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ABSTRACT

These are lecture notes for the aim to explain, following how a certain powerful

modularity lifting result implies the Sato-Tate conjecture.

1. COMPATIBLE SYSTEMS
We consider an example to illustrate the ideas. Let~/@be an elliptic curve and
let 1 be a prime. For’z!.denote by E[n] the n-torsion points of E.

Then FIH = Z/nZ x Z/nZ for a]] n. Thus we can consider the Tate module

TR m B =2 x 2,
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Clearly the action of *l@/Won E preserves n-torsion, as the "multiplication-by-n"
maps on E are defined over% Thus the groups acts on T (E) and we get an 1-adic
Galois representation

prit : Gal(Q/Q) — GLa(Zy).
We can reduce modulo 1 to obtain a mod 1 Galois representation

Pra s Gal(Q/Q) — Gla(Fy).
We note that any continuous representation?: Gal@Q — Gl(@has a well-
defined (up to isomorphism) reduction modulo 1. The following argument is

attributed to N. Katz.

Theorem 1.1. Let G be a compact Hausdorff group, and let” ¢ — Glal@) be a
continuous representation. Then p is equivalent to a representationf” such
that” () © Cla(O) where Yt is the ring of integers of some finite extension’™/
Proof. Since G is compact and Hausdorff, it admits a Haar measure “without
loss of generality, #&)=1Now,

GL,(Q,) = | J GLu(L)

[L:dp] <
and hence

= U o HGLL (L)),

L) <oc

L ."'/QP ?

Since there are countably many finite extensions there must be some such

-1 1 [ —_ 1 ‘ —_— Y
finite extension L with AP~ (GLa(L))) > 0. Hence, * HGLA(L) € G s a closed
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p~Y(GL.(OL))

subgroup of finite index. Then is an open subgroup of the

L(GL.(L)),

compact group P so it has finite index in it and thus in G. Let pi,...,

-1/ ¥a y — n
gm be a collection of coset representatives for” (GLa(OL))-LetA C L™ pe the

OF ..., p(gm)OF

lattice generated by plg1) L- This is a lattice of maximal rank,

oo A = OF T € GL(L)

L- Furthermore, A is stable under the action of G. Let be a

n (A  T—1 )
linear transformation that takes 9L to A, and set” (9) =T""p(g)T

Returning to our elliptic curve example, recall that by Hasse's bound, for
almost all primes p we have #E(Fp) =1 -1 = tgith Il < 2001t is the case that for
almost all # the trace of

peillToby) jg@nithe point is that this is independent of!. The same holds for the

determinant, so that the characteristic polynomial of?#(Ft"bx)does not depend
on ! This makes the family of Galois representations”Fian example of a
compatible system:
Definition 1.2. Let F be a number field. A rank n compatible system of
representations of “4(7/#consists of the following data:

1. A number field M.

2. A finite set S of places of F.

3. For all* ¥ ®a monic degree " polynomial @) € #[x].

4. For all placeswof M, a Galois representation 7« : Gal(F/F) = GLa(Mu)
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such that if @ has residual characteristic ¢ and * is a place of F such that

v£S5and v does not divide !+ then ~«(1"b) has characteristic polynomial “«(¥}-

2. AUTOMORPHIOITY

Recall that if/ is a cuspidal modular form which is an eigenform for the Hecke

operators, then the classical construction of Deligne produces for almost all
primes!a representation ”/+:

Gal(Q/Q) — CL2(Q)which is determined by the eigenvalues of/. In this section we

describe an analogous notion in our setting.

Definition 2.1. Let F be a totally real field. A RAESDC (regular algebraic
essentially self-dual cuspidal) automorphic representation 7of%!=(A+)is a

cuspidal automorphic representation such that:

1. 7" =x7for some characterX:/ ‘A = C"with x«(~independent ofvfor all infinite
placesvof F.
2. "xhas the same infinitesimal character as some irreducible algebraic

representation of FosraCha
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Definition 2.2. A weight is an element “ € (Z)"™"“ gych that for all” € Hom/" Clye
have

U1 Zee > Urn.

If a is a weight, denote by == the irreducible algebraic

representation ®‘r F(”J‘T,'le cees ”'T,-n.) Of HTGHUIH( 102) Gl
Definition 2.3. We say that a RAESDC mas above has weight a if 7~ and =<have

the same infinitesimal character.

Note that ifrhas weight a, then by the (essential) self-duality of~ there exists an

integer e guch that i | Gra+t1-i = Wufor all™ € Hom{ {7, C)and all! £isn
Let S be a finite set of finite places of F, and forv<Slet”be an irreducible

(F.)-We say thatrhas type (?v}eesifmeis an

square-integrable representation of“L»
unramified twist of? for all v < S.Ifris a RAESDC automorphic representation
of CLulAr)of weight a and type{#<}:es: andris an isomorphism @ = C.then Clozel,

Harris, and Taylor (essentially using a construction from [HT]) construct a

continuous Galois representation
r 7Y  Gal(F/FY — GL, (@),
determined by a list of properties. The most important one is that for every

place v of F not dividing { we have
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(W are ey = M) (L= ),

ss
Ga].l:Ftl__l';Fti :l

where{7}is the l-adic representation associated by Tate to the Weil-Deligne

J.*H]fz)

. . VoLl . .
representation  ec(m <[] As we saw earlier,”«{"can be reduced

Gal (?/ M — QL,

modulo ! Let "+(7) F)be the semisimplification of the reduction.

Definition 2.4. A continuous semisimple representation
ro Gal(Il/ 1y — GLy(@) (resp. 7 -
Gal(£'/4) — GLa(I'))ig called automorphic of weight a and level {pv }wes if it is

isomorphic to "7 (resp- T for some choice of i and somerof weight a and

type{f"*-’}"‘€~‘5'such that ™is unramified.

3. A MODULARITY LIFTING THEOREM

We have now introduced the notions necessary to state Taylor's modularity
lifting theorem, apart from a few technical conditions. In the following, ¢ will
always denote complex conjugation. Let the algebraic group Gn be the semidirect
product of “Frand ¥ Y 222 i1} wheren actsby!¥ € Gl 1€ Glu)

g om = (elg N .

Theorem 3.1 (Taylor). Let F be a CM field. In other words, F is a totally

imaginary number field that contains a totally real subfield F +

h!F:F'=2 Letn > 1504 let I > n be a prime unramified in F. Let
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r: Cul(F/F) — GL.(@Q)

be a continuous irreducible Galois representation. Let

71 Gal(F/F) — GL, ()

be the semisimplification of its reduction, and let r' be the natural extension
P Gal(Fi Ity — G,

Assume the following:

N len

1. =1 -Here=is the l-adic cyclotomic character.

2. At almost all places of F, r is unramified.
3. For all places’fof F, the restriction” i/ Fis crystalline. (Here of

course "lealik/r) is defined up to equivalence by identifying©al(F./F)with a
decomposition subgroup at v.)

Hom{ '3

4. There is an element? € (Z") such that

(a) For all” € llom(*'Qi)we have either

l—1—nZzar1 2 Zarp =0

or

=1 -2 > 2, >0
b. For all™ € Hom(.Q)and alll < i < nwe have rei  —Grn+i—i-
c. For all” € Hom(> @)above a prime"! of F, we have

: alf pr f b 1 i ar;+n—jforsomel <j <n
H / T’. e — —
dlm@l o {r g, B(m)&al(h,m) _ 1'
0 :otherwise
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5. There exists a non-empty finite let S of places of F not dividing 1, and for
eachv € Sa  square-integrable Qy-representation pe of GLa(L%) such  that.
Mesair, Tl (0= 0y

6. FINISH THIS

7. Tis irreducible and automorphic of weight a and type {#}ves-

Then r is automorphic of weight a and type /s

Observe that if one member of a compatible system is automorphic of a
certain weight and type, then so are all the other members. For instance, if we
wish to prove that a certain Galois representation #is automorphic (we will see
below that the Sato-Tate conjecture follows from the automorphicity of a family

of’¥), and we know that another representationf"is automorphic and can find a

compatible system that contains both”and/’, then we are done. Usually one is

not so lucky. But suppose that there are representations #’and?” such that:
e pand p”are contained in a compatible system.
e /' and p"are contained in a compatible system.

° ,().U' ~ ,0.’!!.

Then iff'is automorphic, then so is””, and hence so is””. If we have a
sufficiently good modularity lifting theorem, we can prove that/’is automorphic,

and hence thatris automorphic.
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In order to apply this strategy to prove automorphicity of Galois representations,
one must be able to do two things sulfficiently well: prove modularity lifting
theorems and construct compatible systems. In our case, a sufficiently strong
modularity lifting theorem was proved by Clozel, Harris, and Taylor [CHT],
assuming that an analogue of Ihara's lemma was true. Taylor [Tay] then found a
way, using Kisin's work, to modify the argument to remove the dependence on

IThara's lemma and make it unconditional.

Compatible systems are generally obtained from the cohomology of algebraic
varieties, as in the elliptic curves example at the beginning of these notes.
Harris, Shepherd-Barron, and Taylor [HSBT] consider a family of Calabi-Yau
varieties, which were studied by Dwork in the 1960's and then more extensively
by mirror symmetry people. These produce the compatible systems used in the

proof of Sato-Tate.

4. THE SATO-TATE CONJECTURE
Let”/Qbe an elliptic curve. We have already mentioned the Hasse bound
|#E(F,) — 1 —p| < 2D
Equivalently,

H#E(F) =11 p— /ple | o)
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for some angle’% € -7l If we fix an elliptic curve E and vary p, then we may ask
how %is distributed.

Definition 4.1. Let#be a measure on the interval®7l. A sequence-of points on
this interval is said to be equidistributed with respect to#if for all continuous

functions f on % 7lwe have
l I
”lglalo ” Z Jn) = p(f).
i1

Conjecture 1 (Sato and Tate, 1960). If E is an elliptic curve without complex

multiplication (i.e. End{*) %) then the sequence® is equidistributed with

2 2
respect to the measure 75" #%

Now let G be a compact group and X the space of its conjugacy classes. We will
denote by# both the Haar measure on G and the measure it induces on X. A
sequence of elements *»of X is N-equidistributed if and only if for any irreducible

characterXof G we have

Indeed, by the Peter-Weyl theorem the irreducible characters generate a dense
subspace of the space C(X) of continuous functions on X, and we obtain the
desired statement for all of C(X) by a standard equicontinuity argument.
Therefore, if*) lthen the sequence x» is ~-equidistributed if and only if for

every non-trivial irreducible character Xwe have
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Indeed, we also need the following condition for the trivial characterx =1, but

it always holds trivially:

I
n}EI:i;H E 1 yim)=1.
=

Returning to our elliptic curve, if? : Gll@/Q) — GLaZiig ynramified at p, then it is

known that
| iy
pg(Froby) ~ /P it |

In particular, the trace of ”#:{!"b)is a, as we mentioned earlier. Let G = SU(2).
Then every element of G is conjugate to a unique matrix of the formwith 0 =0 =7,

so the space X of conjugacy classes is homeomorphic to the

( e 0 )
. i ,—ifl .
interval \ " ¢ Moreover, the Haar measure %7l on G induces the
2 sin® 0 .
measure T on X. Hence the Sato-Tate conjecture may be reformulated as
follows:
| P
The sequence vi’t{Tob)

of points on X is equidistributed with respect to the Haar

measure.
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If r is the natural 2-dimensional representation of SU(2), then the non-trivial
irreducible representations of SU(2) are precisely the symmetric powers Symrr
for” = |, By the considerations above, to prove Sato-Tate we need to show that
foralln > 1:

z trévm” ! pg  (Frob,)
< pln—1)/2)

lim — = lim log 2 Z trSym™ ! pg i (Froby)
T— 00 zpirl o

=1, (1)

- p':n_ 1)/2
pET

5. L-FUNCTIONS

How are L-functions relevant to any of this? The standard construction of the

L-function of a representation yields:

Sym™ 1 pg (Frob, )\ \
L(Sym™ lppy. s) = I I det | 1 — — — L
- L . (H ( P

“7'. A fun exercise for the reader is to compute the

This converges for® >

logarithmic derivative of this:

r Z (log p)trSym™ Lp( Froby)

(logL) = — = . + A,
I

where Aconverges in #%* > 2. Comparing this with equation (1) above, we see that

the following conjecture implies Sato-Tate:
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Conjecture 2 (Tate). f E does not have complex multiplication, then

Res > 2L

o 12— 1 ; . . . . . .
LSym™pr1:5) has analytic continuation to > and does not vanish in this

region.

By virtue of the good behavior of L-functions of cuspidal automorphic
representations, it is easy to see that the following implies Conjecture 2:

Conjecture 3. For all n > 1 there is a cuspidal automorphic

L(Sym* ! Res > #ld

representation mof GlulAulsuch that “(ms) 75} on
This is known for n = 2, 3 by work of Gelbart and Jacquet, and for n = 4, 5 by
Kim and Shahidi, but unfortunately it is not yet known in general. Instead,

Taylor and collaborators proved the following potential version of the conjecture,

which is sufficient to imply Conjecture 2.

Proposition 5.1. For all n > 1 there is a totally real field F, which is a Galois
extension of%and a cuspidal automorphic representationmrofll={&+)such
that!(TF ) = LSy ploamp )

To see why this implies Conjecture 2, observe that if@ € L € I'is an intermediate

extension with F/L solvable, then by Langlands base change there is a cuspidal

. ~ , 3 — L(Svm™! .
automorphic representation 7 of CLalAr) with 63 = LEym Pliarcs iy 5) By
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Brauer's theorem, we can decompose the trivial representation 1 ofGalli/Qas

follows:

-~ Cal( P/ ¢
1= Zn Tnd, 1“1’11\ i
‘el

where I is a finite set and for each®€ ! ni € Z. Gal(F/Fi)ig golvable, and Yiis a one-
dimensional representation of Gal(F/FJ).

Now we see that

L[S}fm“_lp. g) = HL{S}-’IHR_IP @ Indy;, s)™ = (2)
fae m—1 _ o o
HLL‘S}-IHR ﬂlgﬂ(ﬁ;-sz ) Xi. .Q_lln = l-‘-&_,l
HL{WFs N’:/"-.i'-"'-":-']‘1!'- I.r-l-JI
i

and since the L-functions in the bottom line have the desired properties, so does

their product.

6. STRATEGY TO PROVE PROPOSITION 5.1
Recall that E has multiplicative reduction at a prime q, and we need to show for
every n > 1 that Symn-1##/is automorphic for some prime 1. Suppose n fixed, and
choose 1 > n such that E has good reduction at 1 and 1 does not divide q' - 1

fOI'l <i<n.
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Now choose a prime/and a totally real field F' which is Galois over Q and in
which 1 and/are unramified and q splits completely. Choose an elliptic curve
E'/F' with good reduction at 1 and ! multiplicative reduction at q, and such
that 724 =Psiand Prely = 195" Here of course # is the mod ! cyclotomic
character, and the statement that such an E' exists (as well as other choices
that will be made below) is not entirely trivial (see [HSBT], Theorem 3.3).

We will find a prime’and a totally real extension F'/F such that!!, and!are
unramified in F", such that q splits completely there, and such that F" is Galois
over @, We will then construct a compatible system of

FGal(F7/1") — GSpu(Z,) (we only defined compatible systems above

representations’»

for representations into GL., but it should be clear what is meant here) for

which:

1. There is a finite set S of primes such that!!.{"¢Sand for all#?¢ Srp is
crystalline with Hodge-Tate weights 0,1,... ,n — 1. (Note that finite flat
group schemes have Hodge-Tate numbers O and 1. This is why we cannot
use torsion of abelian varieties to produce our compatible system in
dimension n > 2.)

0. Tr=Sym"'ppy.

3. Tw7ndl. where 0: Gal(M/M) grises from a suitable CM extension M/F".

el e e D)
=l ey

4.  For all primes? # ¢-we have'
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If we can do this, we will be finished, since Indd is automorphic by automorphic
induction, and hence (given the modularity lifting theorem), so is"” Hence*is
automorphic, whence ™ "' Twris, whence (using modularity lifting and
another compatible system) Sym»!#%i is automorphic as desired. It is necessary
to introduce the auxiliary elliptic curve E', and generally to carry around a large
number of technical conditions, in order to make sure that the hypotheses of

the modularity lifting theorems are satisfied. We will now sketch how to

construct the compatible system of ¢ *

7. A FAMILY OF CALABI-YAU VARIETIES

Let n be even (we will explain at the very end how to get Proposition 5.1 for odd
n) and consider the scheme ¥ CP* x P! defined over Zla be the equation

SXPT 4+ XY = (n+ DiXo - X

Here[Xo: - :XaJand [s : t] are the homogenous coordinates onP"andP’,

respectively. Let7: Y — P'be the projection to the second factor, and let Y: be the

fiber above the point [1 : t]{! o isallowed) Consider the schemeZ!/Zls+lgiven
by7o  Ph{xUuwi} where #v11is the scheme of (n + 1)-st roots of unity. Then the
map ¥ ~ Tois smooth; iff €M1, then Y: has isolated ordinary quadratic

singularities at points where the Xj are all in#+1and Xo- X, =¢7",
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Let?  (m+1)""/per where the subgroup “n+: in question is embedded
1

diagonally. Over Zarr ol H acts on Y by

(Cos- - Gl X im0 Xy = [ Xo: - Gyl

Letfo = {(¢0.-.-.Gu) €G- -Ca =1} Then it is easy to see that Ho preserves each

fiber Y:. Iff € /1) then Ho permutes the singularities transitively. If (N,n + 1) = 1,

define a lisse sheaf on ' * At by
Vi [N| = VIN| = (R "%, Z/NZ).
If1is a prime that does not divide n + 1, then let"» Y ImV[™ <z Q)
Similarly, define' ("'mZ)" . Note that since Y is an (n — 1)-dimensional
variety, Poincare duality gives us alternating perfect pairings:

VIN| x VIN] — (Z/NZ)(1—n)
Tx Vi = Qil —n)
VxV — Z

Note that V[N], Vi, and ¥ #?Qare locally free of rank n. This and other basic facts
about our family were known to Dwork in the 1960's. Observe that the map

(P {0.5c}) xC — (P {0.xc})
trall

t —
is a finite etale Galois cover with Galois group H/Ho. Thus V descends to a
locally constant sheaf VonP{OM0.1.<} — We still have an alternating

pairingV *V — Z-As usual, let (V- ©C) pe the group of automorphisms that

respect the pairing. By studying monodromy, one can prove:
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Lemma 7.1. If* € F' (OO Locl then the map mE (€0 L xch2) = Sp(V22C) hag Zariski
dense image.

Combining this with a theorem of Matthews, Vaserstein, and Weisfeiler (Hy"d)
whose proof relies upon the classification of finite simple groups, we obtain
Lemma 7.2. There exists a constant C(n) such that ift € 7e{Cland all the prime

TH(T), 1) — Sp(V|N]z)

factors of N are greater than C(n), then the map ™'( is surjective.

If F is a number field, let W be a free rank n Z/NZ-modulewith a continuous action

W ox W — Z/NZ(l —n) View W as a

of GaliF’/1 and a perfect alternating pairing /"
sheaf over Spec F, and consider the functor {Zv x #'—schemes} — {Sets}that sends a To x

F-scheme X to the set of isomorphisms between (the pullbacks to X of) W and

V[N] that are compatible with the pairings.

This function is represented by a finite etale scheme Tw/(To x F). Then a
corollary of the previous lemma is that Corollary 7.3. If the prime factors of N
are all greater than C(n), thenZw(Clis connected for any/ —Cie. Tw is

geometrically irreducible.

Observe that if F is a number field and € To(£) then the Vi, are a compatible

system of l-adic representations ofGal(F/F).Let N = 11", and, choosing W
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appropriately, consider the scheme Tw that
parametrizes? € To with Vill'l = Sym"™ 7 and Vill"] = fudiy

It is now clear that to obtain our compatible system we just need to show that
there exists a totally real field K such that’w(X}/ @ To do this, we use the
following "local-to-global principle" of Moret-Bailly.

Theorem 7.4. Let F be a number field and let T/F be a smooth geometrically
irreducible variety. Let® = “1[I1%2be a finite set of places of F such that S
contains no infinite places. If* € 51 (resp. ¥ € 52) assume that there is a non-empty
(v-adically) open set'’ CT(F)(resp. a non empty openSGalFu’/Folinvariant
subset? € T(F") Here £’ is the maximal unramified extension of Fyw. Fix a finite
extension L/F.

Then there exists a finite Galois extension”/Qand a point’”’ € "(®)such that

1. L and K are linearly disjoint over @,

2. For all” € %1, v splits completely in K and’” € . For all* € 2, w is unramified in

S, and also ¥ € e,

We wish to apply this theorem with T = Tw andSt  {>.¢.--}and® = {4/} Note
thatoc € Siforces the field K given by the theorem to be totally real. As we already
know the geometric irreducibility of Tw, it remains to show the existence of the

open sets . w,
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