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ABSTRACT:-

Three-dimensional, incompressible Euler calculations of the interaction of perturbed antiparallel
vortex tubes using smooth initial profiles in a bounded domain with bounded initial vorticity are
discussed. A numerical method that uses symmetries and additional resolution in the direction and
location of maximum compression is used to simulate periodic boundary conditions in all
directions. For an initial condition that yields singular behavior, the growth of the peak vorticity,
the peak axial strain, and the enstrophy production obey (t-t)" and the enstrophy grows
logarithmically. The enstrophy growth is associated with the energy spectrum approaching k.

Self-similar development and equal rates of collapse in all three directions are shown.

. INTRODUCTION

One of the most difficult problems in computational fluid dynamics that has been addressed is
whether there is evidence for or against the existence of a singularity of the three-dimensional,
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incompressible Euler equations. Since two publications in 1987 in Physical Review Letters (Ash-
urst and Meiron; Pumir and Kerr), the favored approach to this problem has been direct, Eulerian
simulation of an initial value problem with two prescribed vortices. One of the major points of
these letters was that while Lagrangian vortex methods' are adequate for representing the initial
phase of development due to vortex core deformation, they are inadequate for representing the late
phases when the question of singularity arises. Since then, there has developed a growing body of
evidence from a variety of calculations that suggest there is no singularity and that at late times the
growth in the peak vorticity is, at most, exponential. The most detailed investigation is a series of
inviscid simulations of antiparallel vortices by Pumir and Siggia. Inviscid calculations with
random initial conditions in a periodic box with 256 resolution could also be interpreted as

supporting exponential growth.

In contrast to these inviscid calculations, there have been a few viscous calculations that have
suggested a singularity." The major difficulty with using a series of viscous calculations to infer
trends toward the limit of zero viscosity is that the range of Reynolds numbers that can be used is
too small. In addition, for at least one similar problem, whether there is a singularity of the
inviscid, two- dimensional, incompressible, magnetohydrodynamic equations, it has been
demonstrated that the trend toward a singularity indicated by viscous calculations could not be
reproduced by inviscid calculations. Therefore, due to the current weight of evidence against a
singularity, any claim for a singularity must match the computational power of the calculations
finding exponential growth, be able to reproduce the exponential behavior for similar initial condi-
tions, and from this suggest a reason for at least two types of behavior, exponential and singular.
In addition, the growth of various quantities such as the peak vorticity, that is, the L% norm of the
vorticity, and peak strains should be consistent with analytic constraints for the Euler equations.
Evidence for a singularity in an inviscid calculation that meets these requirements will be
presented in this paper. The result is consistent with the conclusion of Kerr and Hussain that with

their initial conditions, viscous calculations gave signs of singularity behavior.
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In order to investigate the question of a singularity of Euler, it is necessary to have a well-resolved
numerical method and initial conditions that are predisposed toward possible singular behavior.
The first two sections of this paper contain a brief discussion of the numerical method— details
appear in the Appendix—and a complete discussion of the initial conditions, including subtle, but
significant, differences with earlier work. Following this introduction, the analysis of the
calculation is broken into four major parts. First, symmetry plane contour plots and three-
dimensional isosurface plots of the vorticity will be used to show the basic development. Second,
singular development will be demonstrated by plotting in several ways peak vorticity, peak axial
strain, enstrophy, and enstrophy production as functions of time. These plots will show that the

trends are consistent with the analytic limits****

and that this behavior is maintained far beyond
the time of similar behavior in Pumir and Siggia. That is, singular behavior is maintained after the
time when the calculations of Pumir and Siggia shift to exponential, nonsingular growth. Included
iIs an analysis of the values and positions of the important components of the strains that
demonstrates self-similar behavior consistent with singular growth. This analysis is designed to
meet the objection that, even for this initial condition, the flow might eventually shift to expo-
nential growth and filtering the initial condition just provides an ingenious way to delay the
inevitable behavioral shift. In the next section there is a detailed structural analysis via contour
plots and three-dimensional surface plots to show how the curvature in three-dimensions could be
sustaining the singular behavior via Biot-Savart interactions. In the final analysis section, there is
additional discussion of resolution limits using curves of peak vorticity and axial strain at different

resolutions and spectra. Dynamical information contained in spectra is also discussed.

II. STRUCTURAL OVERVIEW OF THE CALCULATION

To provide an overview of the structural development Figs. 3(a)-3(h) show three-dimensional
isosurface plots of the vorticity squared. The x-z plane in front of each isosurface plot is through
the symmetry plane. None of the isosurface figures shows the entire domain. At early times, Figs.
3(a)-3(c), t=0-9, a larger subdomain containing the entire region of the initial perturbation is

shown. At late times, Figs. 3(d)-3(h), only the region of maximum vorticity is shown. Figures 3(c)
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and 3(d) show the vorticity at the same time t=9, in the different domains, to allow a comparison

between the two volumes used.

Off the symmetry plane, Fig. 3(a) shows the appearance of more anomalous regions of vorticity
that result from the initial filtering. Based on this figure, the maximum vorticity of the most
obvious leg is about 0.2. At later times contour plots show that the positions of these anomalous
regions do not change with respect to the major vortex and have about the same values, showing
that once the peak vorticity has grown sufficiently these relics of the initial conditions do not
affect the development in the vicinity of the peak vorticity. This is supported by Fourier calcu-
lations with less filtering in the initial conditions that do not have these anomalous regions, but

still show singular development.

To illustrate the development in the symmetry plane more clearly, Figs. 4(a)-4(c) show a series of
late times with the axes stretched in a manner similar to Pumir and Siggia.” The head and tail in
the symmetry plane that come from the dynamics, not from the initial conditions, develop from a
tilted, flattened region into a dimple in Fig. 4(a) at t—12.0. At later times this dimple becomes a
corner separating the head and tail. The definition of the "head" will be the region extending
above the vorticity peak “» just behind the leading edge of the vortex. The "tail" will be the vortex
sheet extending behind the peak vorticity. By stretching the coordinates to match the degree of
collapse in the different directions at a given time, then following the structure in time, it should
be possible to determine whether one direction becomes progressively more flattened or stretched
as the flow evolves and whether the rates of collapse are the same in different directions. For
singular behavior, one expects that the rates of collapse in all three directions will be the same. By
stretching z it can be seen that both the head and tail are vortex sheets and remain so, where in
earlier work only the tail seemed sheet like. As the flow evolves the region of peak vorticity
concentrates into the region where the vortex sheets of the head and tail meet at a sharp angle. In
Pumir and Siggia, these features are not observed. Instead, the head of their structures flattens into
the vortex sheet of the tail and the highest contours are not as concentrated. In viscous
calculations, the peak vorticity was located in the head. Figures 4(a)-4(c) indicate equal rates of
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collapse in x and z up to t= 17, which shows that as this flow evolves the only changes are that the

structures become better defined and more localized. Contour plots beyond t= 17 show a
continuation of these trends in the immediate vicinity of the peak vorticity, but there is too much

numerical noise outside that region to justify inclusion in this paper.

Three-dimensional isosurface plots in Figs. 3(e)-3(h) also show the flattening of the initial vortex
tubes with the appearance of a head and tail by t= 15. These figures show tilting in y toward the
dividing plane, with the tilted vortex coming in at the top of these figures from where it connects
to the main horizontal vortex. Some focusing toward the tip of the vorticity in the symmetry plane,
indicated by arrows in Figs. 3(g) and 3(h), occurs with the head seeming to increase in radius as it

moves away from the symmetry plane.

FIG. 3. Isosurface plots of the vorticity squared . {a) =0, (b) t=F6, (c) t=9, (d) 1=9, (e} t=12, {f) t=15, (g) =17, (h) t=18. All the plots have
a perspective from the position (1.7, —3.5, 0.9) if the box shown had unit sides. The periodic dimensions of the computation are 12.56¢ 12.56 ¢ 6.28.
(&)-(c) the domain is L, L,X L,;=6.28X6.28 X628 where x=6.28:12.56. (d)—(h) the domain is L,X L,X L,=3.9X3.9X3.9 where xﬁ4.9.8.7.
Cutoffs are chosen such that as peak vorticity becomes localized roughly the sarme volume is covered, The cutoffs are as follows: (2) 0.05X &2 where
|| =0.95. (b} 0. ISXm where |@,|=0.94. (c) 0. 15>(m where im |=123. (d) 0. 35><a) {e) C. 15><n) where |a,]=2.22. (f) 0. ISme where
]aJ | =4.7. (g) 001Xcop wherc ja,| --Il (h) OOIXaJ where (@,t= 23 Early times show the anomalous regions associated with the initial conchtmns
At thc final times a trailing vortex sheet in the tail snmllar 0 earher calculations™ Is seen, but in addition there is a distinct tubelike region forming the
head that focuses upon the tip, in the lower left corners of (g) and (h).
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The structure of the head in the symmetry plane cannot be identified at the final two times in Figs.
3(g) and 3(h) due to the resolution of the graphics. Filaments coming off the back of the tail

should have no influence for the development around the peak vorticity.

111. CONCLUSION

Evidence has been presented that a finite-time singularity of the incompressible Euler equations
develops from a smooth initial condition in a finite geometry. The strongest evidence for a
singularity comes from the time dependence of the peak vorticity ®» and the vorticity production
“€y®; pbetween t—15 and t= 17. Extensive resolution comparisons indicate that these quantities,
along with the peak axial strain ey, and the enstrophy € are well converged and consistent with
singular behavior up to the final time calculated, even though at a fairly early stage, by t= 12.5,
spectra begin to be under-resolved. To complement this primary evidence, indications of self-
similar behavior are presented. Equal rates of collapse in all three directions are indicated by
following ratios and locations of maxima and minima of components of the strain and by
comparing structures in two- and three-dimensional plots at different times. Singularities in
axisymmetric flows, which have recently been claimed, are not related to the singular behavior
reported here, in part because those flows cannot have collapse in all directions as a property. It is
this self-similar behavior with strong curvature in all directions that allows the strain to increase
along with the vorticity through Biot-Savart interactions, and prevents the strain saturation that
has led to exponential growth in other investigations of Euler singularities.® Without showing this
self-similar behavior the possibility that the structures could evolve toward a nonsingular form
would exist. Resolution comparisons show that the basic self-similar structure is not affected by
the possible resolution limitations indicated by spectra in Figs. 18(a)-18(c).

Consistent with algebraic, power-law, singular behavior for the peak vorticity, reasons why the
axial strain at the peak vorticity will scale as 1/(t—t) are discussed, but the theoretical prediction?

for the peak vorticity is less constrained, #»~1!/(z=9"% where ¥>1. Reasons are given why one
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might expect that ¥=1and plots of the inverses of - en,, and “<s; are used to demonstrate this.
A singular time t; is predicted by fitting the peak vorticity “», peak axial strain eyy,, and enstrophy

production “#4%; to the form 1/[t—t].

The evidence suggests that while the singularity of the peak vorticity occurs at a point the
singularity is not on a set of measure zero because the enstrophy also blows up. But the enstrophy
blowup is logarithmic, so this is not the singularity predicted by spectral closures, which predict
that the enstrophy scales as 1/t%. For the enstrophy to blow up, the kinetic energy spectrum must
be no steeper than k  at the singular time. From the time dependence of the slope of energy
spectra and the observation of logarithmic enstrophy blowup, it is suggested that the spectrum at

the singular time might be identically k™.

The time dependence of the peak axial strain ey, shifts to the correct asymptotic behavior in Fig.
6(b) only after Z=17. This shift does not appear to have any effect upon the overall development,

but the possibility exists that,
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FIG. 18. Spectra or Chebyshev distributions in (a) x, (b) y and (c) z, and (d) time dependence of slopes?- Times are
2 (0),4 . 9 (+),12.5(X), and 18 (0)-In (&) ¥ (O, 7, (A), and 1, (+).

when starting from more general initial conditions, the flow could follow several stronger false
asymptotes before developing the correct singular behavior. Indications of nonsingular behavior in
development from random initial conditions and Taylor-Green flow might be because those flows
are following incorrect initial asymptotes. At least in Taylor-Green, after a period of skewness
saturation, there is an indication that when the skewness begins to rise again that a new type of
behavior occurs that could be singular. One way to investigate whether there are singularities in
these flows would be to compare with viscous calculations of vortex reconnection. In Kerr and
Hussain, it was concluded from a series of viscous calculations using an initial conditions similar
to the one used here that their solutions would show a singularity in a finite time in the inviscid
limit. Reasons have been given why a series of viscous calculations cannot provide a reliable
prediction of singular behavior, but with the completion of this calculation, inviscid support for
their conclusion has been provided. Their calculation therefore provides us with a picture of how
viscosity would regularize the singular behavior found here and what the development after the
time of an inviscid singularity may be. These effects should be looked for in other viscous

calculations showing singular behavior, and work is in progress showing the relationship of the
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singular behavior found here to events at late times in calculations that were thought not to show

singular behavior.

How does this simulation compare with what is known about homogeneous, isotropic numerical
turbulence in a periodic box, the turbulent flow we know the most about and a paradigm for many
turbulent theories? Without a priori knowledge of decaying and forced simulations of isotropic,
homogeneous turbulence, the simulations reported here would predict that when starting from
random initial conditions a singularity will develop, although it might not dominate the initial
behavior. Furthermore, if it were assumed there is a finite probability of these events occurring
homogeneously in space and time in the inviscid limit, then time averages of properties such as
enstrophy production and fourth moment of the vorticity in recon- nection calculations should
produce many of the statistics of isotropic calculations. Based upon the time dependence of the
enstrophy production and fourth moment of vorticity as the singular time is approached, one
would then expect Reynolds number dependence of both the velocity derivative skewness and
flatness, with the skewness dependence being weaker. This is what is reported experimentally (see
the references in Van Atta and Antonia). In addition, because the components of the strain have
the same time dependence as the vorticity as the singular time is approached, one would expect
that all flatnesses of fourth-order combinations of velocity derivatives would have the same
Reynolds number dependence. The magnitudes of these derivative flatnesses could be very
different, just as the magnitude of the peak vorticity is much larger than the magnitudes of the

strain components, but they should scale with Reynolds numbers in the same way.

Few of these properties are found in simulations of isotropic, homogeneous turbulence. There is
no evidence from the inviscid calculations® for a singularity, and this seems associated with vortex
flattening, saturation of the strain, and saturation of the velocity derivative skewness near a value
of 0.5. This is consistent with a long history of decaying and forced simulations of isotropic,
homogeneous turbulence, now reaching £:=200 on a 512 mesh, where the steady-state value for
the skewness is about 0.5 and independent of Reynolds number. A prediction of the simulation of
forced turbulence is that different fourth- order derivative flatnesses should have different
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Reynolds number dependencies. One's first prejudice would be that these differences are because
the Reynolds number of the isotropic simulations is not large enough. But given the enormous
consistency of calculations of homogeneous, isotropic turbulence over the years, it seems unlikely
that low Reynolds number is the only reason for these differences. It seems that there is some
important physics that we do not yet understand in going from singularities and vortex re-
connection to fully developed turbulence. The evidence would suggest that in homogeneous,

isotropic numerical turbulence in a box the probability of nearly singular events occurring is zero.

In addition to the singular solution, another initial condition with nonsingular, exponential growth
has been discussed. Numerous other calculations have also observed exponential growth. Which
of the two classes of solutions is more relevant to understanding turbulence? It is possible that
both are important. The mechanism that suppresses the singularity for the unfiltered initial condi-
tion might have a role in suppressing the singularity in homogeneous turbulence. The dynamics of
the unfiltered initial conditions might also be relevant to viscous boundary layers, where a region
of negative vorticity between the primary vortex and the wall, similar to those appearing from the
unfiltered initial conditions, does form and move in front of the primary vortex, leading to what is

known as the bursting phenomena.

The resolution tests in this study generally support the numerical accuracy of these calculations,
but some areas of concern have been noted, in particular, power-law spectra reaching the highest
wave numbers at an early stage. It would be desirable to reproduce and possibly extend the
singular behavior with a calculation that uses an entirely different numerical method, for example,
a nested mesh finite-difference code.> Hopefully, vorticity would develop the same asymptotic
behavior and the signs of self-similar growth could be improved. The major difficulty with a
finite-difference code could be finding an initialization procedure that included filtering in
physical space. The success of wavelet filtering of initial conditions in two dimensions suggests
that as a possible procedure. If the initialization problem can be overcome, the initial objective

would be over-resolution during the phase equivalent to the early stages of this calculation. Once
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this has been accomplished, it could then be discovered whether the singular behavior at late times

found here can be reproduced.
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