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ABSTRACT:- 

While planning the execution of report-generation workloads, database administrators often need 

to know how long different query workloads will take to run. Database systems run mixes of 

multiple queries of different types concurrently. Hence, estimating the completion time of a query 

workload requires reasoning about query mixes and inter-query interactions in the mixes; rather 

than considering queries or query types in isolation. This paper presents a novel approach for 

estimating workload completion time based on experiment-driven modeling and simulation of the 

impact of inter-query interactions. A preliminary evaluation of this approach with TPC-H queries 

on IBM DB2 shows how our approach can consistently predict workload completion times with 

good accuracy. 

I. INTRODUCTION 
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Data warehouses, and Business Intelligence (BI) workloads that run on these warehouses, are an 

important and growing segment of the database market [1]. Many BI workloads are long-running 

batch workloads that get executed repeatedly at different periods. An important question to ask 

about a batch BI workload is: “How long will this workload take to complete?” The answer to this 

question is useful in many workload management contexts. For example, this question arises when 

a database administrator (DBA) is deciding whether the execution of a report-generation workload 

will fit within the available batch window. A tool that estimates the completion time of a BI 

workload can also be used as a what-if module. For example, the DBA can consider different 

ways to reorder the workload or partition the workload in a parallel system, and ask how long 

each execution would take. 

Unfortunately, the state of the art does not provide a database administrator with any tools that 

predict the completion time of a batch BI workload. In this paper, we address this problem and 

propose an approach for predicting the completion times of such workloads. A unique and 

defining feature of our approach is that it takes query interactions into account. At any point in the 

execution of a typical workload in a database system, the system will be running a mix of queries 

of different types. These queries run concurrently and interact with each other, and this interaction 

can have a significant impact on performance. Sometimes this impact can be positive and 

sometimes it can be negative. For example, a query Q1 can bring data into the buffer pool that is 

then used by a concurrently running query Q2 (an example of positive interaction). Alternatively, 

Q1 and Q2 could interfere with each other on hardware resources such as CPU or memory, or on 

internal database system resources such as latches or locks (all examples of negative interaction). 

In order to demonstrate the significant impact of query interactions, we use queries from the TPC-

H decision support benchmark with a database size of 10GB running on DB2 (our experimental 

setting is described in Section III). Table I shows the run time of the 6 longest running TPC-H 

queries when they run alone in the system, which we denote by tj . 
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Table II shows three query mixes for this setting. For each mix, the table shows the number of 

queries of each type, Nij , and the average run time of each query type, Aij . The high variability in 

Aij illustrates the impact of query interactions. For example, consider the performance of Q7 in the 

two mixes m1 and m3. Mix m1 presents an example of positive interaction for Q7. The average 

run time of Q7 in this mix is 72:7 seconds, while the run time of Q7 when it is run alone in the 

system is 102:06 seconds. Thus, Q7 benefits from being run in this mix. On the other hand, Q7 

suffers due to negative interaction in mix m3. Mix m2 presents another example of positive 

interaction, this time for Q18. 

We emphasize that these positive interactions are not due to the simple benefit of concurrent 

execution where individual query run times increase when run together, but the overall completion 

time is less than the time required to run the queries one at a time. Instead, we see here that every 

instance of Q7 (or Q18) takes less time in mix m1 (or m2) than when it runs alone. Further 

demonstration of the impact of query interactions in query mixes can be found in [2]. 

Figure 1 illustrates how much the interactions in query mixes can impact the end-to-end run times 

of different workloads. The figure shows the run times of two workloads. Both workloads consist 

of exactly the same 60 instances of TPC-H queries running on a 10GB database on DB2. The 

database physical design and the tuning parameters of DB2 are the same for both workloads. The 

only difference between the two workloads is the arrival order of the queries, which results in 

different query mixes being executed by the system. This simple change results in the completion 

time varying from 3:3 hours to 5:4 hours. In Workload 1, queries that compete for resources get 

executed concurrently, resulting in negative interactions. In Workload 2, queries that help each 

other get executed together, resulting in positive interactions. The 2.1 hour difference in 

performance is completely attributable to different query interactions in the different runs. Figure 

1 also shows the completion time predictions of our interaction-aware solution, and it is clear that 

these predictions are quite accurate. 
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TABLE I : RUN TIME tj (IN SECONDS) OF DIFFERENT TPC-H QUERY TYPES ON A 10GB DATABASE 

 

TABLE II : AVERAGE RUN TIME Aij (IN SECONDS) OF DIFFERENT QUERY TYPES IN QUERY MIXES ON 

A 10GB DATABASE 

 

 

                                                 Fig. 1. Workload completion time for different arrival orders 

 

We are not aware of any work focusing on predicting the completion time of BI workloads, 

particularly in an interaction-aware manner. Overall, there is very little work that deals in a 

general way with the performance of concurrently executing query mixes and the interactions 

within these mixes. 

In our prior work ([3], [4]), we have addressed the issue of interaction-aware query scheduling and 

presented solutions that significantly improve performance over interactionoblivious schedulers. 
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In this paper, as well as in [3] and [4], we use experiment-driven performance modeling to capture 

the effect of query interactions. 

Experiment-driven performance modeling is gaining wide acceptance as a way to build robust 

performance models for complex systems. A relevant work from this area is [5], which uses 

statistical learning techniques to predict performance metrics for database queries. That paper is 

able to make performance predictions for individual query types with less than 20% error for 85% 

of the test cases. However, the paper focuses exclusively on single query types and does not 

consider interactions and query mixes, which are our focus in this paper. By using our interaction-

aware techniques, we are able to achieve prediction accuracy similar to [5] for batch BI workloads 

with interacting queries. 

We present our approach for predicting the completion time of a workload in Section II. Section 

III presents a brief empirical evaluation of this approach using TPC-H queries on DB2. We 

conclude in Section IV. 

 

                                                                Fig. 2. Solution overview 
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II. PREDICTING COMPLETION TIME OF A WORKLOAD 

An overview of our solution is presented in Figure 2. Our solution has two parts: (1) an 

experiment-driven model learning component that we use to build interaction-aware performance 

models, and (2) a workload simulator that uses these performance models to predict the 

completion time of a given workload. We assume that the set of query types is known a priori, 

determined by the DBA. When predicting the execution time of a given workload, we assume that 

the full batch of queries in this workload is known and queued for execution. The queries are 

dispatched to the database system and they execute concurrently until the workload completes. 

We assume that the number of queries that execute concurrently, also known as the multi-

programming level (MPL), is fixed, which is typically the case in batch BI systems [6]. Next, we 

describe the two parts that make up our solution. 

Experiment-driven Modeling: To predict the completion times of different workloads, we need 

interaction-aware performance models that predict the completion times of individual query types 

in different query mixes. It may be possible to observe different query interactions through 

passively monitoring the workloads in a production system. If we monitor the execution of 

production workloads, we could determine which query mixes are actually encountered in these 

workloads, how long each mix runs, and what effect each mix has on the completion time of each 

query type. We could then train statistical models for the performance of different query types 

based on these observations. This, however, cannot guarantee  comprehensive coverage of the 

space of possible query mixes and can therefore result in inaccurate models. Thus, there is a need 

to generate a representative set of sample query mixes and to train the models based on these 

samples. 

Our approach to building performance models is to run experiments to collect samples from the 

space of possible query mixes and fit statistical models to the observed query performance in these 
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samples. This experiment-driven modeling is an off-line process that is done once for a given set 

of query types. The models generated via this one-time process can be used to predict the 

completion time of any future workload composed of queries from this set of query types. 

The model for a given query type, say  is trained from a set of n samples, where sample 

has the form  Sample si denotes an 

observation that the average run time of Qj queries when run in mix mi is Aij (T is the number of 

query types). One simple technique to generate a representative set of samples is to choose 

randomly from the space of possible query mixes. However, random sampling is inefficient from 

the modeling perspective because mixes from the same local space may be repeated unnecessarily. 

The family of space-filling designs contains more efficient sampling techniques. Latin Hypercube 

Sampling (LHS) comes from this family and performs well in practice [7]. LHS has the nice 

properties of efficiency and good coverage of the mix space. It has successfully been used in other 

work on database systems (e.g., [8], [9]). In our setting, we adjust the mix generated by LHS such 

that where M is the multi-programming level of the system. Also, we observed 

that the number of distinct query types in a mix m has a strong impact on query interactions. Let 

us define the interaction level of a mix m as the number of distinct query types in m. The 

maximum number of interaction levels possible in the system is num ILs = min(T;M). We make 

sure that our set of representative mixes contain roughly equal number of samples for all 

interaction levels in  

Sampling the space of possible query interactions is the first step towards modeling the effect of 

these interactions on performance. The next step is to fit a statistical model to the observed 

performance in the samples. Our goal is to obtain a function for each query type  of the form 

 where represents the statistical model. The form of  depends 

on the type of model that we use (the model structure). There are many well-known model 
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structures, such as linear regression, regression trees, locally weighted linear regression, and 

Gaussian processes. 

The choice of model structure impacts model accuracy, but if the training data is representative, 

then a good model can typically be found easily. In our work, we use Gaussian processes [10] 

since we found them to be a good model structure that is accurate for a broad spectrum of query 

mixes.  

Workload Simulator: To estimate the completion time of a given workload, we use a workload 

simulator that simulates the changing query mixes during workload execution. To predict these 

changing query mixes and estimate the time that each mix will run for, the workload simulator 

uses the interaction-aware performance models built in our off-line modeling phase. From the run 

times of the mixes, the simulator estimates the completion time of the entire workload. 

We consider the execution of the workload as a sequence of mixes of M queries each, where M is 

the multi-programming level of the system. These mixes, which we call workload phases, change 

when one query finishes and another starts. 

The simulator tracks the fraction of total work completed by each query in each phase. Consider a 

query instance, qj , of type  This query instance will start with the start of some workload 

phase, and this workload phase would be query phase 1 for this query instance. The query will 

execute through different workload phases until it completes all the work it needs to perform. Let 

 be the fraction of qj ’s work completed in its query phases 1 to i. When qj starts, its 

and qj is done when its We define the following recurrence relation to keep 

track of wcij through the different query phases: 
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The fraction of qj ’s work completed up to query phase i-1 is  and the remaining work 

after phase i - 1 is  The fraction of this remaining work that is completed during 

query phase i is where li is the length of phase i and aij is the predicted remaining 

completion time of query instance qj when it executes in the query mix of phase i. If qj continues 

executing in this mix, it would finish in time aij . Since phase i will end in time li, qj will only 

complete  of its remaining work in this phase. 

To estimate aij , the simulator uses the performance model to obtain the estimated completion time 

of qj in the mix of phase i, This is the time required for qj to execute from start to finish in 

this mix. Since qj has already completed  of its work, the simulator multiplies the 

estimate  by  

 

 

To estimate li, the length of phase i, we observe that phase i will continue until one of the running 

queries finishes, at which point the simulator will transition to phase i+1. Thus, phase i will end at 

the earliest time a query finishes. That is,  

 

In phase i, the simulator uses Equation 1 to update the work completed for all queries running in 

this phase. After this update, some queries will have and these queries are finished and 

removed from the mix. The next queries in the workload will take their place to start phase i + 1. 

In phase i + 1, the query mix is different from the one in phase i, so the simulator uses Equation 2 

to recompute the estimated remaining time for all queries in the mix. The simulator then 
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estimates the length of phase i+1 using Equation 3. The simulator then transitions from phase i+1 

to phase i+2, and this continues until all  workload queries are executed. 

The simulator estimates the completion time for the whole workload, LW, as the total length of all 

the workload phases:  

 

III. EXPERIMENTS 

Our experiments are run on a machine with dual 3.4GHz Intel Xeon CPUs and 4.0GB of RAM 

running Windows Server 2003. The database server we use is DB2 version 8.1. We use the TPC-

H database with scale factors 1GB and 10GB. The buffer pool size of the database was set to 

400MB and 2.4GB for the 1GB and 10GB databases, respectively. We use all 22 TPC-H query 

types except for Q15 which creates and drops a view. We generate different workloads for our 

experiments by varying the database size, the number of query types, the arrival order of the 

queries, the MPL, and the scheduling policy. Some workloads use all 21 TPC-H query types, 

while others use the 6 or 12 longest running query types. To vary the arrival order of the queries in 

the workloads, we generate each workload by going over the different query types in a round-

robin fashion and placing B instances of each query type in the arrival queue, until all queries are 

in the queue. By varying B, we vary the skew in the arrival order. For some workloads, we use 

First Come First Served as the scheduling policy and for others we use Shortest Job First. In total, 

we generate 90 different workloads with actual completion times ranging from 30 minutes to more 

than 5 hours. Our metric for evaluating the accuracy of completion time prediction for a given 

workload is the relative error in predicted completion time, defined as:  

where pred is the predicted and act is the actual completion time. To build the performance 

models required by our workload simulator, we 
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collect samples and train a Gaussian processes model using the Weka data mining toolkit [11] . 

Figure 3 shows the cumulative frequency distribution of the relative error in prediction for the 90 

workloads used in our experiments. (A cumulative distribution towards the upper-left corner 

represents lower error than one towards the lower-right corner.) The figure shows the error for two 

cases. In one case, we use performance models trained on 5T samples and in the other we use 

models trained on 10T samples (recall that T denotes the number of query types). Thus, for 21 

TPC-H 

query types, we collect no more than 105 sample mixes in the case of 5T, and no more than 210 

sample mixes for 10T. 

From Figure 3, we can see that the prediction errors in case of 5T training samples are less than 

20% about 80% of the time. If the DBA has a larger sampling budget and is willing to collect up 

to 10T samples, then the overall accuracy improves to the point where the prediction errors are 

less than 20% around 90% of the time. These end-to-end results show that our sampling, 

modeling, and workload simulation algorithms result in accurate and robust predictions across a 

wide range of workloads. The DBA can now make highly 

 

                                  Fig. 3. Prediction error across all workload runs for 5T and 10T training Samples 
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accurate predictions for future workloads in her database by collecting a small number of samples 

just once (which can be done along with initial system setup and tuning). 

IV. CONCLUSION 

DBAs in a business intelligence setting often need to predict the completion time of different 

batch workloads. In this paper, we present an approach for predicting workload completion times 

that takes into account the effect of interaction among concurrently running queries. This 

approach relies on: (1) experiment driven performance modeling, and (2) a workload simulator 

that uses the performance models to simulate the execution of a workload and thereby predict its 

completion time. 

An experimental evaluation of our approach demonstrates that it can predict completion times 

with a high degree of accuracy across a broad spectrum of workloads. 
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