends in Mixed Alkaline Earth Chalcogenides”, JASRAE, vol. 22, no. 01, pp. 144–150, Jan. 2025, doi: 10.29070/stwpzr15.

How to Cite

[1]
“Thermodynamic Stability and Bandgap Trends in Mixed Alkaline Earth Chalcogenides”, JASRAE, vol. 22, no. 01, pp. 144–150, Jan. 2025, doi: 10.29070/stwpzr15.