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ABSTRACT 

This article illustrates how polynomials and polynomial matrices can be used to describe linear 

systems.  The focus is put on the transformation to and from the state-space equations, because 

it is a convenient way to introduce gradually the most important properties of polynomials and 

polynomial matrices, such as:  coprimeness, greatest common divisors, unimodularity, column- 

and row- reducedness, canonical Hermite or Popov forms. 

 

1. INTRODUCTION 

 

The first step when studying and designing a control strategy for a physical system is the 

development of mathematical equations that describe the system. These equations are obtained by 

applying various physical laws such as Kirchoff’s voltage and current laws (electrical systems) or 

Newton’s law (mechanical systems). The equations that describe the physical system may have 
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different forms.  

 

They may be linear equations, nonlinear equations, integral equations, difference equations, 

differential equations and so on. Depending on the problem being treated, one type of equation 

may prove more suitable than others. 

 

The linear equations used to describe linear systems are generally limited either to the input-

output description, or external description in the frequency domain, where the equa- tions describe 

the relationship between the system input and system output in the Laplace trans- form domain 

(continuous-time systems) or in the z-transform domain (discrete-time systems), or the state-

variable equation description, or internal description, a set of first-order linear differ- ential 

equations (continuous-time systems) or difference equations (discrete-time systems). 

 

Prior to 1960, the design of control systems had been mostly carried out by using transfer 

functions. However, the design had been limited to the single variable, or single-input-single-

output (SISO) case. Its extension to the multivariable, or multi-input-multi-output (MIMO) case 

had not been successful. The state-variable approach was developed in the sixties, and a number 

of new results were established in the SISO and MIMO cases. At that time, these results were not 

available in the transfer-function, or polynomial approach, so the interest in this approach was 

renewed in the seventies.  Now most of the results are available both in the state-space and 

polynomial settings. 

 

The essential difference between the state-space approach and the polynomial approach resides in 

the practical way control problems are solved. Roughly speaking, the state-space approach heavily 

relies on the theory of real and complex matrices, whereas the polynomial approach is based on 

the theory of polynomials and polynomial matrices. For historical reasons, the computer aided 

control system design packages have been mostly developed in the late eighties and nineties for 

solving control problems formulated in the state-space approach. Polynomial techniques, 
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generally simpler in concepts, were most notably favored by lecturers teaching the basics of 

control systems, and the numerical aspects have been left aside.  Recent results tend however to 

counterbalance the trend, and several reliable and efficient numerical tools are now available to 

solve problems involving polynomials and polynomial matrices. In particular, the Polynomial 

Toolbox for Matlab is recommended for numerical computations with polynomials and 

polynomial matrices. 

 

Whereas the notion of the state variable of a linear systems may sometimes sounds somehow 

artificial, polynomials and polynomial matrices arise naturally when modeling dynamical systems. 

Polynomial matrices can be found in a variety of applications in science and engineering. Second 

degree poly- nominal matrices arise in the control of large flexible space structures, earthquake 

engineering, the control of mechanical multi-body systems, and stabilization of damped 

gyroscopic systems, robotics, and vibration control in structural dynamics. For illustration, natural 

modes and frequencies of a vibrating structure such as the Millennium footbridge over the river 

Thames in London are captured by the zeros of a quadratic polynomial matrix. Third degree 

polynomial matrices are sometimes used in aero-acoustics. In fluid mechanics the study of the 

spatial stability of the Orr-Somerfield equation yields a quadratic matrix polynomial. 

 

In this article, we will describe a series of concepts related to polynomial matrices. We will 

introduce them gradually, as they naturally arise when studying standard transformations to and 

from the state- space domain. 

 

2. SCALAR SYSTEMS 

 

2.1. Rational transfer function 

 

Assuming that the knowledge of the internal structure of the system is not available, the 
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transfer function description of a system gives a mathematical relation between the input and 

output signals of the system. Assuming zero initial conditions, the relationship between the input u 

and the output y of a system can be written as  

 

y s G s u s 

 

where s is the Laplace transform in continuous-time (for discrete-time systems, we use the z-

transform and the variable z), and G s  is the scalar transfer function of the system. G s  is a 

rational function of the indeterminate s that can be written as a ratio of two polynomials 

 

n s 

G s 

d s 

 

where n s  is a numerator polynomial and d s  is a denominator polynomial in the indeterminate s. 

 

In the above description of a transfer function, it is assumed that polynomials n s   and d s   are 

relatively prime, or co-prime polynomials, i.e. they have no common factor, except possibly 

constants. The degree of denominator polynomial d s  is the order of the linear system. 

 

When the denominator polynomial is monic, i.e. with leading coefficient equal to one, the transfer 

function is normalized or nominal. It is always possible to normalize a transfer function by 

dividing both numerator and denominator polynomials by the leading coefficient of the 

denominator polynomial. 
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Figure 1: Mechanical system 

As an example, consider the mechanical system shown in Figure 1. For simplicity, we consider 

that the friction force between the floor and the mass consists of viscous friction only (we neglect 

the static friction and Coulomb friction). It is given by f k1dy dt , where k1 is the viscous friction 

coefficient. We also assume that the displacement of the spring is small, so that the spring force is 

equal to k 2y, where k2  is the spring constant. Applying Newton’s law, the input-output 

description of the system from the external force u (input) to the displacement y (output) is given 

by  

d2y 
m 

dt 2     dy u  
                         k1 

dt
       k2y 

 

Taking the Laplace transform and assuming zero initial conditions, we obtain 

 

 

Transfer function G s  has numerator polynomial n s 1 of degree zero and denominator poly- 

nomial d  s ms2 k1s k2  of degree two.  The corresponding linear system has therefore order 
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two. Dividing both n s  and d s  by the leading coefficient of d s  we obtain the normalized transfer 

function 

 

 

2.2. From transfer function to state-space 

 

Similarly to network synthesis where the objective is to build a network that has a prescribed 

impedance or transfer function, it is very useful in control system design to determine a dynamical 

equation that has a described rational transfer matrix G s . Such an equation is called a realization 

of G s . The most common ones for linear systems are state-space realizations of the form 

 

 

where x t  is the state vector, u t  is the input, y t  is the output and A B C are matrices of 

appropriate dimensions. Such realizations correspond to strictly proper transfer functions. In the 

case of proper transfer function, one must add a  direct transmission term Du t   to the output 

variable y t .  For simplicity we shall assume that D 0 in the sequel. 

 

For every transfer function G s , there is an unlimited number of state-space realizations.  So it is 

relevant to introduce some commonly used, or canonical realizations. We shall present two of 

them in the sequel: the controllable form and the observable form. However, note there are other 

canonical forms such as the controllability, observability, parallel, cascade or Jordan form, that we 

will not describe here for conciseness. 
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For notational simplicity, we will consider a system of third order, with normalized strictly proper 

transfer function 

 

 

2.2.1 Observable canonical form 

 

The observable canonical realization corresponding to G s  has state-space matrices 

 

Note that this realization is dual to the controllable canonical realization in the sense that matrix A 

is transposed, and vectors B and C are interchanged. Obviously, this form is always observable. If 

n s and d s  are coprime, it is also controllable. 

 

2.3. From state-space to transfer function 

 

Assuming zero initial conditions and taking the Laplace transform of the state-space equations we 

obtain that 
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where I denotes the identity matrix of the same dimension as matrix A. Recalling the formula of 

the inverse of a matrix, the above equation can be written as 

 

Polynomial d¯ s  is generally referred to as the characteristic polynomial of matrix A. 

 

It may happen that polynomials n¯ s and d¯ s  have some common factors captured by a common 

polynomial term f  s , so that we can write  

 

 

 

where n s  and d s  are coprime. The ratio of n s  over d s  as defined above is a representation of 

the transfer function G s . When n s  and d s  are coprime the representation is called irreducible. 

It turns out that G s  is irreducible if and only if pair  A B  is controllable and pair  C A  is 

observable. 

 

Checking the relative primeness of two polynomials n s  and d s  can be viewed as a special case 

of finding the greatest common divisor (gcd) of two polynomials. This can be done either with the 

Euclidean division algorithm, or with the help of Sylvester matrices. 

 

2.4. Minimality 

 

A state-space realization  A B C  of a transfer function G s  is minimal if it has the smallest number 

of state variables, i.e. matrix A has the smallest dimension. 
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It can be proven that  A B C  is minimal if and only if the two polynomials defined above n¯  s 

CAdj sI A B and d¯ s det sI A  are coprime, or equivalently, if and only if  A B  is controllable 

and  C A  is observable. 

 

 

3. MULTIVARIABLE SYSTEMS 

 

When trying to extend the results on scalar systems presented in the previous section, several 

difficulties must be overcome. Multivariable systems are more involved because, unlike the scalar 

case, there does not seem to be a single unique canonical choice of realizations.  Moreover, the 

connection with irreducible transfer functions is not obvious.  The closest analogy with the scalar 

results can be achieved by using the so-called matrix fraction descriptions (MFDs) of rational 

matrices as the ratio of two relatively-prime polynomial matrices. To handle these objects, several 

properties of polynomial matrices must be introduced. 

 

3.1. Matrix fraction description 

 

With analogy to the scalar case, a given rational matrix G s   can be written as a fraction of two 

polynomial matrices. As the product of matrices is not commutative, there exist two different 

ways to proceed. 

 

We can define a right matrix fraction description, or right MFD for short, G s NR  s DR 
1  s 

 

where non-singular polynomial matrix DR  s  enters G s  from the right. Here non-singularity of a 

polynomial matrix means that its determinant is not identically zero, or equivalently that the 

matrix is non-singular for almost all values of the indeterminate. For example, the matrix 
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1 s 

s 1   s2 1 

 

is non-singular, whereas the matrix 

 

1 s 

s 1   s2 s 

 

is singular. 

 

Alternatively, we can also define a left MFD 

 

G s DL 
1  

s NL  s 

 

 

As an example of a left MFD, we consider the RCL network depicted on Figure 2, where the 

system outputs are the  voltage and current through the inductor, and the input is the voltage.  

Applying Kirchoff’s laws, the Laplace transform and assuming zero initial conditions, we obtain 

the relation 
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3.2 Minimality 

 

In the scalar case, given a transfer function 

n s 

G s 

d s 

 

we could easily derive a variety of state-space realizations  A B C  of G s , with nice 

controllability and observability properties and order always equal to the degree of denominator 

polynomial d s . It is not hard to write down state-space realizations in the multivariable case, 

but some of the nice properties will be lost if we are not careful. 

 

As an example, we consider the two-input two-output system with strictly proper transfer function 

matrix 
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First we try to make realizations of each entry of this rational matrix and connect them 

appropriately. For example, with the controllable canonical realizations, we obtain the state-space 

realization 

 

Here zero entries are left empty for clarity. This realization has order twelve, which is the sum of 

the degrees of the denominators of the different entries. 

 

Now if we denote G s  as 
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and define the degree of the denominator matrix as deg DR  s deg det DR  s 

which is here the degree of d s  times the number of inputs. The degree of the denominator matrix 

actually corresponds to the order of the realization. 

 

The above example raises the question of what the minimal order of a realization can be. 

Moreover, we may also wonder whether a realization is controllable and observable. It turns out 

that, as in the scalar case, a realization of a multivariable system is minimal if and only if it is 

controllable and observable. 

 

There can be many right and left matrix fraction description (MFDs) of G s . Indeed, given a right 
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MFD, an infinity of others can be obtained by choosing any nonsingular polynomial matrix U s  

such that 

 

 

which means that the degree of a MFD can be reduced by removing right divisors of the 

numerator and denominator matrices.  Obviously, we will get a minimum-degree right MFD by 

extracting a greatest common right divisor (gcrd) of NR  s  and DR  s . In other words, we have 

extracted a gcrd from NR  s  and DR  s  if and only if 

 

deg det DR  s deg det D¯ R  s 

 

for all non-singular right divisors U s  of NR  s  and DR  s .  This equality holds if and only if all U 

s  have the property that det U s  is a non-zero constant independent of s. Such matrices are called 

unimodular matrices. For example, we can check easily that 

 

U s 
1   s 1           0 1 

 

 



[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY                               
VOL.-II, ISSUE - I] August 1, 2011 

                                                                                                                            ISSN-2230-9659 

15 www.ignited.in 

 

Checking relatively primeness of two polynomial matrices can be performed in various ways.  The 

most useful ones are the rank criterion, the Sylvester matrix criterion or the reduction to some tri- 

angular matrix form.  Basically, these are matrix extensions of the procedures available for scalar 

polynomials. 

 

3.3. Properness 

 

In the scalar case, properness or strict properness of a transfer function is directly related to the 

degrees of the numerator and denominator polynomials. In the matrix case things are more 

complicated. 

 

If G s  is a strictly proper (resp.  proper) transfer function with right MFD G s NR  s DR 1  s , 

then every column of NR  s  has degree strictly less than (resp.  less than or equal to) that of the 

corresponding column of DR  s . However, the converse is not always true. For example, if 

 

the degrees of the columns of NR  s  are less than those of the corresponding columns of DR  s , 

but the transfer function 
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Inequality may hold because of possible cancellations.  However if DR  s  is such that the equality 

holds, then we say that DR  s  is column-reduced. Let us define the highest column degree 

coefficient matrix, or leading coefficient matrix for short, as the matrix whose ith column consists 

of coefficients of ski    in the ith column of DR  s .  It turns out  that a non-singular polynomial 

matrix is column- reduced if and only if its leading coefficient matrix is nonsingular. The leading 

coefficient matrix of the polynomial matrix DR  s  given above is 

1  1 

0  0 

 

which is a singular matrix, so DR  s  is not column-reduced. 

 

With the help of this notion we can prove that, provided DR  s is column-reduced, the transfer 

function H s NR  s DR 1  s   is strictly proper (resp. proper) if and only if each column of NR  s  

has degree less than (resp.  less than or equal to) the degree of the corresponding column of DR  s .  

A dual statement holds with left MFDs and row-reduced column matrices. 

 

Note that, if a polynomial matrix DR  s  is not column-reduced, then it is always possible to find a 

unimodular matrix U s  such that 

 

¯ R  s DR  s U s 

is column-reduced. One way to proceed is to use the so-called elementary column operations, that 

is to say multiplication of a column by a non-zero number, interchange of two columns, 

addition of the product of one column and a polynomial to another column. 

 

One can check that all of these operations can be performed by post-multiplication by a 

unimodular matrix. When combined, these operations result in a product of unimodular matrices, 

which is also a unimodular matrix. 
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For the above non-column-reduced matrix DR  s  we find for example 

 

 

which is column-reduced. 

 

3.4. Non-canonical realizations 

 

With the help of the concepts introduced above, we will now extend the scalar controllable and 

ob- servable canonical forms to the multivariable case for a given MFD. The order of these 

realizations is always equal to the degree of the determinant of the denominator polynomial matrix 

of the MFD. 

 

3.4.1. Controllable form 

 

Given a strictly proper right MFD 

 

G s NR  s DR 1  s 

 

where denominator matrix DR  s  is column-reduced with column degrees ki   i 1 n.  Let 

Dh denote the leading coefficient matrix in DR  s , and Dl  denote the remaining coefficient matrix 

such that 

 

DR  s DhH s Dl L s NR  s Nl L s 

Where 
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Then the system matrices of a controllable form realization of G s  are given by 

 

The order of the realization is deg det DR  s i ki. The nice feature of this realization is its con- 

trollability, no matter whether NR  s  and DR  s  are right coprime or not. However, observability 

is guaranteed only if NR  s  and DR  s  are right coprime. 

 

To illustrate this with an example, let 
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3.4.2. Observable form 

The dual form can be obtained starting from the left MFD 
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Then we define 

 

and the state-space matrices are given by 

A A0 Dl Dh 1C0 B Nl C Dh 1C0 

 

This realization is always observable, but controllability is lost when NL  s  and DL  s  are not left 

coprime. 

 

As an example, we consider the left MFD 
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3.5. Canonical realizations 

 

We have seen in the previous section that we can associate with a scalar transfer function a unique 

state-space realization in controllable canonical form. The (minimal) order of the realization was 

the degree of the denominator polynomial. 

 

 

 

for any unimodular matrix U . Proceeding this way, we do not affect the degree of the determinant 

DR  s , hence we do not affect the order of the realization. However, we modify the coefficients of 

NR  s  and DR  s , hence we modify the coefficients entering the state-space matrices of the 

realization. 

 

In order to define a unique, canonical multivariable realization, we must define a canonical 

transfor- mation of a polynomial matrix. The most commonly used transformations are the 

Hermite form and the Popov form. 
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3.5.1. Hermite form 

 

Given a non-singular polynomial matrix DR  s , we can always convert it to a unique so-called 

Hermite form 

 

DH  s DR  s U s 

Where U s  is unimodular, and DH  s  has the following properties it is lower triangular 

 

Each diagonal element is monic each diagonal element has higher degree than any other element 

in the same row. 

 

The standard approach to convert a polynomial matrix into Hermite form consists in applying 

elemen- tary operations on the columns of DR  s . The main drawback in applying elementary 

operations is that generally numerical stability of the algorithm is not guaranteed. However, note 

that numerically stable versions of the triangularization procedure have recently been proposed. 

They are not based on elementary operations. 

 

One can check that the Hermite form DH  s  is row reduced, so that given a transfer matrix right 

MFD G s NR  s DR 1  s  we can associate a unique right MFD 

 

corresponding to the Hermite form DH  s of DR  s . Associated with this MFD, we can build a 

unique, or canonical state-space realization such as the controllable form introduced above. 

 

An example of reduction to Hermite form is as follows 
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3.5.2. Popov form 

Given a non-singular polynomial matrix DR  s , we can always convert it to a unique so-called 

Popov form or polynomial echelon form 

 

DP  s DR  s U s 

 

where U s  is unimodular, and DP  s  has the following properties 

 

it is column reduced with its column degrees arranged in ascending order k1 k2 for column j there 

is a pivot index p j such that entry  p j   j  in DP  s  has degree k j , entry  p j   j   in DP  s  is monic, 

entries i  j  with i p j have degree less than k j , 

 

if ki k j and i j then pi p j , i.e. the pivot indices are arranged increasingly entries  p j  i  

have degree less than k j if i j. 

 

Here too, the Popov form can be obtained via elementary column operations, but more reliable 

trans- formation algorithms based on numerical linear algebra are recommended. 
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3.6. From right MFD to left MFD 

 

Now we mention the conversion from a not necessarily coprime right MFD to a coprime left 

MFD, and vice versa. The equality 

 

which means that matrices NL  s  and DL  s  of the left MFD belong to the left null space of the 

compound polynomial matrix built from right MFD matrices NR  s  and DR  s . It turns out that 

among all candidate matrices NL  s DL  s living in this null space, there exists a so-called 

minimal polynomial basis that has the smallest possible row degrees. A numerically stable 

algorithm can be devised to build the minimal polynomial basis.  Obviously, conversion from left 

MFD to right MFD can be performed the same way. 
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The conversion from right MFD to left MFD of the transfer function studied in this section reads 

 

 

3.7. From state-space to MFD 

 

Given a state-space representation 

 

x˙ t Ax t Bu t 

y t Cx t  

 

we can obtain a left MFD of the matrix transfer function G s C sI A 1B by converting 

first 

 

 

Conversely, we can obtain a right MFD of G s  if we first convert the right MFD  sI A1B to a 

coprime left MFD EL  s DL 1  s  and then G s NL  s DL 1  s  with NL  s CEL  s .  The 

obtained right MFD will be coprime only if  C A  is observable. 

 

4. CONCLUSION 

 

We have described the use of matrix fraction descriptions (MFDs) to model scalar and 

multivariable linear systems. The transformation from MFDs to state-space representation 

motivated the introduc- tion of several concepts and several properties specific to polynomial 
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matrices. 

 

There exist several extensions to the results described in this chapter. MFDs can be transformed to 

the so-called descriptor state-space representation 

 

E x˙ t Ax t Bu t 

y t Cx t  

 

with transfer function 

 

G s C sE A 1B 

 

Matrix E may be singular, so the above representation is a generalization of the state-space form 

that captures impulsive dynamics and the structure at infinity. One can also mention here 

polynomial matrix descriptions (PMDs) 

 

G s R s P  1  s Q s W s 

 

with the associated system polynomial matrix 

 

P s Q s 

R s W  s 

 

as a generalization of MFDs. There exists a whole theory of state-space realizations of PMDs, 

based on properties of the system polynomial matrix. 

 

For practical computation with polynomials and polynomial matrices, modern software packages 

are available. In particular, the Polynomial Toolbox for Matlab is recommended for numerical 
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computations with polynomials and polynomial matrices. 
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