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ABSTRACT

Series expansions play a major role in helping us extract results from many models which are too
complex to solve directly. Traditional perturbation theory, for instance, can be successfully
applied to Quantum Electrodynamics. Yet, it completely fails to provide convergent expansions
when applied to theories where coupling constants are (in some sense) large. Hence the
importance of non-perturbative series expansions, of which the Linear Delta Expansion (LDE) is
one. In this paper, we study the application of the LDE to two very different models: the lattice
scalar self-interacting field theory, and the dynamics of a quantum mechanical inflationary model.
We will also develop sophisticated arbitrary precision numerical methods to aid us in pushing the
expansion to reasonably high orders.After presenting an overview of the LDE, we shall apply it to
the lattice theory. In particular, we will focus on the critical behaviour of the model, which will
include the calculation of various critical exponents. We shall find that the LDE gives good

qualitative results and clearly identifies the symmetry breaking aspects of the theory. On the other
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hand, we shall find that the quantitative results, especially those of critical behaviour, reproduce

the results obtained by the much less sophisticated mean field theory.

The second model studied in the paper is the quantum dynamics of an inflationary model, often
called the quantum mechanical slow-roll. A recent LDE study of the same model successfully
tracks the system while in the inflation phase, but fails to follow suit into the reheating phase. Our
aim will be to improve the methodology (and consequently the results) of that study, by
employing a physically more intuitive criterion for optimizing the parameters of the theory. We

will find, however, that the hoped for improvements remain elusive.
Introduction
The Method of Sources

We start by introducing the all important partition function Z, the quantity which contains all

physical information about the system it describes:
Z=tre? (1.1)

The trace is performed over all degrees of freedom of the system, and the quantity denoted by S is
the action, which describes the dynamics of the system. From the perspective of statistical

mechanics we are used to seeing 4 in place of the action.

7is the inverse temperature and H is the Hamiltonian of the system. Our problem, however, is one
of quantum field theory, where temperature is irrelevant and actions are used to describe

dynamics.

Since we study a lattice model in this thesis, we shall gear this introduction towards discrete

actions. Thus we let the action depend on a set of fields {9} wherei € A, and A is the set of all

lattice sites.
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We denote the total number of lattice sites by & — [Al-In the well known magnetic models, ¢:is
usually restricted to a discrete set of values, e.g. the Ising model allows ¢ — =1-For us, the fields

“:will be unrestricted and continuous. Apart from those, the action will also depend on some set

of coupling constants, which are of no importance to us at the moment.

We shall now add an explicit linear term to the action in equation (1.1), coupled to an

inhomogeneous source J. In practice, inhomogeneous simply means that we have a set of sources

{/i}-one for each lattice site i. In standard magnetic theories,

for example, it is the external magnetic field which takes on the role of the source. With this added

term, we have a slightly modified partition function:
7 _r c—S 3 ea Fidhi (1‘2)

A partition function written as above is also called a generating function, due to the ease with
which we can extract physical information about the system. The key is to differentiate the
partition function with respect to the source to generate physical quantities. Even if there is no
physical source present in the system, it is still used for algebraic convenience and then set to zero

at the end of the calculation. Hence the name method of sources [1].
1 - I DT 7% 2]
(0p) = v [gpe ¥ Pt (1.3)

Using the generating function, (%) can be neatly written as

(g L% Az
el Zon o,

(1.4)

This motivates the definition of the free energy F

in terms of which the expectation value becomes simply

i ‘
(op) = —;—] (1.6)
J,
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The response of the expectation value at the site p with respect to a variation of the source at site q

Is given by
Ay P o o
r_<7._/;> T T ahad (Gpda) = (Ep){ba) (1.7)

The expectation value of the field ¢ at a certain lattice site p is given by

This quantity is often called the correlation function of the fields “»and %+ and is denoted by s

We can also write it in a physically more transparent form:
(ipg — <(;")I’(;")fi> - <C"511><C")q> - < (4’511 - <(:;)P>) ((f"q - <(f"r1>) > (1.8)

which emphasizes that “ris a measure of the fluctuations of the field ?»in response to fluctuations
of the field ¢«- A related quantity is the susceptibility, denoted by ¥* which is the sum of the

correlations over the whole lattice:

| Y
Xow Z Z Gy (1.9)
i€A JEA
Note that we have defined the susceptibility ¥as an intensive quantity by dividing with the volume
of the system — in this case the number of lattice sites. Broadly speaking, a quantity is intensive if
it is independent of the volume of the system, i.e. it is a kind of 'density’ measure. Conversely, an

extensive quantity depends on the volume, i.e. it is a kind of 'how much' measure.

In magnetic theories it is usual to define the magnetization, which amounts to the average of the
spin expectation values over the whole lattice. By analogy, we define the average field, denoted
by P

b= %Z((;@ (1.10)

tEA
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In practice, we usually work with translationally invariant theories which have a homogeneous

source. To explore these conditions we have to set Jj = J for all? € A and the linear term becomes

iea Jiti — JXiea @ Due to symmetry considerations

(of translational invariance), we know that {ow) — () for any two sites p and g, which leads us to

define the generic expectation value {4)

: 1 , 1
<r;’)> — <(f)1_)> — <¢’)q> — P — v Z <¢»’i> — ﬁll

iZA

(111

( E (;‘3.;,) (T Lien s

PEA

Note that (¢’ can be obtained directly using the free energy through

‘_ 1 9z 1LoF ) 1.
by = T T VAT A 2
() NZ o NaJ aJ 1

where, in the last step, we have defined the free energy density f by

f_%p_%]nz (1.13)

The free energy density f is an intensive quantity, while the free energy F is extensive. We will

later find ourselves preferring calculations with f, because the lack of volume dependence makes it

. . . . . . e - . . 8.
a computationally accessible quantity. While discussing f, it is interesting to look at 9

D0 af] 9, |
a2 Al {W} - g(f») —X (1.14)

In the last step we noted the equality with the susceptibility X (c.f. equation (1.9)). This is easy to

confirm by explicitly writing out the left hand side of the above equation.
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Critical Phenomena

Simple magnetic models are the pedagogical cornerstone of statistical mechanics and phase
transitions. These models picture magnets as lattices, with the sites occupied by electrons, whose
spins contribute to the overall magnetic field generated by the magnet. The spins may be
considered as vectors, pointing in any general direction, in which case we are talking about
Heisenberg models. If we restrict the spins to a few scalar values, we obtain an Ising model. In
either case, we can define the magnetization, denoted by ® (c.f. equation (1.10)), a net magnetic

field (per lattice site) resulting from the combination of the spins throughout the lattice.

Consider the situation where all the spins point in random directions. We expect the individual
spins to cancel, leaving us with ® = U.and we say that the system is in the paramagnetic phase.
Conversely, the system can also be in a state where all the spins are aligned parallel to each other,
producing a non-zero magnetization and consigning the magnet to the ferromagnetic phase. One
important concept being introduced by this discussion is that of an order parameter. The
knowledge of an order parameter reveals the particular phase a system is in. Specifically, the

magnetization is an order parameter for the magnetic system under discussion — if ¥ =0the

system is in the paramagnetic phase, and if* # Uthe system is in the ferromagnetic phase.

Another important concept is that of a phase transition. To illustrate this, we consider
(qualitatively) the temperature dependence of our magnet, as shown in figure 1.1. For high
temperatures, where we define 'high' as a temperature T greater than some critical temperature T,
the excess thermal energy excites the spins so that they point in random directions, leading to
0. For temperatures ' < Zc.there is not enough thermal energy to maintain the random

oscillations, and the spins tend to settle down into alignment, producing a non-zero ®- If we
imagine the system cooling from a temperature ' > “-to a final temperature /' < 7+ the system
would inevitably have to pass through the point” — 7~ which divides the paramagnetic and

ferromagnetic phases, or, in other words, defines a phase boundary. We say that the system

undergoes a phase transition.
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Phase transitions are, in general, classified according to the Ehrenfest classification. In the
scheme, a phase transition is said to be nth order if any nth derivative of the free energy with
respect to any of its arguments yields a discontinuity at the phase transition [1]. In this context, the

phenomena that we will be studying in this thesis

Of particular interest to us is the behaviour of certain physical quantities in the vicinity of the
critical point. It was empirically found that, for example, the shape of the magnetization curve for
temperatures! — 7 can be reproduced by a simple power law. In particular, we can define the

reduced temperature

(1.15)
in terms of which we can write:
O~ 17 (1.16)

In the above equation, #is an example of a critical exponent, a quantity that we aim to investigate
with our LDE approach. A number of other physical quantities exhibit power law behaviour near

criticality, and each such power law defines another critical exponent.

Quantity Behaviour

Magnetization P~ [t]?

Magnetization | & ~ [J[5 at ¢ — 0

Susceplibilily X~

Table 1.1: Definitions of the critical exponents . ¢ and 7 in terms of the critical behaviour of
relevant quantities. ¢ is the magnetization, or average field (1.10), J is an external magnetic field,

or source (1.2), Yis the susceptibility (1.9), and t is the reduced temperature (1.15).

A remarkable experimental fact about critical exponents is their independence of the underlying

system.? For example, measurements of the density across the liquid- gas phase transition of
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sulphurhexafluoride and*llcyield the same critical exponents [1]. This leads to the definition of
universality classes, which are comprised of different systems, all sharing the same set of values
for the critical exponents.® Another example of two models occupying the same universality class,

and of some importance to us (see section 2.1.3), is that of the Ising model and lattice ¢* theory.

Self-Interacting Scalar Field

Briefly, the self-interacting scalar field theory, or simply(P4theory, Is the field theorist's testing

ground for just about anything. With a Lagrangean density of

L. .. . I, [ | .
S 2 MG — VIO — =8 oM — —inte? — A 7
L 2()#,(,)() o — Vi) 2()“(_,)() &= Smo 4)\5) (1.17)

it is relatively simple, but can be used as a zero dimensional toy model for perturbative and non-
perturbative expansions (see section 1.4.4), as a one dimensional model of the early expansion of

the universe .

as a pedagogical model for introducing spontaneous symmetry breaking, or even as a pedagogical
model for introducing the Higgs and the Goldstone®, and, without exaggeration, the list could go

on and on.

In the definition of the@4theory (equation (1.17)), m? is the mass parameter, and * is the self-
coupling constant. The two parameters play significant roles in our motivation for studying the
self-interacting scalar field. On the one hand we can test how well the LDE copes with a large
coupling constant, a regime in which standard perturbation theory clearly fails. On the other hand,
by changing the sign of the mass parameter, we can study the transition between the fully

symmetric phase (m” > 0) and the broken symmetry phase (m* < 0), as illustrated by figure 1.1.
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Figure 1.1.: Illustration of the o' theory potential, as given by equation (1.17). We set A = 1and

alternate between a positive, negative, and zero mass parameter. For m? > 0, the lowest energy

state is at¥ — U-For m* < 0, the lowest energy state acquires a non-zero value. Although the
Lagrangean of the system is Z(2) invariant, the vacuum breaks this symmetry by choosing either

of the two lowest energy points. This type of behaviour is called spontaneous symmetry breaking.

The expectation value of the field {#) Is an order parameter of the theory — clearly indicating the
broken or unbroken phase by a non-zero or zero value. Actually, we expect the behaviour to be
similar to that displayed by a magnetic system, shown in figure 1.1. The difference though, is that
the graph would be an expectation value vs. mass parameter plot, rather than the magnetization vs.

temperature plot. The power law behaviour, however, is of the same type:
() ~ |m*|” {1.18)

with m? approaching 7 from below (from the broken phase). For example, ignoring quantum

fluctuations (i.e. in classical ot theory), the expectation value of the field for m® < 0 is of the form:
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m2

(&) ox - (1.19)
which implies a critical exponent

3

by —

Linear Delta Expansion

The LDE is a general framework which enables us to systematically introduce non- perturbative
behaviour into a series expansion by making use of variational parameters. This is achieved by
expanding about a soluble approximation for the dynamics where the soluble dynamics contains
unphysical parameters. The part that can not be solved directly is then expressed as an expansion
about the soluble approximation. The full series, were it available, would give the correct answer
(assuming it converges) and would be independent of the arbitrary unphysical parameters. How-
ever, once truncated, the series will exhibit residual dependence on the unphysical elements.
These parameters have to be fixed by some criterion which aims to leave the truncated series as a
good approximation to the correct answer. This process of fixing the variational parameters is
performed order by order, thus introducing non-perturbative behaviour. In essence, the LDE is a
non-perturbative, variational expansion, and as such it should come as no surprise that we find the
same methodology hidden behind various different names like optimized perturbation theory [2],
modified perturbation expansion [3], optimized expansion [4], screened perturbation theory [5],

action-variational approach [6], and the variational cumulant expansion [7].

The LDE has evolved from the less popular exponential delta expansion [8, 9], where the action

for a scalar ¢ theory is replaced by a term of the form *''* and expanded in 5 around the %" free

theory. The LDE, as outlined in here, has been applied to many problems. A partial list includes

the zero dimensional ¢ toy model (which we will use as an example to introduce the method) [10],
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the quantum mechanical anharmonic oscillator [11], U(1) complex field theory on a lattice [12],
U(1) complex field theory on a lattice at finite density [13], strong coupling Z(2), U(1) and SU(2)
lattice gauge theories [14], lattice SU(2) Higgs model [15], dynamics of a quantum mechanical

slow-roll [16], and dynamics of a quantum field theoretic slow-roll [17].

In this section we will present the formalism of the LDE in general, and then apply it to a simple
toy model as an example. Note that this is not an exhaustive review of the subject, but rather an
overview aimed at introducing the elements needed for the ensuing study presented in this thesis.
In particular, we shall use an action as the basic quantity to apply the LDE, although other

quantities like Hamiltonians or quantum mechanical wavefunctions can be used.

We start by considering an action S which is complicated enough to prevent us from solving the
theory in full. Much like any other series expansion, applying the LDE begins by rewriting the

action into a different form. To that end, we introduce a trial action Sy, and write

S — S5 — So(@) — 6(Su(@) — 5) (1.21)

We call %sthe d-modified gction, due to the parameterd which was introduced. The main purpose of
4 is that of bookkeeping — the action will be expanded in powers of ¢-which will in turn help us
keep track of the individual orders of the expansion. Notice that by setting & — 0 our new action
simply becomes Ss—o — So-while for ¢ — lwe regain our original action, “s-1 — S-This is highly
reminiscent of the usual perturbation theory split into a 'free' and 'interacting' part, where the o — 0
and ¢ — 1cases play the role of 'switching' the interaction 'off' and 'on'. What we add in the LDE
approach is that we let Sy depend on some set of non-physical, or rather, variational parameters
denoted by v. The variational parameters lie at the heart of the LDE method and provide the
mechanism through which non-perturbative behaviour is introduced into the model.

The LDE gives us freedom regarding the form of the trial action Sq. In other words, it is for us to
choose. However, if it is to be of any practical use, it should conform to a few requirements. The

trial action has to
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. itself describe a theory that we can solve.
be a reasonable approximation to the full theory.
. contain non-physical, variational parameters.

The first two points are rather obvious. Regarding the first one, there would be no use for an SO
that we can not solve for, since in the? — “'non-interacting' limit we would have replaced a theory
that we can not solve with another that we can not solve. As for the second point, since we are
aiming to approximate the full theory with SO, it should be as good an approximation as is
permitted by the first requirement. A point related to the second requirement is that we would like
the difference SO — S (equation (1.21)) to be small in some sense, so that upon expansion in
powers ofd we can hope for convergence of the series as higher orders are considered. The role of
the variational parameters (third requirement) is to introduce non-perturbative behaviour, and will

be fully appreciated in the coming sections.

Extracting physics from the action proceeds via the partition function (c.f. equation (1.1)). We

introduce the d-moditied partition function %
g =tre™ =r [c_som(55(5'3('F-)_S]] (1.22)

where we have replaced the action S in the original Z by the é-modificdversion. The above partition

function is nicely set up to be expanded in powers of 5, and we write:

> 1

. e, & .
Zy — tr e >Zﬁ(50(v)—5) —Zmz,,,(-z:) (1.23a)

n—0 rn—0
Za{F) — tr [e7 (Sy(F) — S)"] (L.23h)

where we have defined Zn as the nth order term in the expansion of Zs- Since the above expansion

has not yet been truncated, with the substitution of ¢ — Ithe dependence on the variational
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parameters would vanish and we would have the full theory. Notice that #c — tre¢™.which is a

quantity that we can solve for, as we have explicitly chosen SO to describe a soluble theory. Hence
we will also be able to evaluate the other #» (for = = 1}.at Jeast in principle. In practice, however,

as n grows, so does the complexity of (% — S)"-and at some n = R it will become Impractical to go
on to calculate the next order. Crucially, even with @ — L. the truncated expansion will retain

residual dependence on the variational parameters. We write

R
- . (:)n.
Z® ZE Y =240 (1.24)

ot
r—0 -

The superscript in 7" denotes the order at which the expansion is truncated. As it stands, Z"is
little more than another perturbative expansion, this time around the perturbation being the

difference SO — S. We have yet to use the variational parameters. Having expanded and truncated

the partition function, we are left with Zémdepending on the variational parameters 7. as well as the
physical parameters of the theory, the coupling constants. In the final stage of the LDE
methodology, the variational parameters need to be fixed. Most importantly, this is to be done
order by order in the expansion, since we would otherwise lose the non-perturbative character of
the LDE. If, for example, 7¥was to be fixed at some specific order of the expansion and then used
for all other orders, we would end up with nothing else than another perturbative expansion. Thus,
it is precisely the fact that the optimization is to be carried out at every order which will provide
the non-perturbative behaviour of the LDE [21].

The aim is to fix the variational parameters to values which will produce a result closest to the true

physical one. The problem in achieving this goal is that there is no unique prescription which tells

us how to do this. There are two broad categories of methods used for fixing the variational
parameters [2, 22]. These two are the principle of minimal sensitivity (PMS) and that of fastest

apparent convergence (FAC).”
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* The PMS method argues that the true partition function depends solely on physical parameters

and not on variational ones. Thus, surely our best guess at the true value of Z must be the one
where Zﬁ-mdepends least on the variational parameters — at a stationary point. Therefore, we are to
search for points where

R —0 (1.23)

. . N ¢ )
At this point, ‘'small' variations in the components of ¢ produce 'negligible' variations in % , thus

we are as close to being independent of the variational parameters as we will ever be.

 The FAC method argues that we should be more concerned with the convergence of the
expansion. Thus we should ensure that as we go to higher orders, the % terms contribute less (in

some sense) to the total result. Generally, we write

2 g g 1.26
&

a

for some chosen value of rin the range ! =7 = /.

As stated earlier, the above methods are just a broad classification. The PMS has been adapted and
specialized to suit many different variational problems. We will not elaborate further at this stage,
since this will be a topic studied in greater detail later (see sections 2.9 and 3.5). With so many
ways of fixing the variational parameters, it is easily recognised that choosing the right one can be

a tricky matter.

To quote from [18]: "...there are almost as many subtly different criteria for choosing v as there

are papers on the linear delta expansion. The main point is to choose one that works."

We note, in passing, the somewhat remarkable fact that the PMS and FAC criteria are in fact
tightly related [13]. This relationship will not be described further here, because we are not
concerned with the application of the FAC criterion in this study.

www.ignited.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-Il, ISSUE - 1] WACT{SE s B0k}

ISSN-2230-9659

The Partition Function

Consider the integral

oo ., Tz ,
Z/ dre—o* 9 (5) ~ LRI2R0 o~ T

) =2 (1.27)

As indicated above, we can write down a solution in closed form for Z. For the purposes of this
example though, we shall ignore the fact that we know the result and proceed by applying the

LDE methodology. From the above equation we identify the action as being the quantity

S ox (1.28)

The Expansion The first step is to choose an appropriate trial action, and use it to form the 5-

modified action. We choose

So — a? (1.20)
Sy wrt—4 (‘t.':r.2 — U:J"d) (1.30)
Note the form of S:

It is very simple to solve. The ¢ — Ocase defines a simple Gaussian integral.
We hope that the quadratic will do well at approximating the quartic.
A variational parameter v is introduced, and is to be fixed by some criterion of choice.

The 5-modified action defines the ¢-modificd partition function, which is then expanded in powers

ofd to get
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| o 0 s R ) | = N ' -
A5 — ‘/_ dip g—vr? 16{wa?—aat) Z [F[ dae™" (v;r'2 — O'.I.'4) } (1.31)

B rn—0 >

We can compare the above expansion to equation (1.23a), and find the general expression for the

n™ order of the expansion to be
oo 2 ¥
Z — / dee™ ™ (?,-‘.'I.‘Q — (}'.'I."l) ' (1.32)

These are Gaussian integrals, easily solved analytically. We give the solutions for the first three

orders, including the zeroth:

Zo— /= (1.33a)
v
yo— 1 ™ ( ) } r)ﬂi) (] %%})
1 1 27 —aad FAY A3b
3 ! 2 . 2, 4.4 o
Zy — R (3502 — 2000 + 42") (1.33¢)
AL (=6930% | 378070 — 8loe? | 8oY) (1.33d)
S ()4 13 ¥ REL A gt o el

We are now in the position to explicitly form the truncated seriesZéR)(c.f. equation (1.24)), with

R's in the range from 0 to 3. We also set? — !'since it is not needed anymore as a bookkeeping

parameter. However, the expansion will exhibit residual dependence on the variational parameter

: : e : : : LD
v, To fix v, we will apply the PMS condition, i.e. we will search for stationary points of “5" with
respect to .

Fixing v
To gain a better understanding of the behaviour of the expansion, we have plotted the zeroth, first,

second and third orders in figure 1.3. We find that Zéo)andzémdo not offer good PMS behaviour at
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all — the two quantities actually have no stationary points for real «. This is duly confirmed by

o _ .
taking the derivative of % — %o given by equation (1.33a):

o 7° I3zt

() 0} () m 1 T o 4
7 S\ (1.31)

&
Setting the right hand side of the above equation to zero is obviously fruitless.

We would find similar behaviour for Z;” as well. This might seem disturbing at first, but it is
actually a generally accepted trend in LDE models [12]. We usually find ourselves working with

either odd or even orders only, since the other set will not produce stationary points, i.e. there will
be no point which provides a physical basis for fixing the variational parameters.

1) : _—
We now look at % . By observing the form of the curve in figure 1.3 we can expect a
straightforward stationary point (maximum). Mathematically we have

Z(1 g
Z" (1.35)
2
|
|
195+  R=0 R=2 4
|
19 b \ 4
1.85 - \ .
! . exact
18 ' .
|
—_ \’
o
T 175 -‘\ 4
i
17 F ; .
‘.
[
1,65 - ! .
\“.'
16 { . R=1 R=3 .
155 - ) : ' -
15 | 1 I‘
0 1 2 3 4 5
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Figure 1.3: A plot of 75" vs. vfor R = 0, 1,2 and 3. We see that only the odd orders give good PMS
points. The straight line at 1.81280 is the exact solution of equation (1.27). We sete lin this
plot.

and, differentiating by v,

d o 3w .
(1) 3.2 YR
5% R\ (e — 20) (1.36)

We set the above equation equal to zero, and solve for v to get the optimum value which we

denote by ©. Substituting back into Zfs”in equation (1.35), we get our 1st order LDE estimate of Z:

v—y/oo = ZV) & 169150 67 (1.37)

| SNl e

We find, to our satisfaction, that the result is quite a good approximation considering that this is
only a first order result. In fact, the approximation improves rapidly and already at third order we

get to within 1.2% of the true result. Note also the correct functional dependence on the parameter

.

R o/ve | 40 e
] | 531141 1.69150

3 | 2.26862 1.79183

d | 2.79216 1.80851

7| 3.23200 1.81187

9 | 3.61897 1.581259
o0 — 1.51280)

Table 1.2: Summary of the PMS points v and the resultingzém('”) for all odd orders up to 9. The

_ Z(R) . :
last row displays the exact result.values of Zi ' (0):we see that the expansion is converging towards
the exact result. This is also nicely illustrated by the plot in figure 1.4, where we see the maxima

of successive odd orders of the expansion converging towards the line denoting the exact result.
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T T T T
182 exact 7
18 =
178 | R=7 -
176 - .
R=3
& -4 L 4
4 1.74
172 b .
R=5
17 F -
168 | -
i |
R=1; L 'R=% ,
166 | Py .
i ATHES 1 :
8] 1 2 3 4 5 5]
v

. AR . .
Figure 1.4: A plot of‘«g vs. v for all odd R up to 9. The maxima of the curves are the appropriate

PMS points, and define the value of ¢- The straight line at 1.81280 is the exact solution of equation
(1.27). We set @ — lin this plot.

Of course, this does not prove convergence of our approach. Nevertheless, convergence of the

LDE can be proved for this toy model [10]. Moreover, in [21] we find proof of the failure of

standard perturbation theory to produce a convergent series for a zero dimensional ' theory (a
slight generalization of our toy model). The same study defines the general criteria which have to

be met by a series to be convergent. These requirements are satisfied by the LDE.
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