Formulation And Evaluation Of Nanoparticle-Based Drug Delivery System For Enhanced Bioavailability Of Poorly Soluble Drugs

Authors

  • Eman Nazmi Hassan Al Qutub Senior pharmacist, PSMMC, Riyadh Author
  • Khoulod Nazmi Hassan Al Qutub Pharmacist, Al Yammamah hospital, Riyadh Author
  • Manal Nazmi Hassan Al Qutub Prince Nourah Bint Abdulrahman University, Riyadh Author
  • Sultan Nazmi Hassan Al Qutub Pharmacist, Ministry of Health, Riyadh Author

DOI:

https://doi.org/10.29070/6nnqct08

Keywords:

Nanoparticle-Based Drug Delivery System (NDDS), Poorly Water-Soluble Drugs, Bioavailability Enhancement, Nanocrystals, Liposomes, Polymeric Nanocarriers, Nanoemulsions, Nanohydrogels

Abstract

The development of nanoparticle-based drug delivery systems (NDDS) has become a significant tool for addressing the problems associated with drugs that are not readily soluble in water and, as a result, have restricted bioavailability due to poor dissolution and permeability. NDDS, which include liposomes, polymeric nanoparticles, nanoemulsions, nanohydrogels, inorganic carriers, dendritic polymers, and nanocrystals, are used in order to enhance the solubility of medications, as well as their stability, controlled release, and targeted administration. These NDDS do not alter the chemical structure of the medicine in any way, shape, or form. These systems are able to improve absorption, extend circulation, and reduce systemic toxicity by utilizing nanoscale features such as large surface area, surface functionalization, and reactivity to both internal and external stimuli. These features are utilized in order to achieve these goals. Nanocrystal technology, for example, is a versatile approach that may be used for intravenous, parenteral, and oral administration. This is because it boosts bioavailability, saturation solubility, and dissolving rate. Megestrol acetate, sirolimus, and fenofibrate are a few examples of marketed medications that demonstrate how these strategies have been developed and used successfully in translation. In conclusion, NDDS is an exciting new invention that has the potential to change targeted and combination treatments by boosting both the efficacy of the therapy and the patient's compliance with the treatment requirements.

Downloads

Download data is not yet available.

References

1. Prabhu P, Patravale V. Dissolution enhancement of atorvastatin calcium by co-grinding technique. Drug Delivery Transl Res. 2016;6 (4):380–391. doi:10.1007/s13346-015-0271-x

2. Jermain SV, Brough C, Williams RO, et al. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int J Pharm. 2018;535(1–2):379–392. doi:10.1016/j.ijpharm.2017.10.051

3. Baghel S, Cathcart H, O’Reilly NJ, et al. Polymeric Amorphous Solid Dispersions: a Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J Pharmaceut Sci. 2016;105(9):2527–2544. doi:10.1016/j.xphs.2015.10.008

4. Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol. 2020;11(524). doi:10.3389/fphar.2020.00524

5. Siddiqui K, Waris A, Akber H, et al. Physicochemical Modifications and Nano Particulate Strategies for Improved Bioavailability of Poorly Water Soluble Drugs. Pharm nanotechnol. 2017;5(4):276–284. doi:10.2174/2211738506666171226120748

6. Rubin KM, Vona K, Madden K, et al. Side effects in melanoma patients receiving adjuvant interferon alfa-2b therapy: a nurse’s perspective. Supportive Care Cancer. 2012;20(8):1601–1611. doi:10.1007/s00520-012-1473-0

7. Da Silva FL, Marques MB, Kato KC, et al. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov. 2020;15(7):853–864. doi:10.1080/17460441.2020.1750591

8. Prakash S. Nano-based drug delivery system for therapeutics: a comprehensive review. Biomed Phys Eng Express. 2023;9(5):10.1088/2057– 1976/acedb2. doi:10.1088/2057-1976/acedb2

9. Harder BG, et al. Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Front Oncol. 2018;8(462). doi:10.3389/fonc.2018.00462

10. Zhai X, Lademann J, Keck CM, et al. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy. Int J Pharm. 2014;470(1–2):141–150. doi:10.1016/j.ijpharm.2014.04.060

11. Kataoka M, Yonehara A, Minami K, et al. Control of Dissolution and Supersaturation/Precipitation of Poorly Water-Soluble Drugs from Cocrystals Based on Solubility Products: a Case Study with a Ketoconazole Cocrystal. Mol Pharmaceut. 2023;20(8):4100–4107. doi:10.1021/ acs.molpharmaceut.3c00237

12. Fraser EJ, Leach RH, Poston JW, et al. Dissolution and bioavailability of digoxin tablets. J Pharm Pharmacol. 1973;25(12):968–973. doi:10.1111/j.2042-7158.1973.tb09988.x

13. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 2000;50(1):3–12. doi:10.1016/s0939-6411(00)00091-6

14. Verma H, Garg R. Development of a bio-relevant pH gradient dissolution method for a high-dose, weakly acidic drug, its optimization and IVIVC in Wistar rats: a case study of magnesium orotate dihydrate. Magnesium Res. 2022;35(3):88–95. doi:10.1684/mrh.2022.0505

15. La Sorella G, Sperni L, Canton P, et al. Selective Hydrogenations and Dechlorinations in Water Mediated by Anionic Surfactant-Stabilized Pd Nanoparticles. J Org Chem. 2018;83(14):7438–7446. doi:10.1021/acs.joc.8b00314

16. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharma Sin. 2015;5 (5):442–453. doi:10.1016/j.apsb.2015.07.003

17. Hirose R, Sugano K. Effect of Food Viscosity on Drug Dissolution. Pharm Res. 2024;41(1):105–112. doi:10.1007/s11095-023-03620-y

18. Mistry A, Stolnik S, Illum L, et al. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–157. doi:10.1016/j. ijpharm.2009.06.019

19. Guo Q, Chang Z, Khan NU, et al. Nanosizing Noncrystalline and Porous Silica Material-Naturally Occurring Opal Shale for Systemic Tumor Targeting Drug Delivery. ACS Appl Mater Interfaces. 2018;10(31):25994–26004. doi:10.1021/acsami.8b06275

20. Aslam M, Javed MN, Deeb HH, et al. Lipid Nanocarriers for Neurotherapeutics: introduction, Challenges, Blood-brain Barrier, and Promises of Delivery Approaches. CNS Neurol Disord Drug Targets. 2022;21(10):952–965. doi:10.2174/1871527320666210706104240

21. Ponchel G, Montisci M-J, Dembri A, Durrer C, Duchêne D. Assia Dembri, Carlo Durrer, Dominique Duchêne,Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract,European. J Pharm Biopharmaceutics. 1997;44(1):25–31. doi:10.1016/S0939-6411(97)00098-2

22. Akhter MH, Ahmad A, Ali J, et al. Formulation and Development of CoQ10-Loaded s-SNEDDS for Enhancement of Oral Bioavailability. J Pharm Innov. 2014;9:121–131. doi:10.1007/s12247-014-9179-0

23. Katari O, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics for the treatment of psoriasis. Expert Opin Drug Delivery. 2021;18(12):1857–1872. doi:10.1080/17425247.2021.2011857

24. Lee Y. Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting. Macromol Res. 2006;14:387–393. doi:10.1007/BF03219099

25. Ding L, Tang S, Yu A, et al. Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS Appl Mater Interfaces. 2022;14(8):10015–10029. doi:10.1021/acsami.1c21997

26. Niu Z, Acevedo-Fani A, McDowell A, et al. Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release. 2020;327:444–455. doi:10.1016/j.jconrel.2020.08.025

27. Granata G, Petralia S, Forte G, et al. Injectable supramolecular nanohydrogel from a micellar self-assembling calix[4] arene derivative and curcumin for a sustained drug release. Mater Sci Eng. 2020;111:110842. doi:10.1016/j.msec.2020.110842

28. El-Refaie WM, Elnaggar YSR, El-Massik MA, et al. Novel Self-assembled, Gel-core Hyaluosomes for Non-invasive Management of Osteoarthritis: in-vitro Optimization, Ex-vivo and In-vivo Permeation. Pharm Res. 2015;32(9):2901–2911. doi:10.1007/s11095-015-1672-8

29. Zhang Y, Wang J, Bai X, et al. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharmaceut. 2012;9(3):505–513. doi:10.1021/mp200287c

30. Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release. 1999;57(3):249–257. doi:10.1016/s0168-3659(98)00120-5

31. Hui Y, Jin F, Liu D, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10(5):2342–2357. doi:10.7150/thno.40395

32. Wang G, Maciel D, Wu Y, et al. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. ACS Appl Mater Interfaces. 2014;6(19):16687–16695. doi:10.1021/am5032874

33. M. G. Fakes, B. J. Vakkalagadda, F. Qian, S. Desikan, R. B. Gandhi, C. Lai, A. Hsieh, M. K. Franchini, H. Toale, and J. Brown, Int. J. Pharm. 370, 167 (2009)

34. F. Kesisoglou, S. Panmai, and Y. H. Wu, Adv. Drug Deliver. Rev. 59, 631 (2007).

35. V. B. Patravale, A. A. Date, and R. M. Kulkarni, J. Pharm. Pharmacol. 56, 827 (2004)

36. Q. Fu, J. Sun, X. Y. Ai, P. Zhang, M. Li, Y. J. Wang, X. H. Liu, Y. H. Sun, X. F. Sui, L. Sun, X. P. Han, M. Zhu, Y. Y. Zhang, S. L. Wang, and Z. G. He, Int. J. Pharm. 448, 290 (2013).

37. Z. Bujnakova, E. Dutkova, M. Balaz, E. Turianicova, and P. Balaz, Int. J. Pharm. 478, 187 (2014)

38. Zhao K, Li D, Cheng G, et al. Targeted Delivery Prodigiosin to Choriocarcinoma by Peptide-Guided Dendrigraft Poly-l-lysines Nanoparticles. Int j Mol Sci. 2019;20(21):5458. doi:10.3390/ijms20215458

39. Wang G, Maciel D, Wu Y, et al. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. ACS Appl Mater Interfaces. 2014;6(19):16687–16695. doi:10.1021/am5032874

40. Ding L, Tang S, Yu A, et al. Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS Appl Mater Interfaces. 2022;14(8):10015–10029. doi:10.1021/acsami.1c21997

41. Bouchemal K, Briançon S, Perrier E, et al. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant. Int j Pharm. 2004;280(1–2):241–251. doi:10.1016/j.ijpharm.2004.05.016

Downloads

Published

2026-01-01

How to Cite

[1]
“Formulation And Evaluation Of Nanoparticle-Based Drug Delivery System For Enhanced Bioavailability Of Poorly Soluble Drugs”, JASRAE, vol. 23, no. 1, pp. 18–43, Jan. 2026, doi: 10.29070/6nnqct08.