Analysis In Different Phases, Formulas and Conditions of Integer Coefficients Polynomials

Exploring the properties of integer Chebyshev polynomials

by Suman Lata*,

- Published in Journal of Advances in Science and Technology, E-ISSN: 2230-9659

Volume 2, Issue No. 1, Aug 2011, Pages 0 - 0 (0)

Published by: Ignited Minds Journals


ABSTRACT

We study the problem of minimizingthe supremum norm, on a segment of the real line or on a compact set in theplane, by polynomials with integer coefficients. The extremal polynomials arenaturally called inte­ger Chebyshev polynomials. Their factors, zerodistribution and asymptotics are the main subjects of this paper. Inparticular, we show that the integer Chebyshev polynomials for any infinitesubset of the real line must have infin­itely many distinct factors, whichanswers a question of Borwein and Erdelyi. Furthermore, it is proved that theaccumulation set for their zeros must be of positive capacity in this case. Wealso find the first nontrivial examples of explicit integer Chebyshev constantsfor certain classes of lemniscates.

KEYWORD

analysis, phases, formulas, conditions, integer coefficients polynomials, minimizing, supremum norm, real line, compact set, polynomials, integer Chebyshev polynomials, factors, zero distribution, asymptotics, infinitely many distinct factors, accumulation set, positive capacity, explicit integer Chebyshev constants, lemniscates

9. J. W. S. CASSELS, AN INTRODUCTION TO THE GEOMETRY OF NUMBERS, SPRINGER- VERLAG, HEIDELBERG, 1997. 10. P. L. CHEBYSHEV, COLLECTED WORKS, VOL. 1, AKAD. NAUK SSSR, MOSCOW, 1944. (RUSSIAN)

11. G. V. CHUDNOVSKY, NUMBER THEORETIC APPLICATIONS OF POLYNOMIALS WITH RATIONAL COEFFICIENTS DEFINED BY EXTREMALITY CONDITIONS, ARITHMETIC AND

GEOMETRY, VOL. I (M. ARTIN AND J. TATE, EDS.), PP. 61-105, BIRKHAUSER, BOSTON, 1983.

12. M. FEKETE, UBER DIE VERTEILUNG DER WURZELN BEI GEWISSEN

ALGEBRAISCHEN GLEICHUNGEN MIT GANZZAHLIGEN KOEFFIZIENTEN, MATH. ZEIT. 17 (1923), 228-249.

13. M. FEKETE AND G. SZEGO, ON ALGEBRAIC EQUATIONS WITH INTEGRAL

COEFFICIENTS WHOSE ROOTS BELONG TO A GIVEN POINT SET, MATH. ZEIT. 63 (1955), 158-172.

14. LE BARON O. FERGUSON, APPROXIMATION BY POLYNOMIALS WITH INTEGRAL

COEFFICIENTS, AMER. MATH. SOC., PROVIDENCE, R.I., 1980.

15. V. FLAMMANG, SUR LA LONGUEUR DES ENTIERS ALGEBRIQUES TOTALEMENT

POSITIFS, J. NUMBER THEORY 54 (1995), 60-72.

16. V. FLAMMANG, SUR LE DIAMETRE TRANSFINI ENTIER D'UN INTERVALLE A

EXTREMITES RATIONNELLES, ANN. INST. FOURIER GREN. 45 (1995), 779-793.

17. V. FLAMMANG, G. RHIN AND C. J. SMYTH, THE INTEGER TRANSFINITE

DIAMETER OF INTERVALS AND TOTALLY REAL ALGEBRAIC INTEGERS, J. THEOR. NOMBRES BORDEAUX 9 (1997), 137-168. 18. G. M. GOLUZIN, GEOMETRIC THEORY OF FUNCTIONS OF A COMPLEX VARIABLE, VOL. 26 OF TRANSLATIONS OF MATHEMATICAL MONOGRAPHS, AMER. MATH. SOC., PROVIDENCE, R.I., 1969.

19. D. S. GORSHKOV, ON THE DISTANCE FROM ZERO ON THE INTERVAL [0, 1] OF POLYNOMIALS WITH INTEGRAL COEFFICIENTS, IN "PROC. OF THE THIRD ALL UNION

MATHEMATICAL CONGRESS" (MOSCOW, 1956), VOL. 4, AKAD. NAUK SSSR, MOSCOW, 1959, PP. 5-7. (RUSSIAN) 20. L. HABSIEGER AND B. SALVY, ON INTEGER CHEBYSHEV POLYNOMIALS, MATH. COMP. 66 (1997), 763-770. 21. D. HILBERT, EIN BEITRAG ZUR THEORIE DES LEGENDRESCHEN POLYNOMS, ACTA MATH. 18 (1894), 155-159.

22. B. S. KASHIN, ALGEBRAIC POLYNOMIALS WITH INTEGER COEFFICIENTS

DEVIATING LITTLE FROM ZERO ON AN INTERVAL, MATH. NOTES 50 (1991), 921-927 (1992).

23. L. KRONECKER, ZWEI SATZE UBER GLEICHUNGEN MIT GANZZAHLIGEN

KOEFFIZIENTEN, J. REINE ANGEW. MATH. 53 (1857), 173-175.

24. H. L. MONTGOMERY, TEN LECTURES ON THE INTERFACE BETWEEN ANALYTIC

NUMBER THEORY AND HARMONIC ANALYSIS, CBMS, VOL. 84, AMER. MATH. SOC., PROVIDENCE, R.I., 1994.

25. M. NAIR, A NEW METHOD IN ELEMENTARY PRIME NUMBER THEORY, J. LONDON

MATH. SOC. 25 (1982), 385-391. 26. C. PISOT, UBER GANZWERTIGE GANZE FUNKTIONEN, JBER. DEUTSCH. MATH.- VEREIN. 52 (1942), 95102.

27. C. PISOT, SUR LES FONCTIONS ARITHMETIQUES ANALYTIQUES A CROISSANCE

EXPONENTIELLE, C. R. ACAD. SCI. PARIS 222 (1946), 988-990.

28. C. PISOT, SUR LES FONCTIONS ANALYTIQUES ARITHMETIQUES ET PRESQUE

ARITHMETIQUES, C. R. ACAD. SCI. PARIS 222 (1946), 1027-1028. 29. G. POLYA, UBER GANZWERTIGE GANZE FUNKTIONEN, REND. CIRC. MAT. PALERMO 40 (1915), 1-16.

30. G. POLYA, SUR LES SERIES ENTIERES A COEFFICIENTS ENTIERS, PROC. LONDON

MATH. SOC. 21 (1922), 22-38.

31. G. POLYA, UBER GEWISSE NOTWENDIGE DETERMINANTENKRITERIEN FUR DIE

FORTSETZBARKEIT EINER POTENZREIHE, MATH. ANN. 99 (1928), 687-706.

32. I. E. PRITSKER, CHEBYSHEV POLYNOMIALS WITH INTEGER COEFFICIENTS, IN "ANALYTIC AND GEOMETRIC INEQUALITIES AND APPLICATIONS", TH. M. RASSIAS AND

H. M. SRIVASTAVA (EDS.), KLUWER ACAD. PUBL., DORDRECHT, 1999, PP. 335-348.

33. E. PRITSKER, THE GELFOND-SCHNIRELMAN METHOD IN PRIME NUMBER THEORY, CANAD. J. MATH. (TO APPEAR); AVAILABLE ELECTRONICALLY AT

HTTP://WWW.MATH.OKSTATE.EDU/~IGOR/GSM.PDF

34. T. RANSFORD, POTENTIAL THEORY IN THE COMPLEX PLANE, CAMBRIDGE

UNIVERSITY PRESS, CAMBRIDGE, 1995. 35. T. J. RIVLIN, CHEBYSHEV POLYNOMIALS, JOHN WILEY & SONS, NEW YORK, 1990.

36. R. M. ROBINSON, INTERVALS CONTAINING INFINITELY MANY SETS OF CONJUGATE ALGEBRAIC INTEGERS, IN "STUDIES IN MATHEMATICAL ANALYSIS AND RELATED

TOPICS: ESSAYS IN HONOR OF GEORGE POLYA," STANFORD, 1962, PP. 305-315. 37. R. M. ROBINSON, CONJUGATE ALGEBRAIC INTEGERS IN REAL POINT SETS, MATH. ZEIT. 84 (1964), 415427.

38. R. M. ROBINSON, AN EXTENSION OF POLYA'S THEOREM ON POWER SERIES WITH

INTEGER COEFFICIENTS, TRANS. AMER. MATH. SOC. 130 (1968), 532-543. 39. R. M. ROBINSON, CONJUGATE ALGEBRAIC INTEGERS ON A CIRCLE, MATH. ZEIT. 110 (1969), 41-51. 40. R. M. ROBINSON, INTEGER VALUED ENTIRE FUNCTIONS, TRANS. AMER. MATH. SOC. 153 (1971), 451468. 41. E. B. SAFF AND V. TOTIK, LOGARITHMIC POTENTIALS WITH EXTERNAL FIELDS,

SPRINGER-VERLAG, BERLIN, 1997.

42. C. L. SIEGEL, THE TRACE OF TOTALLY POSITIVE AND REAL ALGEBRAIC INTEGERS, ANN. MATH. 46 (1945), 302-312.

43. I. SCHUR, UBER DIE VERTEILUNG DER WURZELN BEI GEWISSEN

ALGEBRAISCHEN GLEICHUNGEN MIT GANZZAHLIGEN KOEFFIZIENTEN, MATH. ZEIT. 1 (1918), 377-402. 44. C. J. SMYTH, TOTALLY POSITIVE ALGEBRAIC INTEGERS OF SMALL TRACE, ANN. INST. FOURIER GRENOBLE 33 (1984), 1-28.

45. G. SZEGO, BEMERKUNGEN ZU EINER ARBEIT VON HERRN M. FEKETE: UBER DIE VERTEILUNG DER WURZELN BEI GEWISSEN ALGEBRAISCHEN GLEICHUNGEN MIT

GANZZAHLIGEN KOEFFIZIENTEN, MATH. ZEIT. 21 (1924), 203-208.

46. R. M. TRIGUB, APPROXIMATION OF FUNCTIONS WITH DIOPHANTINE CONDITIONS BY POLYNOMIALS WITH INTEGRAL COEFFICIENTS, IN "METRIC QUESTIONS OF THE

THEORY OF FUNCTIONS AND MAPPINGS", NO. 2, NAUKOVA DUMKA, KIEV, 1971, PP. 267-333. (RUSSIAN) 47. M. TSUJI, POTENTIAL THEORY IN MODERN FUNCTION THEORY, CHELSEA PUBL.

CO., NEW YORK, 1975.