
[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY                               
VOL.-II, ISSUE - I] August 1, 2011 

ISSN-2230-9659 

1 www.ignited.in 

 

 

Analysis in Different Phases, Formulas and Conditions of Integer 

Coefficients Polynomials 

____________________________________________________________ 

 

Suman Lata  
Research Scholar, Singhania University 
Rajasthan, INDIA 
 

 

 

 

 

 

 

 

ABSTRACT 

We study the problem of minimizing the supremum norm, on a segment of the 

real line or on a compact set in the plane, by polynomials with integer 

coefficients. The extremal polynomials are naturally called integer Chebyshev 

polynomials. Their factors, zero distribution and asymptotics are the main 

subjects of this paper. In particular, we show that the integer Chebyshev 

polynomials for any infinite subset of the real line must have infinitely many 

distinct factors, which answers a question of Borwein and Erdelyi. Furthermore, 

it is proved that the accumulation set for their zeros must be of positive capacity 
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in this case. We also find the first nontrivial examples of explicit integer 

Chebyshev constants for certain classes of lemniscates. 

INTEGER CHEBYSHEV PROBLEM 

HISTORY AND NEW RESULTS Define the uniform (sup) norm on a compact set by 

 

The primary goal of this paper is the study of polynomials with integer 

coefficients that minimize the sup norm on the set E. In particular, we consider 

the asymptotic behavior of these polynomials and of their zeros. 

Let and be the classes of algebraic polynomials of degree at most n, 

respectively with complex and with integer coefficients. The problem of 

minimizing the uniform norm on E by monic polynomials from is well known 

as the Chebyshev problem (see [6], [35], [47], [18], etc.) In the classical case E = 

[—1,1], the explicit solution of this problem is given by the monic Chebyshev 

polynomial of degree n: 

 

Using a change of variable, we can immediately extend this to an arbitrary 

interval so that 
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is a monic polynomial with real coefficients and the smallest uniform norm on 

[a, b] among all monic polynomials of degree n from In fact, 

                               (1.1) 

and we find that the Chebyshev constant for [a, b] is given by 

                               (1.2) 

The Chebyshev constant of an arbitrary compact set is defined in a similar 

fashion: 

                                     (1.3) 

where tn is the Chebyshev polynomial of degree n on E. It is known that is 

equal to the transfinite diameter and the logarithmic capacity cap(E) of the set E 

(cf. [47, pp. 71-75], [18] and [34] for the definitions and background material). 

One may notice that the Chebyshev polynomials on the interval [—2, 2] have 

integer coefficients. The roots of the n-th Chebyshev polynomial on [—2, 2] are 

                  (1.4) 

In general, the set of roots of a monic irreducible polynomial over is called a 

complete set of conjugate algebraic integers. A remarkable result of Kronecker 

[23] states that any complete set of conjugate algebraic integers, all contained in 

[—2, 2], must belong to the set of numbers of the form for all n with 
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gcd( k, n) = 1, k, Thus we have an exhaustive description of all complete sets 

of conjugate algebraic integers in [—2, 2]. In fact, Kronecker first proved in [23] 

that any complete set of conjugates on the unit circle must be a subset of 

the roots of unity, and then deduced the above result by using the 

transformation x = z + 1/z. It is difficult to obtain such a complete 

characterization when [—2, 2] is replaced by a more general set, but one can 

extract substantial amount of interesting information from the study of the 

integer Chebyshev problem (see, e.g., Borwein [5, Ch. 10]): 

We say that is an integer Chebyshev polynomial for a compact set  if 

                        (1.5) 

where the inf is taken over all polynomials from Pn(Z), that are not identically 

zero. Note that Qn may not be unique, and its degree may be less than n. The 

integer Chebyshev constant (or integer transfinite diameter) for E is given by 

                                 (1.6) 

The existence of the limit in (1.6) follows by the same argument as for (1.3), 

found in [18] or [47], which also shows that this limit is independent of the 

choice of a sequence of integer Chebyshev polynomials. It is important that we 

do not require polynomials to be monic here, as this would lead to a quite 
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different problem (cf. Borwein, Pinner and Pritsker [8]). Note that, for 

any  

 

where because Pn has real coefficients. Thus the integer 

Chebyshev problem on a compact set E is equivalent to that on E*, and we can 

assume that E is symmetric with respect to the real axis without any 

loss of generality. 

One may readily observe that if E = [a, b] and then  

                               (1.7) 

On the other hand, we obtain directly from the definition and (1.2) that 

                    (1.8) 

Hilbert [21] proved an important upper bound 

                                     (1.9) 

by (1.1) and (1.6), so that by using Legendre polynomials and Minkowski's 

theorem on the integer lattice points in a convex body. Actually, he worked with 

the L2 norm on [a, b], but this gives the same n-th root behavior as the norm 

in (1.6). 

With the help of Hilbert's result (1.9), Schur and Polya (see [43]) showed that 

any interval of length less than 4, can contain only finitely many complete 
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sets of conjugate algebraic integers. Thus one may be able to explicitly find 

those polynomials with integer coefficients and all roots in [a, b], b — a < 4. 

These results were generalized to the case of an arbitrary compact set by 

Fekete [12], who developed a new analytic setting for the problem, by 

introducing the transfinite diameter of E and showing that it is equal 

to Both, the transfinite diameter and the Chebyshev constant, were later 

proved to be equal to the logarithmic capacity cap(E), by Szego [45]. Therefore 

we state the result of Fekete as follows: 

                            (1.10) 

where E is It contains Hilbert's estimate (1.9) as a special case, 

since by (1.2). Using the same argument as in [43], Fekete 

concluded by (1.10) that there are only finitely many complete sets of conjugate 

algebraic integers in any compact set E, satisfying cap(E) < 1. These ideas found 

many applications, but we only discuss here the developments that are closely 

related to the subject of this paper. Fekete and [13] showed that any open 

neighborhood of the set E, which is symmetric in real axis and has cap(E) = 1, 

must contain infinitely many complete sets of conjugates. Robinson [36] proved 

that any interval of length greater than 4 contains infinitely many complete sets 

of conjugates. But the case of intervals of length exactly 4, or sets of capacity 1 

in general, remains open (for further references, see [37], [39], etc.) 
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The following useful observation on the asymptotic sharpness for the estimates 

(1.9) of Hilbert and (1.10) of Fekete is due to Trigub [46]. 

 

Remark 1.1. For the sequence of the intervals Im := [1/(m + 4), 1/m], we have 

 

so that 

 

We include in Section 5.1 a proof of this fact, due to a relative inaccessibility of 

the original paper [46]. 

 

Remark 1.2. If then the problem of evaluating is trivial, because 

for any of exact degree n (cf. [34, p. 155]). This implies 

that and Note that as unless E is a finite set of points or 

cap We shall exclude these trivial cases from our consideration, by 

assuming throughout the paper that E is an infinite compact set with cap(E) < 

1. This assumption implies that 
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which is proved in Section 5.1. Hence the definition of the integer Chebyshev 

constant in (1.6) may be equivalently given as 

 

The value of is not known for any segment [a, b], b — a < 4. This represents 

a difficult open problem, as can be seen from the study of the classical case E = 

[0,1], which is considered below. From a more general point of view, we are able 

to find the exact value of only for a special class of compact sets, namely for 

lemniscates. 

 

Proposition 1.3. Let  

                  (111) 

Then we have for the lemniscate 

                       (1.12) 

that 

                            (1.13) 

This gives an immediate corollary. 

 

Corollary 1.4. If of (1.11) is monic, then 

                                       (1.14) 
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where Lr is defined in (1.12). Furthermore, (Vm)k is an integer Chebyshev polyno-

mial of degree km,  

One may notice that (see [34, p. 135]) in Corollary 1.4. 

However, the following result is more interesting. 

 

Theorem 1.5. Suppose that the polynomial of (1.11), with is irreducible 

over integers and that Lr of (1.12) satisfies Then 

         (1.15) 

and (Vm)k is an integer Chebyshev polynomial of degree km,  

Observe that in this case (cf. [34, p. 135]). 

Furthermore, we show the sharpness of Fekete's estimate (1.10): 

 

Remark 1.6. For the circle we have that by 

Theorem 1.5. On the other hand, so that equality holds in (1.10). 

 

We note that the above results are also valid for the "filled-in" lemniscates 

by the maximum modulus principle. A deeper insight into the 

nature of integer Chebyshev constant and properties of the asymptotically ex-

tremal polynomials for integer Chebyshev problem can be found in the study of 

this problem for E = [0,1]. It was initiated by Gelfond and Schnirelman, who 
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discovered an elegant connection with the distribution of prime numbers (see 

Gelfond's comments in [10, pp. 285-288]). Their argument shows that 

if  then the Prime Number Theorem follows. However, as we 

shall see below. One can find a nice exposition of this and related topics in 

Montgomery [24, Ch. 10] (also see Chudnovsky [11]). There is still a chance of 

success for this approach to the Prime Number Theorem via polynomials in 

many variables (cf. Chudnovsky [11], Nair [25] and Pritsker [33]). 

 

Proposition 1.7. Let be the set of irreducible over polynomials, of exact 

degree n, that have all their zeros in a compact set Assuming that 

 

where Then 

                                        (1.16) 

is nonempty for an infinite subsequence of we define For E = [0,1], 

Proposition 1.7 coincides with Theorem 2 in [24, p. 182], while the above general 

form was suggested by the referee. In fact, Montgomery conjectured that 

equality holds in (1.16) for E = [0,1], but this remains open (essentially the same 

conjecture was also made in [11, p. 90]). One may try to construct various 

sequences of polynomials to obtain lower bounds for  
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and they give the following lower bound: 

                            (1.17) 

from (1.16). A few such sequences have been devised (cf. [24] and [11]), with the 

best known being the Gorshkov sequence of polynomials. It was originally found 

by Gorshkov in [19], and rediscovered by Wirsing and Smyth. These polynomials 

arise as the numerators in the sequence of iterates of the rational function (see 

[24, pp. 183-188]). 

Upper bounds for can be obtained directly from the definition of integer 

Chebyshev constant (1.5)-(1.6). One may even try to find some low degree 

integer Chebyshev polynomials and compute their norms, only to find out that 

this is quite a nontrivial exercise. It was noticed in many papers that small 

polynomials from arise as products of powers of polynomials 

from Aparicio was the first to prove this in the following strong form (cf. 

Theorem 3 in [3]):  

If a sequence satisfies 

                             (1.18) 

then 

  (1.19) 
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where 

             (1.20) 

and  

 

This gives a good indication of what might be the asymptotic structure of the in-

teger Chebyshev polynomials on [0,1] and other sets. Thus Amoroso [1] 

considered intervals with rational endpoints, and applied a refinement of 

Hilbert's approach in [21] to the polynomials vanishing with high multiplicities 

at the endpoints, to improve upon (1.9). Essentially the same ideas were used by 

Kashin [22] for dealing with the symmetric intervals [—a, a], for which one 

should consider polynomials with factors xk. 

Borwein and Erdelyi [7] used numerical optimization techniques to find small 

polynomials of the form 

             (1.21) 

where and They improved the upper bound for which 

triggered a number of numerical studies on the integer Chebyshev polynomials 

for [0,1] and other intervals. Borwein and Erdelyi also improved the result of 

Aparicio (1.18)-(1.20): 
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and used this to show that strict inequality holds in (1.17). Hence the Gorshkov 

polynomials do not give the exact value of tZ([0,1]). 

The ideas of Borwein and Erdelyi have been developed in the papers by Flam- 

mang [16], by Flammang, Rhin and Smyth [17], and by Habsieger and Salvy 

[20], to obtain further numerical improvements in the upper bounds for on 

[0,1] and on Farey intervals. In particular, Habsieger and Salvy computed the 

first 75 integer Chebyshev polynomials for [0, 1] and found the best known 

upper bound 

                               (1.22) 

Flammang, Rhin and Smyth [17] generalized the approach of [7] to improve the 

lower bounds in (1.20) 

 

as well as bounds for six additional factors of the integer Chebyshev polynomials 

on [0,1]. They also extended the Gorshkov polynomials technique to the Farey 

intervals [p/q,r/s], with qr — ps = 1, and obtained an interesting generalization 

of (1.17). 

From the above discussion, it is natural to expect that the integer Chebyshev 

polynomials for [0,1] are built out of the factors as in (1.21), which is suggested 

in Montgomery [24, p. 182]. In addition, Montgomery proposed studying the zero 

distribution of these polynomials, along with their associated measures and 
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extremal potentials. Potential theory indeed provides powerful methods for 

dealing with various extremal problems for polynomials, which proved to be very 

effective for classical Chebyshev polynomials, orthogonal polynomials, etc. It is 

clear that the study of zeros for integer Chebyshev polynomials is essentially 

equivalent to the study of their factors and asymptotic behavior. We should note 

that not all of the zeros of the integer Chebyshev polynomials for [0,1] actually 

lie on [0,1]. This was discovered by Habsieger and Salvy [20], who found a factor 

of an integer Chebyshev polynomial of degree 70, with two pairs of complex 

conjugate roots. 

 

One might hope that the sequence of the integer Chebyshev polynomials for 

[0,1] is composed from products of powers of a finite number of irreducible 

polynomials over Unfortunately, this is not true as we show by the following 

result, answering a question of Borwein and Erdelyi (see [7], Q7). 

 

Theorem 1.8. Let be a compact set, cap(E) < 1, consisting of infinitely many 

points. Any infinite sequence of the integer Chebyshev polynomials for 

E, has infinitely many distinct factors with integer coefficients that occur 

in  
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Clearly, if is irreducible then it is considered a factor of itself. If then the 

result of Theorem 1.8 may not hold in general, as is shown in Theorem 1.5. It is 

obvious from the known results that integer Chebyshev polynomials are com-

pletely different from the classical companions in their "discrete" nature. 

However, their zeros cannot be so isolated, as it might appear. 

 

Theorem 1.9. Let be the set of accumulation points for the zeros of the 

integer Chebyshev polynomials for a compact set 0 < cap(E) < 1. Then 

                                            (1.23) 

This immediately implies that Z cannot be too small, e.g., it cannot be a count-

able set. One might conjecture that the zeros of the integer Chebyshev 

polynomials on [0,1] are dense in a Cantor-type set of positive capacity. 

 

Since the nature of the unknown factors of the integer Chebyshev polynomials 

for [0,1] is rather obscure, we may view the integer Chebyshev polynomials as 

being of the form 

                    (1.24) 

where is the known irreducible factor of degree mi, i = 1,...,k, and 

Rn(x) is the remaining factor. Assuming that the limits 
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                       (1.25) 

exist, at least along a subsequence, we observe that the n-th root of the absolute 

value of the product in (1.24) converges to a fixed "weight" function, as  

locally uniformly in  

 

where Hence, for the purposes of studying the asymptotic behavior, 

as we may regard Qn(x) of (1.24) as a "weighted polynomial" and use the 

methods of weighted potential theory [41]. Following this idea, we generalize the 

Hilbert-Fekete upper bound for and find new lower bounds. We also prove 

various results on the multiplicities of factors and zeros of integer Chebyshev 

polynomials in the next section. Then we apply the general theory to the integer 

Chebyshev problem on [0,1] and obtain substantial improvements over the 

previously known results in Section 3. Section 4 contains a brief outline of the 

basic facts of weighted potential theory used in this paper. All proofs are given 

in Section 5. 

It must be mentioned that the history of the problem as sketched here is far 

from being complete. The integer Chebyshev problem is closely connected to 

approximation by polynomials with integer coefficients (see Ferguson [14] and 

Trigub [46] for surveys), which has an interesting history of its own. Further 
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related topics are: entire functions with integer coefficients (or integer valued) 

(cf. Polya [29], [30] and [31], Pisot [26], [27] and [28], and Robinson [38], [40], 

etc.), the integer moment problem (see Barnsley, Bessis and Moussa [4]), the 

Schur-Siegel trace problem (cf. Schur [43], Siegel [42], Smyth [44], Borwein and 

Erdelyi [7], Borwein [5], etc.) and many others. 

 

UPPER AND LOWER BOUNDS FOR THE  

INTEGER CHEBYSHEV CONSTANT 

 

Motivated by the known results on the asymptotic structure of integer Cheby- 

shev polynomials, we study the weighted polynomials , where is a 

continuous nonnegative function on a compact R-symmetric 

set and By analogy with (1.5)-(1.6), consider the weighted integer 

Chebyshev polynomials such that 

 

and define the weighted integer Chebyshev constant by 

                             (2.1) 

The limit in (2.1) exists by the following standard argument. Note that 
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If we set an = log vn(E,w), then 

 

Hence 

 

exists by Lemma on page 73 of [47]. 

Weighted polynomials with complex coefficients are extensively studied in Saff 

and Totik [41] by means of potential theory. We apply the results of Saff and 

Totik to the integer Chebyshev problem, and follow their notation and 

conventions. Our first goal is to give an upper bound for It is possible to 

generalize the Hilbert-Fekete method for this purpose, but we also need the 

concept of the weighted capacity of E, denoted by cap(E, w) (see [41] and a brief 

overview of the weighted potential theory in Section 4). 

Theorem 2.1. Let be a compact set and let be a contin uous 

function. Then 

                                (2.2) 
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Remark 2.2. If on E then cap(E, 1) = cap(E), so that (2.2) reduces to the 

result of Fekete (1.10). 

It is clear from Section 1 that our main applications are related to the weights of 

the type 

                          (2.3) 

where the factors have the form 

                  (2.4) 

and 

                                         (2.5) 

with Thus we readily (see Section 5.2) obtain an upper bound 

for the classical (not weighted) integer Chebyshev constant. 

Theorem 2.3. Suppose that is a compact set, and that the weight w(z) 

satisfies (2.3)-(2.5). Then 

                             (2.6) 
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Theorem 2.3 suggests that we may be able to improve the results of Hilbert (1.9) 

and of Fekete (1.10), by using (2.6) with a proper choice of factors Qmiii, i = 

1,...,k, for the weight w. It is natural to utilize the known factors of integer 

Chebyshev polynomials for this purpose. We shall carry out this program in the 

next section, and obtain an improvement of the upper bound (1.22). 

Remark 2.4. After reading the original version of this paper, Chris Smyth drew 

our attention to the paper of Amoroso [2], where Theorems 2.1 and 2.3 had been 

proved in equivalent terms, using the concept of f -transfinite diameter. We give 

a different (and shorter) proof here, using interpolation in weighted Fekete 

points (see Section 5.2). 

It is clear that we need an effective method of finding weighted capacity, in order 

to make the estimate (2.6) practical. For the "polynomial-type" weights we are 

considering here, one can express cap(E, w) through the regular logarithmic 

capacity and Green functions. 

Theorem 2.5. Let be a compact set, cap(E) > 0, and let w(z) be as in (2.3)-

(2.5). Then there exists a compact set such that 

                        (2.7) 

where 
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      (2.8) 

and 

                   (2.9) 

is the unit positive measure supported on Sw. Alternatively, 

           (2.10) 

Here, is the Green function of with pole at and is the 

harmonic measure at with respect to  

Note that arises as the equilibrium measure in the weighted energy problem 

associated with the weight w of (2.3)-(2.5), and Fw is the modified Robin constant 

for that energy problem (cf. [41] and Section 4 of this paper for the details). The 

measure is the classical equilibrium distribution on Sw, in the sense of 

logarithmic potential theory (see [47], [34], etc.) 

Using certain information on the asymptotic behavior of integer Chebyshev poly-

nomials, we can find lower bounds for integer Chebyshev constant, as below. 
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