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ABSTRACT

This article illustrates how polynomials and polynomial matrices can be used to describe linear
systems. The focus is put on the transformation to and from the state-space equations, because
it is a convenient way to introduce gradually the most important properties of polynomials and
polynomial matrices, such as: coprimeness, greatest common divisors, unimodularity, column-

and row- reducedness, canonical Hermite or Popov forms.
1. INTRODUCTION

The first step when studying and designing a control strategy for a physical system is the
development of mathematical equations that describe the system. These equations are obtained by
applying various physical laws such as Kirchoff’s voltage and current laws (electrical systems) or

Newton’s law (mechanical systems). The equations that describe the physical system may have

www.ignited.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-Il, ISSUE - 1] WACT{SE s B0k}

ISSN-2230-9659

different forms.

They may be linear equations, nonlinear equations, integral equations, difference equations,
differential equations and so on. Depending on the problem being treated, one type of equation

may prove more suitable than others.

The linear equations used to describe linear systems are generally limited either to the input-
output description, or external description in the frequency domain, where the equa- tions describe
the relationship between the system input and system output in the Laplace trans- form domain
(continuous-time systems) or in the z-transform domain (discrete-time systems), or the state-
variable equation description, or internal description, a set of first-order linear differ- ential

equations (continuous-time systems) or difference equations (discrete-time systems).

Prior to 1960, the design of control systems had been mostly carried out by using transfer
functions. However, the design had been limited to the single variable, or single-input-single-
output (SISO) case. Its extension to the multivariable, or multi-input-multi-output (MIMO) case
had not been successful. The state-variable approach was developed in the sixties, and a number
of new results were established in the SISO and MIMO cases. At that time, these results were not
available in the transfer-function, or polynomial approach, so the interest in this approach was
renewed in the seventies. Now most of the results are available both in the state-space and

polynomial settings.

The essential difference between the state-space approach and the polynomial approach resides in
the practical way control problems are solved. Roughly speaking, the state-space approach heavily
relies on the theory of real and complex matrices, whereas the polynomial approach is based on
the theory of polynomials and polynomial matrices. For historical reasons, the computer aided
control system design packages have been mostly developed in the late eighties and nineties for

solving control problems formulated in the state-space approach. Polynomial techniques,
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generally simpler in concepts, were most notably favored by lecturers teaching the basics of
control systems, and the numerical aspects have been left aside. Recent results tend however to
counterbalance the trend, and several reliable and efficient numerical tools are now available to
solve problems involving polynomials and polynomial matrices. In particular, the Polynomial
Toolbox for Matlab is recommended for numerical computations with polynomials and

polynomial matrices.

Whereas the notion of the state variable of a linear systems may sometimes sounds somehow
artificial, polynomials and polynomial matrices arise naturally when modeling dynamical systems.
Polynomial matrices can be found in a variety of applications in science and engineering. Second
degree poly- nominal matrices arise in the control of large flexible space structures, earthquake
engineering, the control of mechanical multi-body systems, and stabilization of damped
gyroscopic systems, robotics, and vibration control in structural dynamics. For illustration, natural
modes and frequencies of a vibrating structure such as the Millennium footbridge over the river
Thames in London are captured by the zeros of a quadratic polynomial matrix. Third degree
polynomial matrices are sometimes used in aero-acoustics. In fluid mechanics the study of the

spatial stability of the Orr-Somerfield equation yields a quadratic matrix polynomial.
In this article, we will describe a series of concepts related to polynomial matrices. We will

introduce them gradually, as they naturally arise when studying standard transformations to and

from the state- space domain.

2. SCALAR SYSTEMS

2.1. Rational transfer function

Assuming that the knowledge of the internal structure of the system is not available, the
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transfer function description of a system gives a mathematical relation between the input and
output signals of the system. Assuming zero initial conditions, the relationship between the input u

and the output y of a system can be written as

ys Gsus

where s is the Laplace transform in continuous-time (for discrete-time systems, we use the z-
transform and the variable z), and G s is the scalar transfer function of the system. G s is a

rational function of the indeterminate s that can be written as a ratio of two polynomials

ns
Gs ~wa)
ds

where n's is a numerator polynomial and d s is a denominator polynomial in the indeterminate s.

In the above description of a transfer function, it is assumed that polynomials ns and ds are
relatively prime, or co-prime polynomials, i.e. they have no common factor, except possibly

constants. The degree of denominator polynomial d s is the order of the linear system.

When the denominator polynomial is monic, i.e. with leading coefficient equal to one, the transfer
function is normalized or nominal. It is always possible to normalize a transfer function by
dividing both numerator and denominator polynomials by the leading coefficient of the

denominator polynomial.
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Figure 1: Mechanical system

As an example, consider the mechanical system shown in Figure 1. For simplicity, we consider
that the friction force between the floor and the mass consists of viscous friction only (we neglect

the static friction and Coulomb friction). Itisgivenby f kidy dt, where k1 is the viscous friction
coefficient. We also assume that the displacement of the spring is small, so that the spring force is
equal to k 2y, where k2 is the spring constant. Applying Newton’s law, the input-output
description of the system from the external force u (input) to the displacement y (output) is given
by

d%y M 2 dy u

— ki, — kyy

dt

Taking the Laplace transform and assuming zero initial conditions, we obtain

ms”y s us  ksvs bys
so that
1
Vs cus  Gsus
ms- kis Ik
Transfer function G s has numerator polynomial n's 1 of degree zero and denominator poly-

nomial d s ms2 kls k2 of degree two. The corresponding linear system has therefore order
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two. Dividing both ns and d s by the leading coefficient of d s we obtain the normalized transfer

function

2.2. From transfer function to state-space

Similarly to network synthesis where the objective is to build a network that has a prescribed
impedance or transfer function, it is very useful in control system design to determine a dynamical
equation that has a described rational transfer matrix G s . Such an equation is called a realization

of G s. The most common ones for linear systems are state-space realizations of the form

Xt Axt Bur
v Cxt

where x t is the state vector, u t is the input, y t is the output and A B C are matrices of
appropriate dimensions. Such realizations correspond to strictly proper transfer functions. In the
case of proper transfer function, one must add a direct transmission term Du t to the output

variable y t. For simplicity we shall assume that D 0 in the sequel.

For every transfer function G s, there is an unlimited number of state-space realizations. So it is
relevant to introduce some commonly used, or canonical realizations. We shall present two of
them in the sequel: the controllable form and the observable form. However, note there are other
canonical forms such as the controllability, observability, parallel, cascade or Jordan form, that we

will not describe here for conciseness.
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For notational simplicity, we will consider a system of third order, with normalized strictly proper

transfer function

-~

%s fin 115 a5
§ .
ds dy dis  das- 5

One can then easily extend the results to svstems of arbitrarv order.

The controllable canonical realization corresponding to G 5_has state-space matrices

#
ﬂr_‘. ﬂrl I'jl:l
A 1 0 ] B 0 ¢ om M1 Hp
0 1 0 0

u]

Ags its name suggests. this realization is alwavs controllable no matter whethern s and d s are
coprimeornot.If 7 s andd s are coprime. then the realization is observable as well.

2.2.1 Observable canonical form

The observable canonical realization corresponding to G s has state-space matrices

d: 1 0O 7
A4 dy 01 B M1 ¢ 100
ﬂr[I 0 0 )

Note that this realization is dual to the controllable canonical realization in the sense that matrix A
Is transposed, and vectors B and C are interchanged. Obviously, this form is always observable. If

nsandds are coprime, it is also controllable.
2.3. From state-space to transfer function

Assuming zero initial conditions and taking the Laplace transform of the state-space equations we
obtain that
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Gs CsI 4 !B
where | denotes the identity matrix of the same dimension as matrix A. Recalling the formula of

the inverse of a matrix, the above equation can be written as

s, 1p CadjsI AB s
det of 4 ds

Polynomial d s is generally referred to as the characteristic polynomial of matrix A.

It may happen that polynomials n sand d s have some common factors captured by a common

polynomial term f s, so that we can write

@@ ns s 1§
ds ds s ds

where ns and d s are coprime. The ratio of ns over d s as defined above is a representation of
the transfer function Gs. Whenns and d s are coprime the representation is called irreducible.
It turns out that G s is irreducible if and only if pair A B is controllable and pair C A is

observable.

Checking the relative primeness of two polynomials ns and d s can be viewed as a special case
of finding the greatest common divisor (gcd) of two polynomials. This can be done either with the
Euclidean division algorithm, or with the help of Sylvester matrices.

2.4.  Minimality

A state-space realization A B C of a transfer function G s is minimal if it has the smallest number

of state variables, i.e. matrix A has the smallest dimension.
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It can be proven that A B C is minimal if and only if the two polynomials defined above n= s
CAd;j sl ABandd sdetsl A are coprime, or equivalently, if and only if A B is controllable

and C A is observable.

3. MULTIVARIABLE SYSTEMS

When trying to extend the results on scalar systems presented in the previous section, several
difficulties must be overcome. Multivariable systems are more involved because, unlike the scalar
case, there does not seem to be a single unique canonical choice of realizations. Moreover, the
connection with irreducible transfer functions is not obvious. The closest analogy with the scalar
results can be achieved by using the so-called matrix fraction descriptions (MFDs) of rational
matrices as the ratio of two relatively-prime polynomial matrices. To handle these objects, several

properties of polynomial matrices must be introduced.

3.1. Matrix fraction description

With analogy to the scalar case, a given rational matrix G s can be written as a fraction of two
polynomial matrices. As the product of matrices is not commutative, there exist two different

ways to proceed.

We can define a right matrix fraction description, or right MFD for short, G s Nr s Dpls

where non-singular polynomial matrix DR s enters G s from the right. Here non-singularity of a
polynomial matrix means that its determinant is not identically zero, or equivalently that the

matrix is non-singular for almost all values of the indeterminate. For example, the matrix
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1 S
S 1 s21

IS non-singular, whereas the matrix

1 S
S 1 s2s
Is singular.

Alternatively, we can also define a left MFD

Gs DLlSNLS

LC

u Yy Y Y,

q

Figure|2| RCL network.

As an example of a left MFD, we consider the RCL network depicted on Figure 2, where the
system outputs are the voltage and current through the inductor, and the input is the voltage.
Applying Kirchoff’s laws, the Laplace transform and assuming zero initial conditions, we obtain

the relation

www.ignited.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-Il, ISSUE - 1] WACT{SE s B0k}

ISSN-2230-9659

1 Ls

0 i
Cs 1 RCs

Cs

[
—_

which defines the system transfer function matrix as a left MFD

1 Ls Lo

L 35 Cs 1 RCs Cs |

3.2 Minimality

In the scalar case, given a transfer function
ns

Gs —

ds

we could easily derive a variety of state-space realizations A B C of G s , with nice
controllability and observability properties and order always equal to the degree of denominator
polynomial d s . It is not hard to write down state-space realizations in the multivariable case,

but some of the nice properties will be lost if we are not careful.

As an example, we consider the two-input two-output system with strictly proper transfer function

matrix
s
S
.
. s 1 s 2=
s 1=
]
. g4 259§
Gs ;
. s 13 5 22
s 1= :
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First we try to make realizations of each entry of this rational matrix and connect them

appropriately. For example, with the controllable canonical realizations, we obtain the state-space

realization
+ 7 d_\;gf B&IfC-‘rf
3 1
N ) 1
1 0 Tl
j S 1 QNW[;]\,
0 1 0 P
2 I % 10
4 1 0
7 19 25 16 4 §W~"1!
1 0 0 0 0 m
‘ ‘ ‘0 1 0 0 0 P
0 0 1 0 0 EIWE
0 0 0 1 0 m
0 0 0 0 1 s
100 1000000 0 0
&Vu,u, Tuwow T 0T XU ow

Here zero entries are left empty for clarity. This realization has order twelve, which is the sum of

the degrees of the denominators of the different entries.

Now if we denote G s as
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L

5 275 1s 5 1
Ns No Nis Nas* Ky 25 1s 5 25
f]".'{ R R . - = 3
as dy dis 5 g <5 1°

where N 5 is a numerator matrix polvnomial and 4 5 is the least common multiple of the denom-
inators of the entries of G 5 , we can readilv write down a block canonical controllable form with

matrices
1 0 19 0 250 16 4 0 10
0 4 191 0 251 0 16| 0 4 01
1 0
0 1
1 0
1 0 1
: : B
0
1
0
I
c 1 03 08 114 1|00
52 ¥ o4 10

In our example, the order of this rezlization is ten which is less than the order of the first form proposed
above. Notice that, similarlv to the scalar case, we can write transfer function G 5_as a right MFD

Gs Np s D‘;_..' s Dps dslI Nps Ns
and define the degree of the denominator matrix as deg DR s deg det DR s

which is here the degree of d s times the number of inputs. The degree of the denominator matrix

actually corresponds to the order of the realization.

The above example raises the question of what the minimal order of a realization can be.
Moreover, we may also wonder whether a realization is controllable and observable. It turns out
that, as in the scalar case, a realization of a multivariable system is minimal if and only if it is

controllable and observable.

There can be many right and left matrix fraction description (MFDs) of G s . Indeed, given a right
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MFD, an infinity of others can be obtained by choosing any nonsingular polynomial matrix U s

such that
Np.s NepsUs Dps DpsUs

forthen

Gs Np SD‘;_..' 5 m U'ltsU 5.:]3_..' 5 RW{J? 5

Wecall L 5 aright divisor of Np s and Dy 5 . Moreover, since deg dzt J;Mw deg det Dp 5 deg
det U's
itholds

degdestDp s demdetDpos

which means that the degree of a MFD can be reduced by removing right divisors of the
numerator and denominator matrices. Obviously, we will get a minimum-degree right MFD by
extracting a greatest common right divisor (gcrd) of NR s and DR s . In other words, we have

extracted a gcrd from NR s and DR s if and only if
deg det DR s degdetD R s

for all non-singular right divisors Us of NR s and DR s. This equality holds if and only if all U
s have the property that det U s is a non-zero constant independent of s. Such matrices are called

unimodular matrices. For example, we can check easily that

Us

is a unimadular polvnomial matnx. If ¥z.5 and Dy s have onlv nmimedular nght gerds, then we
i%;;tlhat these two matrices are J‘f?-?if M andthenght MED G5 Nz s Dy g 15 rreaucioie.
Similar statements can be given forleft MEDs.
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Checking relatively primeness of two polynomial matrices can be performed in various ways. The
most useful ones are the rank criterion, the Sylvester matrix criterion or the reduction to some tri-
angular matrix form. Basically, these are matrix extensions of the procedures available for scalar

polynomials.
3.3. Properness

In the scalar case, properness or strict properness of a transfer function is directly related to the
degrees of the numerator and denominator polynomials. In the matrix case things are more

complicated.

If G s is astrictly proper (resp. proper) transfer function with right MFD G s NR sDR1 s,
then every column of NR s has degree strictly less than (resp. less than or equal to) that of the
corresponding column of DR s . However, the converse is not always true. For example, if

3

5 5 5

s 252 1 2 Dz s
s s 11

the degrees of the columns of NR s are less than those of the corresponding columns of DR s,

but the transfer function

Gs  NgsDy's 5w s ]

is not proper. To obtain necessary and sufficient conditions for the propernessof Nz s Dp : 5 we
need to introduce the concept of column-reduced matrices.

Let k; denote the degree of the jth columnof Dz s . sothat
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Inequality may hold because of possible cancellations. However if DR s is such that the equality
holds, then we say that DR s is column-reduced. Let us define the highest column degree
coefficient matrix, or leading coefficient matrix for short, as the matrix whose ith column consists
of coefficients of ski in the ith column of DR s . It turns out that a non-singular polynomial
matrix is column- reduced if and only if its leading coefficient matrix is nonsingular. The leading
coefficient matrix of the polynomial matrix DR s given above is

11
00

which is a singular matrix, so DR s is not column-reduced.

With the help of this notion we can prove that, provided DR s is column-reduced, the transfer
function Hs NR s DR 1 s is strictly proper (resp. proper) if and only if each column of NR s
has degree less than (resp. less than or equal to) the degree of the corresponding column of DR s ..

A dual statement holds with left MFDs and row-reduced column matrices.

Note that, if a polynomial matrix DR s is not column-reduced, then it is always possible to find a

unimodular matrix U s such that

"R sDR sUs
is column-reduced. One way to proceed is to use the so-called elementary column operations, that
is to say multiplication of a column by a non-zero number, interchange of two columns,

addition of the product of one column and a polynomial to another column.

One can check that all of these operations can be performed by post-multiplication by a
unimodular matrix. When combined, these operations result in a product of unimodular matrices,

which is also a unimodular matrix.
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For the above non-column-reduced matrix DR s we find for example

2 2 Dp sU s
which is column-reduced.
3.4.  Non-canonical realizations
With the help of the concepts introduced above, we will now extend the scalar controllable and
ob- servable canonical forms to the multivariable case for a given MFD. The order of these

realizations is always equal to the degree of the determinant of the denominator polynomial matrix
of the MFD.

3.4.1. Controllable form
Given a strictly proper right MFD
Gs NR sDR1s

where denominator matrix DR s is column-reduced with column degrees ki i 1 n. Let
Dh denote the leading coefficient matrix in DR s, and DI denote the remaining coefficient matrix
such that

DR s DhH s DILSNR s NILs
Where
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Hs diag s i 1 mn Ls blockdiag s

— e .

Then the system matrices of a controllable form realization of G s are given by

4 A4y BeD,'D; B ByD,! C N

whete
0
Ag block diag 1 E ki1 n
1 0
1
0
Bp block diag 1 i1 il
0

The order of the realization is deg det DR s (i ki. The nice feature of this realization is its con-
trollability, no matter whether NR s and DR s are right coprime or not. However, observability

Is guaranteed only if NR s and DR s are right coprime.

To illustrate this with an example, let
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Np 5

Dy
where Iy 3 and k> 2. Then

1 1 2 0 1 2 1

1 o I 5 8 4 0 0

and

5 8 41 0 0 0 1
1 0 0 0 0 0 0
A 0 1 0 0 0 B 0 0
3 a3 o = T 1 1
0 0 0 | 1 0 0 0
c N 1 0 2 1 0

0 N 0 1 0

3.4.2. Observable form
The dual form can be obtained starting from the left MFD

Gs Dﬁl SN s

irsufficesto build a controllable formrealization of the transposed

GT s NsDls T N spD Ty
I I I I

Matrix Dy s must berow-reduced withrowdegreesk; 1 1 mleadingcoeflicient matrix Dy and
lowest degree coefficientmatrices D; and N; such that

Drs HsDy, LsD; Ns Lsh

where
Hs diag s i 1 m  Ls block diag s ! s 1 i1 m
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Then we define

01
Ag block diag _ 1k ki1 m
0
Co block diag 1 0 0 1 i 1 m

and the state-space matrices are given by
A A0 DIDh1CO B NI C Dh 1CO0

This realization is always observable, but controllability is lost when NL s and DL s are not left
coprime.

As an example, we consider the left MFD

3 257 1 1 s 0

. 1 5
. . ;_?\'r . ]
Gs D‘i IANL S S55= 135 8 s 1 s 4 4s

correspondine to the same rational matrix as before. It holds
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2 1 0] 0 0 1 0
5 01| 10 0 0
A 4 00| 10 B N 0 0
120 0 5 1 41
20 0 4 0 0 0
10 000
¢ 50 0|1 0

3.5. Canonical realizations

We have seen in the previous section that we can associate with a scalar transfer function a unique
state-space realization in controllable canonical form. The (minimal) order of the realization was

the degree of the denominator polynomial.

Uniqueness doesnot hold in the multivariable case for the forms we have introduced so far. Indeed,
froma given right MFD G s Np s DRI 5 we can build anotherMFD G s Ng s DRI s such
that

Ng s NpsUs Dp s DpsUs

for any unimodular matrix U . Proceeding this way, we do not affect the degree of the determinant
DR s, hence we do not affect the order of the realization. However, we modify the coefficients of
NR s and DR s, hence we modify the coefficients entering the state-space matrices of the

realization.

In order to define a unique, canonical multivariable realization, we must define a canonical
transfor- mation of a polynomial matrix. The most commonly used transformations are the

Hermite form and the Popov form.

www.ignited.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-Il, ISSUE - 1] WACT{SE s B0k}

ISSN-2230-9659

3.5.1. Hermite form

Given a non-singular polynomial matrix DR s, we can always convert it to a unique so-called

Hermite form

DH sDR sUs

Where U s is unimodular, and DH s has the following properties it is lower triangular

Each diagonal element is monic each diagonal element has higher degree than any other element

in the same row.

The standard approach to convert a polynomial matrix into Hermite form consists in applying
elemen- tary operations on the columns of DR s . The main drawback in applying elementary
operations is that generally numerical stability of the algorithm is not guaranteed. However, note
that numerically stable versions of the triangularization procedure have recently been proposed.

They are not based on elementary operations.

One can check that the Hermite form DH s is row reduced, so that given a transfer matrix right
MFD Gs NR sDR1 s we can associate a unique right MFD

Gs Ng s DH1 ) Ngs NpsUs Dgs DpsUs

corresponding to the Hermite form DH s of DR s . Associated with this MFD, we can build a

unique, or canonical state-space realization such as the controllable form introduced above.

An example of reduction to Hermite form is as follows
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3028 1 s 172 1 s 1

DR sU s

]
in

| R
[—
=
il
[

I
Ly
—_

i
)

3.5.2. Popov form

Given a non-singular polynomial matrix DR s, we can always convert it to a unique so-called
Popov form or polynomial echelon form
DP s DR sUs

where U s is unimodular, and DP s has the following properties

it is column reduced with its column degrees arranged in ascending order k1 k2 for column j there
is a pivot index p j such thatentry pj j inDP s hasdegreekj,entry pj j inDP s ismonic,

entriesi j withi pjhave degree lessthankj,

ifki kjandi j then pi p j, i.e. the pivot indices are arranged increasingly entries pj i
have degree less than k j ifi  j.

Here too, the Popov form can be obtained via elementary column operations, but more reliable

trans- formation algorithms based on numerical linear algebra are recommended.
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307 2
DpsUs 725 1 s 1 0 1
s 225 1 0 1 s
s - s 1
0 s 225 1
Dp s

3.6. From right MFD to left MFD

Now we mention the conversion from a not necessarily coprime right MFD to a coprime left

MFD, and vice versa. The equality

Gs Np s DRI s DLI SN s
can be written as

Dp s
;?'\'rr 5 Dr s R
Np §

which means that matrices NL s and DL s of the left MFD belong to the left null space of the
compound polynomial matrix built from right MFD matrices NR s and DR s . It turns out that
among all candidate matrices NL s DL s living in this null space, there exists a so-called
minimal polynomial basis that has the smallest possible row degrees. A numerically stable
algorithm can be devised to build the minimal polynomial basis. Obviously, conversion from left
MFD to right MFD can be performed the same way.
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The conversion from right MFD to left MFD of the transfer function studied in this section reads

5 25 1 s 1-
1

Lad

-
[
Lo

. . 5
4s 5 55 135 8 s 1 5 4

-::-g'-'bﬁﬂ
Ly

3.7.  From state-space to MFD
Given a state-space representation

X't Axt But
yt Cxt

we can obtain a left MFD of the matrix transfer functionGs Csl A 1B by converting

first

thelet MFDC sI A4 I to a coprime right MFD DRI sEp s andthen G s Dy sNp s with
1

Np s Er s B. Note that the obtained left MFD|will be coprime only if 4 B is controllable.

Conversely, we can obtain a right MFD of G s if we first convert the right MFD sl AlBtoa
coprime left MFD EL sDL 1 s andthenGs NL sDL1 s withNL s CEL s . The
obtained right MFD will be coprime only if C A is observable.

4.  CONCLUSION

We have described the use of matrix fraction descriptions (MFDs) to model scalar and
multivariable linear systems. The transformation from MFDs to state-space representation

motivated the introduc- tion of several concepts and several properties specific to polynomial
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matrices.

There exist several extensions to the results described in this chapter. MFDs can be transformed to

the so-called descriptor state-space representation

Ex t Axt Bu t
yt Cxt

with transfer function
Gs CsE A 1B

Matrix E may be singular, so the above representation is a generalization of the state-space form
that captures impulsive dynamics and the structure at infinity. One can also mention here

polynomial matrix descriptions (PMDs)
Gs RsP 1sQs Ws
with the associated system polynomial matrix

Ps Qs
Rs Wss

as a generalization of MFDs. There exists a whole theory of state-space realizations of PMDs,

based on properties of the system polynomial matrix.

For practical computation with polynomials and polynomial matrices, modern software packages

are available. In particular, the Polynomial Toolbox for Matlab is recommended for numerical
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computations with polynomials and polynomial matrices.
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