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ABSTRACT

We study the problem of minimizing the supremum norm, on a segment of the
real line or on a compact set in the plane, by polynomials with integer
coefficients. The extremal polynomials are naturally called integer Chebyshev
polynomials. Their factors, zero distribution and asymptotics are the main
subjects of this paper. In particular, we show that the integer Chebyshev
polynomials for any infinite subset of the real line must have infinitely many
distinct factors, which answers a question of Borwein and Erdelyi. Furthermore,

it is proved that the accumulation set for their zeros must be of positive capacity
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in this case. We also find the first nontrivial examples of explicit integer
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Chebyshev constants for certain classes of lemniscates.
INTEGER CHEBYSHEV PROBLEM

HISTORY AND NEW RESULTS Define the uniform (sup) norm on a compact set¥ c Chy
17l = sup | F(=)]-

The primary goal of this paper is the study of polynomials with integer
coefficients that minimize the sup norm on the set E. In particular, we consider
the asymptotic behavior of these polynomials and of their zeros.
Let ”%and”(Zibe the classes of algebraic polynomials of degree at most n,
respectively with complex and with integer coefficients. The problem of
minimizing the uniform norm on E by monic polynomials from 7(C}is well known
as the Chebyshev problem (see [6], [35], [47], [18], etc.) In the classical case E =
[—1,1], the explicit solution of this problem is given by the monic Chebyshev

polynomial of degree n:
T, (z) := 2" cos(narccosz), n e N,

Using a change of variable, we can immediately extend this to an arbitrary

interval =% CR.go that

bh—ay" 20 —a—b
o= (52) n (555
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is a monic polynomial with real coefficients and the smallest uniform norm on
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[a, b] among all monic polynomials of degree n from ?+(€)In fact,

5 b—a\" ~
ltnll (o = 2 y , neN,

and we find that the Chebyshev constant for [a, b] is given by

(1.1)

h—a

. 1/n
te(fa, b)) == lim |tp] 5= ——:
R—+ o0 [a2.B] 4 (12)
The Chebyshev constant of an arbitrary compact set£ ¢ Cis defined in a similar

fashion:

te(E) == lim |ta]|g". 1)

where tn is the Chebyshev polynomial of degree n on E. It is known that!=(£)is
equal to the transfinite diameter and the logarithmic capacity cap(E) of the set E
(cf. [47, pp. 71-75], [18] and [34] for the definitions and background material).
One may notice that the Chebyshev polynomials on the interval [—2, 2] have

integer coefficients. The roots of the n-th Chebyshev polynomial on [—2, 2] are

M k=1,... n
2n (1.4)

T = 2cos
In general, the set of roots of a monic irreducible polynomial overZis called a
complete set of conjugate algebraic integers. A remarkable result of Kronecker

[23] states that any complete set of conjugate algebraic integers, all contained in

[—2, 2], must belong to the set of numbers of the form 2¢osC2rk/» for all* <n with
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gcd( k, n) = 1, k,” €« #Thus we have an exhaustive description of all complete sets
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of conjugate algebraic integers in [—2, 2]. In fact, Kronecker first proved in [23]
that any complete set of conjugates on the unit circle {l:l - ymust be a subset of
the roots of unity, and then deduced the above result by using the
transformation x = z + 1/z. It is difficult to obtain such a complete
characterization when [—2, 2] is replaced by a more general set, but one can
extract substantial amount of interesting information from the study of the
integer Chebyshev problem (see, e.g., Borwein [5, Ch. 10]):

We say that @ € P»(Z)is an integer Chebyshev polynomial for a compact set £ € if

n e i f Pn !
1@nllz = inf o IFlle (1.5)

where the inf is taken over all polynomials from Pa(Z), that are not identically
zero. Note that Qn may not be unique, and its degree may be less than n. The

integer Chebyshev constant (or integer transfinite diameter) for E is given by

ta(E) = lim [|Qn]". Lo

The existence of the limit in (1.6) follows by the same argument as for (1.3),
found in [18] or [47], which also shows that this limit is independent of the
choice of a sequence of integer Chebyshev polynomials. It is important that we

do not require polynomials to be monic here, as this would lead to a quite
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different problem (cf. Borwein, Pinner and Pritsker [8]). Note that, for
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any ' € PulZ),
1Pz = 1Pl e
wheref" = EU{:: 2 c Ey. because Pn has real coefficients. Thus the integer

Chebyshev problem on a compact set E is equivalent to that on E*, and we can
assume that E is symmetric with respect to the real axis(Bsymmetriciwithout any
loss of generality.

One may readily observe that if E = [a, b] and*~¢ 2L then®%(*}=1 neN.

fE([LI-.EJ]]l: I, b—aZ>=4 (17)

On the other hand, we obtain directly from the definition and (1.2) that

h—a
1 = tc([a, b)) < tz([a,b]), b—a <4 (1.8)

Hilbert [21] proved an important upper bound

'h—a

ta([a.b]) <\ —— (1.9)

by (1.1) and (1.6), so that by using Legendre polynomials and Minkowski's
theorem on the integer lattice points in a convex body. Actually, he worked with
the Lo norm on [a, b], but this gives the same n-th root behavior as the /~norm
in (1.6).

With the help of Hilbert's result (1.9), Schur and Polya (see [43]) showed that

any intervall*" ¢ F.of length less than 4, can contain only finitely many complete
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sets of conjugate algebraic integers. Thus one may be able to explicitly find
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those polynomials with integer coefficients and all roots in [a, b], b — a < 4.
These results were generalized to the case of an arbitrary compact set” <Cby
Fekete [12], who developed a new analytic setting for the problem, by
introducing the transfinite diameter of E and showing that it is equal
tot=(F)Both, the transfinite diameter and the Chebyshev constant, were later
proved to be equal to the logarithmic capacity cap(E), by Szego [45]. Therefore

we state the result of Fekete as follows:

tz(E) < /tc(E) = v/cap(E). (1.10)

where E isksvmmctric]t contains Hilbert's estimate (1.9) as a special case,
sincef-(let) = 0 —al/1py (1.2). Using the same argument as in [43], Fekete
concluded by (1.10) that there are only finitely many complete sets of conjugate
algebraic integers in any compact set E, satisfying cap(E) < 1. These ideas found
many applications, but we only discuss here the developments that are closely
related to the subject of this paper. Fekete and®#¢4[13] showed that any open
neighborhood of the set E, which is symmetric in real axis and has cap(E) = 1,
must contain infinitely many complete sets of conjugates. Robinson [36] proved
that any interval of length greater than 4 contains infinitely many complete sets
of conjugates. But the case of intervals of length exactly 4, or sets of capacity 1

in general, remains open (for further references, see [37], [39], etc.)
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The following useful observation on the asymptotic sharpness for the estimates
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(1.9) of Hilbert and (1.10) of Fekete is due to Trigub [46].

Remark 1.1. For the sequence of the intervals I, :=[1/(m + 4), 1/m], we have

1
twz(l.. ) = .
z( m—+ 2
so that
tE(-{m]‘

lim

— =1
Mm— o f|jm|!f_-1__

We include in Section 5.1 a proof of this fact, due to a relative inaccessibility of

the original paper [46].

Remark 1.2. Ifer(Zz1then the problem of evaluating!:(*}is trivial, because
17 = (caplED)" for anyf» € P»(Z)of exact degree n (cf. [34, p. 155]). This implies
that@.=1and/={%! INote thatd(@.) »>gs» —xunless E is a finite set of points or
cap1z1.We shall exclude these trivial cases from our consideration, by
assuming throughout the paper that E is an infinite compact set with cap(E) <
1. This assumption implies that

. deg(Qn)
lim ——— =1,
N— O T
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which is proved in Section 5.1. Hence the definition of the integer Chebyshev
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constant in (1.6) may be equivalently given as
tz(E) = lim [|Qy|[} =%,
R— 3O

The value of*:{l=tlis not known for any segment [a, b], b — a < 4. This represents
a difficult open problem, as can be seen from the study of the classical case E =
[0,1], which is considered below. From a more general point of view, we are able
to find the exact value of=l"/only for a special class of compact sets, namely for

lemniscates.

Proposition 1.3. Let

Viml(z) = amz2" 4+ ...+ a0 € Pn(Z), am = 0. (111)
Then we have for the lemniscate

Ly:={z:|Vp(z)|=r}, 0<r<i, (1.12)
that

(r/am|)Y™ < tg(L,) < r1/m,

- (1.13)

This gives an immediate corollary.

Corollary 1.4. If Ym(?)of (1.11) is monic, then

(1.14)
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where L; is defined in (1.12). Furthermore, (Vm)X is an integer Chebyshev polyno-
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mial of degree km, k¢ M.
One may notice that?:(l) —tll) —eplls)(see [34, p. 135]) in Corollary 1.4.

However, the following result is more interesting.

Theorem 1.5. Suppose that the polynomialV=(zjof (1.11), with® € Zis irreducible

over integers and that L; of (1.12) satisfies” £ 1/len[ Then
tg(Ly)=r'/m, (1.15)
and (Vm)k is an integer Chebyshev polynomial of degree km, # € N.

Observe that!={%) / to(l;)  cap(ls)  (/le)V"in  this case (cf. [34, p. 135]).

Furthermore, we show the sharpness of Fekete's estimate (1.10):

Remark 1.6. For the circleli« = {z:In2 =1/ =1/n}.ue N » 2 2.we have that/=(Li/) =1/ py

Theorem 1.5. On the other hand, /(/1»! 1/7".s0 that equality holds in (1.10).

We note that the above results are also valid for the "filled-in" lemniscates
2+ Wl < by the maximum modulus principle. A deeper insight into the
nature of integer Chebyshev constant and properties of the asymptotically ex-
tremal polynomials for integer Chebyshev problem can be found in the study of

this problem for E = [0,1]. It was initiated by Gelfond and Schnirelman, who
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discovered an elegant connection with the distribution of prime numbers (see
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Gelfond's comments in [10, pp. 285-288]). Their argument shows that
ift=(10,1) — 1/c. then the Prime Number Theorem follows. However, ‘(0. 1) > 1/e.a5 we
shall see below. One can find a nice exposition of this and related topics in
Montgomery [24, Ch. 10] (also see Chudnovsky [11]). There is still a chance of
success for this approach to the Prime Number Theorem via polynomials in

many variables (cf. Chudnovsky [11], Nair [25] and Pritsker [33]).

Proposition 1.7. Let?: < 7{Zibe the set of irreducible over Zpolynomials, of exact

degree n, that have all their zeros in a compact set’” c C.Assuming that

vl i e
wherel{#) —¢a" 3 ... Then
tz(E) > 1/s. (1.16)
F.is nonempty for an infinite subsequence ofr<N.we define For E = [0,1],

Proposition 1.7 coincides with Theorem 2 in [24, p. 182], while the above general
form was suggested by the referee. In fact, Montgomery conjectured that
equality holds in (1.16) for E = [0,1], but this remains open (essentially the same
conjecture was also made in [11, p. 90]). One may try to construct various

sequences of polynomials 7« € 7. 7 € N.to obtain lower bounds for =l 1))
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ozl =)
1 —=3x(1—=2)
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w(x)

and they give the following lower bound:

tz([0,1]) = 1/s0 = 0.420726. .. (1.17)

from (1.16). A few such sequences have been devised (cf. [24]| and [11]), with the
best known being the Gorshkov sequence of polynomials. It was originally found
by Gorshkov in [19], and rediscovered by Wirsing and Smyth. These polynomials
arise as the numerators in the sequence of iterates of the rational function (see
[24, pp. 183-188]).
Upper bounds for/+(-')can be obtained directly from the definition of integer
Chebyshev constant (1.5)-(1.6). One may even try to find some low degree
integer Chebyshev polynomials and compute their norms, only to find out that
this is quite a nontrivial exercise. It was noticed in many papers that small
polynomials from 7.(Z)»<HNarise as products of powers of polynomials
from7». k¥ <» Aparicio was the first to prove this in the following strong form (cf.
Theorem 3 in [3]):
If a sequence“» € PulZ). 7 € N.gatisfies

y

i 1@nllg gy = t2((0,1]) 1.18)

then

Onlz) = (2(1 —z)m (20 — )12 (522 50 9™ R(2),  asn — o,
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where

aq = 01456, a9 = 0.0166 and ag = 0.0037, (1.20)

and fin € Prl(Z). gcd(Rn{r], (1 — 2)(22 — 1)(52% — 5r + l)) =1,neHN.

This gives a good indication of what might be the asymptotic structure of the in-
teger Chebyshev polynomials on [0,1] and other sets. Thus Amoroso [1]
considered intervals with rational endpoints, and applied a refinement of
Hilbert's approach in [21] to the polynomials vanishing with high multiplicities
at the endpoints, to improve upon (1.9). Essentially the same ideas were used by
Kashin [22] for dealing with the symmetric intervals [—a, a], for which one
should consider polynomials with factors xk.
Borwein and Erdelyi [7] used numerical optimization techniques to find small
polynomials of the form
k
Quiz)=J]Q%" (), 0<ai<1 i=1,.. L
i=1 (1.21)
where®n.: € Pu.Z) and Zizi %7 — L'They improved the upper bound for #(1o1).which
triggered a number of numerical studies on the integer Chebyshev polynomials
for [0,1] and other intervals. Borwein and Erdelyi also improved the result of
Aparicio (1.18)-(1.20):

vy = (.26,
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and used this to show that strict inequality holds in (1.17). Hence the Gorshkov
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polynomials do not give the exact value of tz([0,1]).

The ideas of Borwein and Erdelyi have been developed in the papers by Flam-
mang [16], by Flammang, Rhin and Smyth [17], and by Habsieger and Salvy
[20], to obtain further numerical improvements in the upper bounds for/:on
[0,1] and on Farey intervals. In particular, Habsieger and Salvy computed the
first 75 integer Chebyshev polynomials for [0, 1] and found the best known
upper bound

tz([0,1]) < 0.42347945. (1.22)

Flammang, Rhin and Smyth [17] generalized the approach of [7] to improve the
lower bounds in (1.20)

= 0.264151, g = 0.021963 and asg > 0.005285,

as well as bounds for six additional factors of the integer Chebyshev polynomials
on [0,1]. They also extended the Gorshkov polynomials technique to the Farey
intervals [p/q,r/s], with qr — ps = 1, and obtained an interesting generalization
of (1.17).

From the above discussion, it is natural to expect that the integer Chebyshev
polynomials for [0,1] are built out of the factors as in (1.21), which is suggested
in Montgomery [24, p. 182]. In addition, Montgomery proposed studying the zero

distribution of these polynomials, along with their associated measures and
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extremal potentials. Potential theory indeed provides powerful methods for
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dealing with various extremal problems for polynomials, which proved to be very
effective for classical Chebyshev polynomials, orthogonal polynomials, etc. It is
clear that the study of zeros for integer Chebyshev polynomials is essentially
equivalent to the study of their factors and asymptotic behavior. We should note
that not all of the zeros of the integer Chebyshev polynomials for [0,1] actually
lie on [0,1]. This was discovered by Habsieger and Salvy [20], who found a factor
of an integer Chebyshev polynomial of degree 70, with two pairs of complex

conjugate roots.

One might hope that the sequence of the integer Chebyshev polynomials for
[0,1] is composed from products of powers of a finite number of irreducible
polynomials over Z.Unfortunately, this is not true as we show by the following

result, answering a question of Borwein and Erdelyi (see [7], Q7).

Theorem 1.8. Let” < Rbe a compact set, cap(E) < 1, consisting of infinitely many
points. Any infinite sequence of the integer Chebyshev polynomials@-for
E,» € N.has infinitely many distinct factors with integer coefficients that occur

in @
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Clearly, if%-is irreducible then it is considered a factor of itself. If” c Cthen the
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result of Theorem 1.8 may not hold in general, as is shown in Theorem 1.5. It is
obvious from the known results that integer Chebyshev polynomials are com-
pletely different from the classical companions in their "discrete" nature.

However, their zeros cannot be so isolated, as it might appear.

Theorem 1.9. Let” c Cbe the set of accumulation points for the zeros of the
integer Chebyshev polynomials for a compact setZ<R.0 < cap(E) < 1. Then

cap(Z) > 0. (1.23)

This immediately implies that Z cannot be too small, e.g., it cannot be a count-

able set. One might conjecture that the zeros of the integer Chebyshev

polynomials on [0,1] are dense in a Cantor-type set of positive capacity.

Since the nature of the unknown factors of the integer Chebyshev polynomials
for [0,1] is rather obscure, we may view the integer Chebyshev polynomials as
being of the form
k 5
n(r) = (H Qi:,fﬂ{arj) R.(z)., nel,
=1 (1.24)
where b7} € N. Um,i(#)is the known irreducible factor of degree m;, i = 1,...,k, and

Ru(x) is the remaining factor. Assuming that the limits
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I,
lim i(n) =a; >0, i=1...., k.,

n—ooc 1 ' ) (125)

exist, at least along a subsequence, we observe that the n-th root of the absolute
value of the product in (1.24) converges to a fixed "weight" function, as” — =

locally uniformly in:

L 1/n L
Jim_ (H |omi-.ﬂ:n|*fff”?) = [[1@m. o).
) i=1 i=1

where =i 1« = LHence, for the purposes of studying the asymptotic behavior,
as™— >xwe may regard Qn(x) of (1.24) as a "weighted polynomial" and use the
methods of weighted potential theory [41]. Following this idea, we generalize the
Hilbert-Fekete upper bound forf:and find new lower bounds. We also prove
various results on the multiplicities of factors and zeros of integer Chebyshev
polynomials in the next section. Then we apply the general theory to the integer
Chebyshev problem on [0,1] and obtain substantial improvements over the
previously known results in Section 3. Section 4 contains a brief outline of the
basic facts of weighted potential theory used in this paper. All proofs are given
in Section 5.

It must be mentioned that the history of the problem as sketched here is far
from being complete. The integer Chebyshev problem is closely connected to
approximation by polynomials with integer coefficients (see Ferguson [14] and

Trigub [46] for surveys), which has an interesting history of its own. Further
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related topics are: entire functions with integer coefficients (or integer valued)
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(cf. Polya [29], [30] and [31], Pisot [26], [27] and [28], and Robinson [38], [40],
etc.), the integer moment problem (see Barnsley, Bessis and Moussa [4]), the
Schur-Siegel trace problem (cf. Schur [43], Siegel [42], Smyth [44], Borwein and

Erdelyi [7], Borwein [3], etc.) and many others.

UPPER AND LOWER BOUNDS FOR THE

INTEGER CHEBYSHEV CONSTANT

Motivated by the known results on the asymptotic structure of integer Cheby-
shev polynomials, we study the weighted polynomials®"(:)/%(:) where«(z}is a
continuous nonnegative function on a compact R-symmetric
setZ ¢ Cand P. <7.(Z). By analogy with (1.5)-(1.6), consider the weighted integer

Chebyshev polynomials « € 7»(Z), » € N.guch that

on(E,w) = [|[w"an||p = 0=epi¥_1’];-“-

FIm T m

WA ”wnPHHE:
(Z)

and define the weighted integer Chebyshev constant by

tz(E£ w) = lim (v, (B, w))t™ . 2.1)

The limit in (2.1) exists by the following standard argument. Note that
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Ve (B2, 1) < ||-u.-'k+m
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Getm || < ||t o || g 1™ amll g = v (B w)vm (B w).

If we set an = log va(E,w), then

Optrn = O + @y, kym € T
Hence

; (L ; . f
lim — = lim lug(a.'n{b:-u-']]ll’an
n—oo 71 n—oo

exists by Lemma on page 73 of [47].

Weighted polynomials with complex coefficients are extensively studied in Saff
and Totik [41] by means of potential theory. We apply the results of Saff and
Totik to the integer Chebyshev problem, and follow their notation and
conventions. Our first goal is to give an upper bound for*z# ) It is possible to
generalize the Hilbert-Fekete method for this purpose, but we also need the
concept of the weighted capacity of E, denoted by cap(E, w) (see [41] and a brief

overview of the weighted potential theory in Section 4).

Theorem 2.1. Let#cRbe a compact set and letw:£ —[0.i>x)be a contin uous

function. Then

tz(E.w) < \/cap(E, w). (2.2)
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Remark 2.2. If»(zi=Ton E then cap(E, 1) = cap(E), so that (2.2) reduces to the

result of Fekete (1.10).

It is clear from Section 1 that our main applications are related to the weights of

the type

k 1/(1—ax)
w(z) = (Hl@mi,i{:”m) ;
i=1

(2.3)
where the factors #=i € P».Z have the form
thz{szﬂ,z[[(’:—szj LTE_—LU .?:]_L
i=1 (2.4)
and
J
= Z gy < 1,
i=1 (2.5)

with? <« <1 - 1....~Thus we readily (see Section 5.2) obtain an upper bound

for the classical (not weighted) integer Chebyshev constant.

Theorem 2.3. Suppose thatf ¢ Ris a compact set, and that the weight w(z)

satisfies (2.3)-(2.5). Then

tz(E) < (cap(E,w))* /2,

www.ignited.in
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Theorem 2.3 suggests that we may be able to improve the results of Hilbert (1.9)
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and of Fekete (1.10), by using (2.6) with a proper choice of factors Qmii, 1 =
1,....k, for the weight w. It is natural to utilize the known factors of integer
Chebyshev polynomials for this purpose. We shall carry out this program in the

next section, and obtain an improvement of the upper bound (1.22).

Remark 2.4. After reading the original version of this paper, Chris Smyth drew
our attention to the paper of Amoroso [2], where Theorems 2.1 and 2.3 had been
proved in equivalent terms, using the concept of f -transfinite diameter. We give
a different (and shorter) proof here, using interpolation in weighted Fekete

points (see Section 5.2).

It is clear that we need an effective method of finding weighted capacity, in order
to make the estimate (2.6) practical. For the "polynomial-type" weights we are
considering here, one can express cap(E, w) through the regular logarithmic

capacity and Green functions.

Theorem 2.5. Letl € Ebe a compact set, cap(E) > 0, and let w(z) be as in (2.3)-

(2.5). Then there exists a compact set®s © 7\ Vizi{%.:0]" such that

cap(F, w) = exp (jlug-u.' Ay — Fw) :
(2.7)
where
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ke B m
a) — 1 — . - - -
F, = — log ecap( S, ) + ;<1-3- log |a;| + ;;nigﬂ{,}_‘i.m)
(2.8)
and
1 P
o = ——— | w0, Q) —;;mm(:jz Q)

(2.9)
is the unit positive measure supported on Sy. Alternatively,
cap(E.w) = cap(5,, ) exp (flug'-u-' dlw(no, -, Q) + ,u.w]) .

(2.10)

Here, @ :— T\ Sw. ga(=.¢)is the Green function of @with pole até € @®and «&~%is the
?

harmonic measure até¢ < ?with respect to

Note that/~arises as the equilibrium measure in the weighted energy problem
associated with the weight w of (2.3)-(2.5), and Fw is the modified Robin constant
for that energy problem (cf. [41] and Section 4 of this paper for the details). The
measure «(><.-fig the classical equilibrium distribution on Sw, in the sense of

logarithmic potential theory (see [47], [34], etc.)

Using certain information on the asymptotic behavior of integer Chebyshev poly-

nomials, we can find lower bounds for integer Chebyshev constant, as below.
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