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ABSTRACT 

Series expansions play a major role in helping us extract results from many models which are too 

complex to solve directly. Traditional perturbation theory, for instance, can be successfully 

applied to Quantum Electrodynamics. Yet, it completely fails to provide convergent expansions 

when applied to theories where coupling constants are (in some sense) large. Hence the 

importance of non-perturbative series expansions, of which the Linear Delta Expansion (LDE) is 

one. In this paper, we study the application of the LDE to two very different models: the lattice 

scalar self-interacting field theory, and the dynamics of a quantum mechanical inflationary model. 

We will also develop sophisticated arbitrary precision numerical methods to aid us in pushing the 

expansion to reasonably high orders.After presenting an overview of the LDE, we shall apply it to 

the lattice theory. In particular, we will focus on the critical behaviour of the model, which will 

include the calculation of various critical exponents. We shall find that the LDE gives good 

qualitative results and clearly identifies the symmetry breaking aspects of the theory. On the other 
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hand, we shall find that the quantitative results, especially those of critical behaviour, reproduce 

the results obtained by the much less sophisticated mean field theory. 

The second model studied in the paper is the quantum dynamics of an inflationary model, often 

called the quantum mechanical slow-roll. A recent LDE study of the same model successfully 

tracks the system while in the inflation phase, but fails to follow suit into the reheating phase. Our 

aim will be to improve the methodology (and consequently the results) of that study, by 

employing a physically more intuitive criterion for optimizing the parameters of the theory. We 

will find, however, that the hoped for improvements remain elusive. 

Introduction 

The Method of Sources 

We start by introducing the all important partition function Z, the quantity which contains all 

physical information about the system it describes: 

 

The trace is performed over all degrees of freedom of the system, and the quantity denoted by S is 

the action, which describes the dynamics of the system. From the perspective of statistical 

mechanics we are used to seeing in place of the action. 

is the inverse temperature and H is the Hamiltonian of the system. Our problem, however, is one 

of quantum field theory, where temperature is irrelevant and actions are used to describe 

dynamics. 

Since we study a lattice model in this thesis, we shall gear this introduction towards discrete 

actions. Thus we let the action depend on a set of fields , where , and A is the set of all 

lattice sites. 
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We denote the total number of lattice sites by In the well known magnetic models, is 

usually restricted to a discrete set of values, e.g. the Ising model allows For us, the fields

will be unrestricted and continuous. Apart from those, the action will also depend on some set 

of coupling constants, which are of no importance to us at the moment. 

We shall now add an explicit linear term to the action in equation (1.1), coupled to an 

inhomogeneous source J. In practice, inhomogeneous simply means that we have a set of sources

one for each lattice site i. In standard magnetic theories, 

for example, it is the external magnetic field which takes on the role of the source. With this added 

term, we have a slightly modified partition function: 

 

A partition function written as above is also called a generating function, due to the ease with 

which we can extract physical information about the system. The key is to differentiate the 

partition function with respect to the source to generate physical quantities. Even if there is no 

physical source present in the system, it is still used for algebraic convenience and then set to zero 

at the end of the calculation. Hence the name method of sources [1]. 

 

Using the generating function, can be neatly written as 

 

This motivates the definition of the free energy F 

in terms of which the expectation value becomes simply 

 



[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY                               
VOL.-II, ISSUE - I] August 1, 2011 

                                                                                                                                                             ISSN-2230-9659 

4                                                                            www.ignited.in 

 

The response of the expectation value at the site p with respect to a variation of the source at site q 

is given by 

 

The expectation value of the field at a certain lattice site p is given by 

This quantity is often called the correlation function of the fields and and is denoted by

We can also write it in a physically more transparent form: 

 

which emphasizes that is a measure of the fluctuations of the field in response to fluctuations 

of the field A related quantity is the susceptibility, denoted by  which is the sum of the 

correlations over the whole lattice: 

 

Note that we have defined the susceptibility as an intensive quantity by dividing with the volume 

of the system — in this case the number of lattice sites. Broadly speaking, a quantity is intensive if 

it is independent of the volume of the system, i.e. it is a kind of 'density' measure. Conversely, an 

extensive quantity depends on the volume, i.e. it is a kind of 'how much' measure. 

In magnetic theories it is usual to define the magnetization, which amounts to the average of the 

spin expectation values over the whole lattice. By analogy, we define the average field, denoted 

by  
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In practice, we usually work with translationally invariant theories which have a homogeneous 

source. To explore these conditions we have to set Jj = J for all and the linear term becomes

Due to symmetry considerations 

(of translational invariance), we know that for any two sites p and q, which leads us to 

define the generic expectation value  

 

 

Note that can be obtained directly using the free energy through 

 

where, in the last step, we have defined the free energy density f by 

 

The free energy density f is an intensive quantity, while the free energy F is extensive. We will 

later find ourselves preferring calculations with f, because the lack of volume dependence makes it 

a computationally accessible quantity. While discussing f, it is interesting to look at  

 

In the last step we noted the equality with the susceptibility (c.f. equation (1.9)). This is easy to 

confirm by explicitly writing out the left hand side of the above equation. 
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Critical Phenomena 

Simple magnetic models are the pedagogical cornerstone of statistical mechanics and phase 

transitions. These models picture magnets as lattices, with the sites occupied by electrons, whose 

spins contribute to the overall magnetic field generated by the magnet. The spins may be 

considered as vectors, pointing in any general direction, in which case we are talking about 

Heisenberg models. If we restrict the spins to a few scalar values, we obtain an Ising model. In 

either case, we can define the magnetization, denoted by (c.f. equation (1.10)), a net magnetic 

field (per lattice site) resulting from the combination of the spins throughout the lattice. 

Consider the situation where all the spins point in random directions. We expect the individual 

spins to cancel, leaving us with and we say that the system is in the paramagnetic phase. 

Conversely, the system can also be in a state where all the spins are aligned parallel to each other, 

producing a non-zero magnetization and consigning the magnet to the ferromagnetic phase. One 

important concept being introduced by this discussion is that of an order parameter. The 

knowledge of an order parameter reveals the particular phase a system is in. Specifically, the 

magnetization is an order parameter for the magnetic system under discussion — if the 

system is in the paramagnetic phase, and if the system is in the ferromagnetic phase. 

Another important concept is that of a phase transition. To illustrate this, we consider 

(qualitatively) the temperature dependence of our magnet, as shown in figure 1.1. For high 

temperatures, where we define 'high' as a temperature T greater than some critical temperature Tc, 

the excess thermal energy excites the spins so that they point in random directions, leading to

For temperatures there is not enough thermal energy to maintain the random 

oscillations, and the spins tend to settle down into alignment, producing a non-zero If we 

imagine the system cooling from a temperature to a final temperature the system 

would inevitably have to pass through the point which divides the paramagnetic and 

ferromagnetic phases, or, in other words, defines a phase boundary. We say that the system 

undergoes a phase transition. 
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Phase transitions are, in general, classified according to the Ehrenfest classification. In the 

scheme, a phase transition is said to be nth order if any nth derivative of the free energy with 

respect to any of its arguments yields a discontinuity at the phase transition [1]. In this context, the 

phenomena that we will be studying in this thesis 

Of particular interest to us is the behaviour of certain physical quantities in the vicinity of the 

critical point. It was empirically found that, for example, the shape of the magnetization curve for 

temperatures can be reproduced by a simple power law. In particular, we can define the 

reduced temperature 

 

in terms of which we can write: 

 

In the above equation, is an example of a critical exponent, a quantity that we aim to investigate 

with our LDE approach. A number of other physical quantities exhibit power law behaviour near 

criticality, and each such power law defines another critical exponent. 

 

Table 1.1: Definitions of the critical exponents and in terms of the critical behaviour of 

relevant quantities. is the magnetization, or average field (1.10), J is an external magnetic field, 

or source (1.2), is the susceptibility (1.9), and t is the reduced temperature (1.15). 

A remarkable experimental fact about critical exponents is their independence of the underlying 

system.
2
 For example, measurements of the density across the liquid- gas phase transition of 
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sulphurhexafluoride and yield the same critical exponents [1]. This leads to the definition of 

universality classes, which are comprised of different systems, all sharing the same set of values 

for the critical exponents.
3
 Another example of two models occupying the same universality class, 

and of some importance to us (see section 2.1.3), is that of the Ising model and lattice theory. 

Self-Interacting Scalar Field 

Briefly, the self-interacting scalar field theory, or simply theory, is the field theorist's testing 

ground for just about anything. With a Lagrangean density of 

 

it is relatively simple, but can be used as a zero dimensional toy model for perturbative and non-

perturbative expansions (see section 1.4.4), as a one dimensional model of the early expansion of 

the universe . 

as a pedagogical model for introducing spontaneous symmetry breaking, or even as a pedagogical 

model for introducing the Higgs and the Goldstone
4
, and, without exaggeration, the list could go 

on and on. 

In the definition of the theory (equation (1.17)), m
2
 is the mass parameter, and is the self-

coupling constant. The two parameters play significant roles in our motivation for studying the 

self-interacting scalar field. On the one hand we can test how well the LDE copes with a large 

coupling constant, a regime in which standard perturbation theory clearly fails. On the other hand, 

by changing the sign of the mass parameter, we can study the transition between the fully 

symmetric phase (m
2
 > 0) and the broken symmetry phase (m

2
 < 0), as illustrated by figure 1.1. 
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Figure 1.1.: Illustration of the theory potential, as given by equation (1.17). We set and 

alternate between a positive, negative, and zero mass parameter. For m
2
 > 0, the lowest energy 

state is at For m
2
 < 0, the lowest energy state acquires a non-zero value. Although the 

Lagrangean of the system is Z(2) invariant, the vacuum breaks this symmetry by choosing either 

of the two lowest energy points. This type of behaviour is called spontaneous symmetry breaking. 

The expectation value of the field is an order parameter of the theory — clearly indicating the 

broken or unbroken phase by a non-zero or zero value. Actually, we expect the behaviour to be 

similar to that displayed by a magnetic system, shown in figure 1.1. The difference though, is that 

the graph would be an expectation value vs. mass parameter plot, rather than the magnetization vs. 

temperature plot. The power law behaviour, however, is of the same type: 

 

with m
2
 approaching from below (from the broken phase). For example, ignoring quantum 

fluctuations (i.e. in classical theory), the expectation value of the field for m
2
 < 0 is of the form: 
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which implies a critical exponent 

 

 

Linear Delta Expansion 

The LDE is a general framework which enables us to systematically introduce non- perturbative 

behaviour into a series expansion by making use of variational parameters. This is achieved by 

expanding about a soluble approximation for the dynamics where the soluble dynamics contains 

unphysical parameters. The part that can not be solved directly is then expressed as an expansion 

about the soluble approximation. The full series, were it available, would give the correct answer 

(assuming it converges) and would be independent of the arbitrary unphysical parameters. How-

ever, once truncated, the series will exhibit residual dependence on the unphysical elements. 

These parameters have to be fixed by some criterion which aims to leave the truncated series as a 

good approximation to the correct answer. This process of fixing the variational parameters is 

performed order by order, thus introducing non-perturbative behaviour. In essence, the LDE is a 

non-perturbative, variational expansion, and as such it should come as no surprise that we find the 

same methodology hidden behind various different names like optimized perturbation theory [2], 

modified perturbation expansion [3], optimized expansion [4], screened perturbation theory [5], 

action-variational approach [6], and the variational cumulant expansion [7]. 

The LDE has evolved from the less popular exponential delta expansion [8, 9], where the action 

for a scalar theory is replaced by a term of the form  and expanded in 5 around the free 

theory. The LDE, as outlined in here, has been applied to many problems. A partial list includes 

the zero dimensional toy model (which we will use as an example to introduce the method) [10], 
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the quantum mechanical anharmonic oscillator [11], U(1) complex field theory on a lattice [12], 

U(1) complex field theory on a lattice at finite density [13], strong coupling Z(2), U(1) and SU(2) 

lattice gauge theories [14], lattice SU(2) Higgs model [15], dynamics of a quantum mechanical 

slow-roll [16], and dynamics of a quantum field theoretic slow-roll [17]. 

In this section we will present the formalism of the LDE in general, and then apply it to a simple 

toy model as an example. Note that this is not an exhaustive review of the subject, but rather an 

overview aimed at introducing the elements needed for the ensuing study presented in this thesis. 

In particular, we shall use an action as the basic quantity to apply the LDE, although other 

quantities like Hamiltonians or quantum mechanical wavefunctions can be used. 

We start by considering an action S which is complicated enough to prevent us from solving the 

theory in full. Much like any other series expansion, applying the LDE begins by rewriting the 

action into a different form. To that end, we introduce a trial action S0, and write 

 

We call the action, due to the parameter which was introduced. The main purpose of

is that of bookkeeping — the action will be expanded in powers of which will in turn help us 

keep track of the individual orders of the expansion. Notice that by setting our new action 

simply becomes while for we regain our original action, This is highly 

reminiscent of the usual perturbation theory split into a 'free' and 'interacting' part, where the  

and cases play the role of 'switching' the interaction 'off' and 'on'. What we add in the LDE 

approach is that we let S0 depend on some set of non-physical, or rather, variational parameters 

denoted by v. The variational parameters lie at the heart of the LDE method and provide the 

mechanism through which non-perturbative behaviour is introduced into the model. 

The LDE gives us freedom regarding the form of the trial action S0. In other words, it is for us to 

choose. However, if it is to be of any practical use, it should conform to a few requirements. The 

trial action has to 
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• itself describe a theory that we can solve. 

• be a reasonable approximation to the full theory. 

• contain non-physical, variational parameters. 

The first two points are rather obvious. Regarding the first one, there would be no use for an S0 

that we can not solve for, since in the 'non-interacting' limit we would have replaced a theory 

that we can not solve with another that we can not solve. As for the second point, since we are 

aiming to approximate the full theory with S0, it should be as good an approximation as is 

permitted by the first requirement. A point related to the second requirement is that we would like 

the difference S0 — S (equation (1.21)) to be small in some sense, so that upon expansion in 

powers of  we can hope for convergence of the series as higher orders are considered. The role of 

the variational parameters (third requirement) is to introduce non-perturbative behaviour, and will 

be fully appreciated in the coming sections. 

Extracting physics from the action proceeds via the partition function (c.f. equation (1.1)). We 

introduce the partition function  

 

where we have replaced the action S in the original Z by the version. The above partition 

function is nicely set up to be expanded in powers of 5, and we write: 

 

 

where we have defined Zn as the nth order term in the expansion of Since the above expansion 

has not yet been truncated, with the substitution of the dependence on the variational 
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parameters would vanish and we would have the full theory. Notice that which is a 

quantity that we can solve for, as we have explicitly chosen S0 to describe a soluble theory. Hence 

we will also be able to evaluate the other at least in principle. In practice, however, 

as n grows, so does the complexity of and at some n = R it will become impractical to go 

on to calculate the next order. Crucially, even with the truncated expansion will retain 

residual dependence on the variational parameters. We write 

 

The superscript in denotes the order at which the expansion is truncated. As it stands, is 

little more than another perturbative expansion, this time around the perturbation being the 

difference S0 — S. We have yet to use the variational parameters. Having expanded and truncated 

the partition function, we are left with depending on the variational parameters as well as the 

physical parameters of the theory, the coupling constants. In the final stage of the LDE 

methodology, the variational parameters need to be fixed. Most importantly, this is to be done 

order by order in the expansion, since we would otherwise lose the non-perturbative character of 

the LDE. If, for example, was to be fixed at some specific order of the expansion and then used 

for all other orders, we would end up with nothing else than another perturbative expansion. Thus, 

it is precisely the fact that the optimization is to be carried out at every order which will provide 

the non-perturbative behaviour of the LDE [21]. 

The aim is to fix the variational parameters to values which will produce a result closest to the true 

physical one. The problem in achieving this goal is that there is no unique prescription which tells 

us how to do this. There are two broad categories of methods used for fixing the variational 

parameters [2, 22]. These two are the principle of minimal sensitivity (PMS) and that of fastest 

apparent convergence (FAC).
5
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• The PMS method argues that the true partition function depends solely on physical parameters 

and not on variational ones. Thus, surely our best guess at the true value of Z must be the one 

where depends least on the variational parameters — at a stationary point. Therefore, we are to 

search for points where 

 

At this point, 'small' variations in the components of produce 'negligible' variations in , thus 

we are as close to being independent of the variational parameters as we will ever be. 

• The FAC method argues that we should be more concerned with the convergence of the 

expansion. Thus we should ensure that as we go to higher orders, the  terms contribute less (in 

some sense) to the total result. Generally, we write 

 

for some chosen value of r in the range  

As stated earlier, the above methods are just a broad classification. The PMS has been adapted and 

specialized to suit many different variational problems. We will not elaborate further at this stage, 

since this will be a topic studied in greater detail later (see sections 2.9 and 3.5). With so many 

ways of fixing the variational parameters, it is easily recognised that choosing the right one can be 

a tricky matter. 

To quote from [18]: "...there are almost as many subtly different criteria for choosing v as there 

are papers on the linear delta expansion. The main point is to choose one that works." 

We note, in passing, the somewhat remarkable fact that the PMS and FAC criteria are in fact 

tightly related [13]. This relationship will not be described further here, because we are not 

concerned with the application of the FAC criterion in this study. 
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The Partition Function 

Consider the integral 

 

As indicated above, we can write down a solution in closed form for Z. For the purposes of this 

example though, we shall ignore the fact that we know the result and proceed by applying the 

LDE methodology. From the above equation we identify the action as being the quantity 

 

 

The Expansion The first step is to choose an appropriate trial action, and use it to form the 5-

modified action. We choose 

 

 

Note the form of S0: 

•  It is very simple to solve. The case defines a simple Gaussian integral. 

•  We hope that the quadratic will do well at approximating the quartic. 

•  A variational parameter v is introduced, and is to be fixed by some criterion of choice. 

The 5-modified action defines the partition function, which is then expanded in powers 

of to get 
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We can compare the above expansion to equation (1.23a), and find the general expression for the 

n
th

 order of the expansion to be 

 

These are Gaussian integrals, easily solved analytically. We give the solutions for the first three 

orders, including the zeroth: 

 

 

 

 

We are now in the position to explicitly form the truncated series (c.f. equation (1.24)), with 

R's in the range from 0 to 3. We also set since it is not needed anymore as a bookkeeping 

parameter. However, the expansion will exhibit residual dependence on the variational parameter

. To fix v, we will apply the PMS condition, i.e. we will search for stationary points of with 

respect to . 

Fixing  

To gain a better understanding of the behaviour of the expansion, we have plotted the zeroth, first, 

second and third orders in figure 1.3. We find that and do not offer good PMS behaviour at 
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all — the two quantities actually have no stationary points for real . This is duly confirmed by 

taking the derivative of given by equation (1.33a): 

 

Setting the right hand side of the above equation to zero is obviously fruitless. 

We would find similar behaviour for as well. This might seem disturbing at first, but it is 

actually a generally accepted trend in LDE models [12]. We usually find ourselves working with 

either odd or even orders only, since the other set will not produce stationary points, i.e. there will 

be no point which provides a physical basis for fixing the variational parameters. 

We now look at . By observing the form of the curve in figure 1.3 we can expect a 

straightforward stationary point (maximum). Mathematically we have 
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Figure 1.3: A plot of vs. for R = 0, 1,2 and 3. We see that only the odd orders give good PMS 

points. The straight line at 1.81280 is the exact solution of equation (1.27). We set in this 

plot. 

and, differentiating by , 

 

We set the above equation equal to zero, and solve for v to get the optimum value which we 

denote by . Substituting back into in equation (1.35), we get our 1st order LDE estimate of Z: 

 

We find, to our satisfaction, that the result is quite a good approximation considering that this is 

only a first order result. In fact, the approximation improves rapidly and already at third order we 

get to within 1.2% of the true result. Note also the correct functional dependence on the parameter

 

 

Table 1.2: Summary of the PMS points v and the resulting for all odd orders up to 9. The 

last row displays the exact result.values of we see that the expansion is converging towards 

the exact result. This is also nicely illustrated by the plot in figure 1.4, where we see the maxima 

of successive odd orders of the expansion converging towards the line denoting the exact result. 
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Figure 1.4: A plot of vs. v for all odd R up to 9. The maxima of the curves are the appropriate 

PMS points, and define the value of The straight line at 1.81280 is the exact solution of equation 

(1.27). We set in this plot. 

Of course, this does not prove convergence of our approach. Nevertheless, convergence of the 

LDE can be proved for this toy model [10]. Moreover, in [21] we find proof of the failure of 

standard perturbation theory to produce a convergent series for a zero dimensional theory (a 

slight generalization of our toy model). The same study defines the general criteria which have to 

be met by a series to be convergent. These requirements are satisfied by the LDE. 
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