9. J. W. S. CASSELS, AN INTRODUCTION TO THE GEOMETRY OF NUMBERS, SPRINGER- VERLAG, HEIDELBERG, 1997. 10. P. L. CHEBYSHEV, COLLECTED WORKS, VOL. 1, AKAD. NAUK SSSR, MOSCOW, 1944. (RUSSIAN)
11. G. V. CHUDNOVSKY, NUMBER THEORETIC APPLICATIONS OF POLYNOMIALS WITH RATIONAL COEFFICIENTS DEFINED BY EXTREMALITY CONDITIONS, ARITHMETIC AND
GEOMETRY, VOL. I (M. ARTIN AND J. TATE, EDS.), PP. 61-105, BIRKHAUSER, BOSTON, 1983.
12. M. FEKETE, UBER DIE VERTEILUNG DER WURZELN BEI GEWISSEN
ALGEBRAISCHEN GLEICHUNGEN MIT GANZZAHLIGEN KOEFFIZIENTEN, MATH. ZEIT. 17 (1923), 228-249.
13. M. FEKETE AND G. SZEGO, ON ALGEBRAIC EQUATIONS WITH INTEGRAL
COEFFICIENTS WHOSE ROOTS BELONG TO A GIVEN POINT SET, MATH. ZEIT. 63 (1955), 158-172.
14. LE BARON O. FERGUSON, APPROXIMATION BY POLYNOMIALS WITH INTEGRAL
COEFFICIENTS, AMER. MATH. SOC., PROVIDENCE, R.I., 1980.
15. V. FLAMMANG, SUR LA LONGUEUR DES ENTIERS ALGEBRIQUES TOTALEMENT
POSITIFS, J. NUMBER THEORY 54 (1995), 60-72.
16. V. FLAMMANG, SUR LE DIAMETRE TRANSFINI ENTIER D'UN INTERVALLE A
EXTREMITES RATIONNELLES, ANN. INST. FOURIER GREN. 45 (1995), 779-793.
17. V. FLAMMANG, G. RHIN AND C. J. SMYTH, THE INTEGER TRANSFINITE
DIAMETER OF INTERVALS AND TOTALLY REAL ALGEBRAIC INTEGERS, J. THEOR. NOMBRES BORDEAUX 9 (1997), 137-168. 18. G. M. GOLUZIN, GEOMETRIC THEORY OF FUNCTIONS OF A COMPLEX VARIABLE, VOL. 26 OF TRANSLATIONS OF MATHEMATICAL MONOGRAPHS, AMER. MATH. SOC., PROVIDENCE, R.I., 1969.
19. D. S. GORSHKOV, ON THE DISTANCE FROM ZERO ON THE INTERVAL [0, 1] OF POLYNOMIALS WITH INTEGRAL COEFFICIENTS, IN "PROC. OF THE THIRD ALL UNION
MATHEMATICAL CONGRESS" (MOSCOW, 1956), VOL. 4, AKAD. NAUK SSSR, MOSCOW, 1959, PP. 5-7. (RUSSIAN) 20. L. HABSIEGER AND B. SALVY, ON INTEGER CHEBYSHEV POLYNOMIALS, MATH. COMP. 66 (1997), 763-770. 21. D. HILBERT, EIN BEITRAG ZUR THEORIE DES LEGENDRESCHEN POLYNOMS, ACTA MATH. 18 (1894), 155-159.
22. B. S. KASHIN, ALGEBRAIC POLYNOMIALS WITH INTEGER COEFFICIENTS
DEVIATING LITTLE FROM ZERO ON AN INTERVAL, MATH. NOTES 50 (1991), 921-927 (1992).
23. L. KRONECKER, ZWEI SATZE UBER GLEICHUNGEN MIT GANZZAHLIGEN
KOEFFIZIENTEN, J. REINE ANGEW. MATH. 53 (1857), 173-175.
24. H. L. MONTGOMERY, TEN LECTURES ON THE INTERFACE BETWEEN ANALYTIC
NUMBER THEORY AND HARMONIC ANALYSIS, CBMS, VOL. 84, AMER. MATH. SOC., PROVIDENCE, R.I., 1994.
25. M. NAIR, A NEW METHOD IN ELEMENTARY PRIME NUMBER THEORY, J. LONDON
MATH. SOC. 25 (1982), 385-391. 26. C. PISOT, UBER GANZWERTIGE GANZE FUNKTIONEN, JBER. DEUTSCH. MATH.- VEREIN. 52 (1942), 95102.
27. C. PISOT, SUR LES FONCTIONS ARITHMETIQUES ANALYTIQUES A CROISSANCE
EXPONENTIELLE, C. R. ACAD. SCI. PARIS 222 (1946), 988-990.
28. C. PISOT, SUR LES FONCTIONS ANALYTIQUES ARITHMETIQUES ET PRESQUE
ARITHMETIQUES, C. R. ACAD. SCI. PARIS 222 (1946), 1027-1028. 29. G. POLYA, UBER GANZWERTIGE GANZE FUNKTIONEN, REND. CIRC. MAT. PALERMO 40 (1915), 1-16.
30. G. POLYA, SUR LES SERIES ENTIERES A COEFFICIENTS ENTIERS, PROC. LONDON
MATH. SOC. 21 (1922), 22-38.
31. G. POLYA, UBER GEWISSE NOTWENDIGE DETERMINANTENKRITERIEN FUR DIE
FORTSETZBARKEIT EINER POTENZREIHE, MATH. ANN. 99 (1928), 687-706.
32. I. E. PRITSKER, CHEBYSHEV POLYNOMIALS WITH INTEGER COEFFICIENTS, IN "ANALYTIC AND GEOMETRIC INEQUALITIES AND APPLICATIONS", TH. M. RASSIAS AND
H. M. SRIVASTAVA (EDS.), KLUWER ACAD. PUBL., DORDRECHT, 1999, PP. 335-348.
33. E. PRITSKER, THE GELFOND-SCHNIRELMAN METHOD IN PRIME NUMBER THEORY, CANAD. J. MATH. (TO APPEAR); AVAILABLE ELECTRONICALLY AT
HTTP://WWW.MATH.OKSTATE.EDU/~IGOR/GSM.PDF
34. T. RANSFORD, POTENTIAL THEORY IN THE COMPLEX PLANE, CAMBRIDGE
UNIVERSITY PRESS, CAMBRIDGE, 1995. 35. T. J. RIVLIN, CHEBYSHEV POLYNOMIALS, JOHN WILEY & SONS, NEW YORK, 1990.
36. R. M. ROBINSON, INTERVALS CONTAINING INFINITELY MANY SETS OF CONJUGATE ALGEBRAIC INTEGERS, IN "STUDIES IN MATHEMATICAL ANALYSIS AND RELATED
TOPICS: ESSAYS IN HONOR OF GEORGE POLYA," STANFORD, 1962, PP. 305-315. 37. R. M. ROBINSON, CONJUGATE ALGEBRAIC INTEGERS IN REAL POINT SETS, MATH. ZEIT. 84 (1964), 415427.
38. R. M. ROBINSON, AN EXTENSION OF POLYA'S THEOREM ON POWER SERIES WITH
INTEGER COEFFICIENTS, TRANS. AMER. MATH. SOC. 130 (1968), 532-543. 39. R. M. ROBINSON, CONJUGATE ALGEBRAIC INTEGERS ON A CIRCLE, MATH. ZEIT. 110 (1969), 41-51. 40. R. M. ROBINSON, INTEGER VALUED ENTIRE FUNCTIONS, TRANS. AMER. MATH. SOC. 153 (1971), 451468. 41. E. B. SAFF AND V. TOTIK, LOGARITHMIC POTENTIALS WITH EXTERNAL FIELDS,
SPRINGER-VERLAG, BERLIN, 1997.
42. C. L. SIEGEL, THE TRACE OF TOTALLY POSITIVE AND REAL ALGEBRAIC INTEGERS, ANN. MATH. 46 (1945), 302-312.
43. I. SCHUR, UBER DIE VERTEILUNG DER WURZELN BEI GEWISSEN
ALGEBRAISCHEN GLEICHUNGEN MIT GANZZAHLIGEN KOEFFIZIENTEN, MATH. ZEIT. 1 (1918), 377-402. 44. C. J. SMYTH, TOTALLY POSITIVE ALGEBRAIC INTEGERS OF SMALL TRACE, ANN. INST. FOURIER GRENOBLE 33 (1984), 1-28.
45. G. SZEGO, BEMERKUNGEN ZU EINER ARBEIT VON HERRN M. FEKETE: UBER DIE VERTEILUNG DER WURZELN BEI GEWISSEN ALGEBRAISCHEN GLEICHUNGEN MIT
GANZZAHLIGEN KOEFFIZIENTEN, MATH. ZEIT. 21 (1924), 203-208.
46. R. M. TRIGUB, APPROXIMATION OF FUNCTIONS WITH DIOPHANTINE CONDITIONS BY POLYNOMIALS WITH INTEGRAL COEFFICIENTS, IN "METRIC QUESTIONS OF THE
THEORY OF FUNCTIONS AND MAPPINGS", NO. 2, NAUKOVA DUMKA, KIEV, 1971, PP. 267-333. (RUSSIAN) 47. M. TSUJI, POTENTIAL THEORY IN MODERN FUNCTION THEORY, CHELSEA PUBL.
CO., NEW YORK, 1975.