[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

Study of Different Intelligence Level of Workload within Completion
Times

Journal of
Avances in
Science and

Nirbhai Singh
Research Scholar, Manav Bharti University, H.P., INDIA

ABSTRACT:-

While planning the execution of report-generation workloads, database administrators often need
to know how long different query workloads will take to run. Database systems run mixes of
multiple queries of different types concurrently. Hence, estimating the completion time of a query
workload requires reasoning about query mixes and inter-query interactions in the mixes; rather
than considering queries or query types in isolation. This paper presents a novel approach for
estimating workload completion time based on experiment-driven modeling and simulation of the
impact of inter-query interactions. A preliminary evaluation of this approach with TPC-H queries
on IBM DB2 shows how our approach can consistently predict workload completion times with
good accuracy.

I. INTRODUCTION

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

Data warehouses, and Business Intelligence (Bl) workloads that run on these warehouses, are an
important and growing segment of the database market [1]. Many Bl workloads are long-running
batch workloads that get executed repeatedly at different periods. An important question to ask
about a batch BI workload is: “How long will this workload take to complete?”” The answer to this
question is useful in many workload management contexts. For example, this question arises when
a database administrator (DBA) is deciding whether the execution of a report-generation workload
will fit within the available batch window. A tool that estimates the completion time of a Bl
workload can also be used as a what-if module. For example, the DBA can consider different
ways to reorder the workload or partition the workload in a parallel system, and ask how long

each execution would take.

Unfortunately, the state of the art does not provide a database administrator with any tools that
predict the completion time of a batch Bl workload. In this paper, we address this problem and
propose an approach for predicting the completion times of such workloads. A unique and
defining feature of our approach is that it takes query interactions into account. At any point in the
execution of a typical workload in a database system, the system will be running a mix of queries
of different types. These queries run concurrently and interact with each other, and this interaction
can have a significant impact on performance. Sometimes this impact can be positive and
sometimes it can be negative. For example, a query Q; can bring data into the buffer pool that is
then used by a concurrently running query Q, (an example of positive interaction). Alternatively,
Q: and Q, could interfere with each other on hardware resources such as CPU or memory, or on

internal database system resources such as latches or locks (all examples of negative interaction).

In order to demonstrate the significant impact of query interactions, we use queries from the TPC-
H decision support benchmark with a database size of 10GB running on DB2 (our experimental
setting is described in Section Ill). Table I shows the run time of the 6 longest running TPC-H

queries when they run alone in the system, which we denote by tj .

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

Table Il shows three query mixes for this setting. For each mix, the table shows the number of
queries of each type, Nj;, and the average run time of each query type, A;; . The high variability in
Aij illustrates the impact of query interactions. For example, consider the performance of Q- in the
two mixes m1 and m3. Mix m1 presents an example of positive interaction for Q,. The average
run time of Q, in this mix is 72:7 seconds, while the run time of Q; when it is run alone in the
system is 102:06 seconds. Thus, Q; benefits from being run in this mix. On the other hand, Q-
suffers due to negative interaction in mix m3. Mix m2 presents another example of positive

interaction, this time for Qqg.

We emphasize that these positive interactions are not due to the simple benefit of concurrent
execution where individual query run times increase when run together, but the overall completion
time is less than the time required to run the queries one at a time. Instead, we see here that every
instance of Q; (or Qqg) takes less time in mix ml (or m2) than when it runs alone. Further

demonstration of the impact of query interactions in query mixes can be found in [2].

Figure 1 illustrates how much the interactions in query mixes can impact the end-to-end run times
of different workloads. The figure shows the run times of two workloads. Both workloads consist
of exactly the same 60 instances of TPC-H queries running on a 10GB database on DB2. The
database physical design and the tuning parameters of DB2 are the same for both workloads. The
only difference between the two workloads is the arrival order of the queries, which results in
different query mixes being executed by the system. This simple change results in the completion
time varying from 3:3 hours to 5:4 hours. In Workload 1, queries that compete for resources get
executed concurrently, resulting in negative interactions. In Workload 2, queries that help each
other get executed together, resulting in positive interactions. The 2.1 hour difference in
performance is completely attributable to different query interactions in the different runs. Figure
1 also shows the completion time predictions of our interaction-aware solution, and it is clear that

these predictions are quite accurate.

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-Il, ISSUE - 1]

August , 2011

ISSN-2230-9659

@)
294.61

Q7
[02.06

)
578.61

Q13
[01.27

Q18
554.56

Q21
570.37

Query Type
Run Time ¢; (sec)

TABLE I : RUN TIME tj (IN SECONDS) OF DIFFERENT TPC-H QUERY TYPES ON A 10GB DATABASE

01 T Q0 013 Q18 071
I\'I{\ .'a\-'-i. _',! _4 i _',! .'a\-'-i. _',! _-4. £ _',! .'a\-'-i. _',! _4 i _',! .'a\-'-f.‘, _'; _-4 g'.j _'a\'-f;', 3- .'qf.‘, _'; _'N\-'-f;', 3- _4 £ 3-
— I [18974 2 | 727 | 5 | 29093 0 (00| 2 |[19041| 0 | 00
mz || 4 | 530 | 0 | 00 | 0 0.0 o |oo| 1 | 5303] 0 |00
ms || 0 0.0 4 | 2645 0 0.0 o |oo| 1 [34137] 0 |00

TABLE Il : AVERAGE RUN TIME Aj; (IN SECONDS) OF DIFFERENT QUERY TYPES IN QUERY MIXES ON
A 10GB DATABASE

m Actual Time
= Predicted Time

L]

Completion time in hours
P

-

Workloads

Fig. 1. Workload completion time for different arrival orders

We are not aware of any work focusing on predicting the completion time of Bl workloads,
particularly in an interaction-aware manner. Overall, there is very little work that deals in a
general way with the performance of concurrently executing query mixes and the interactions

within these mixes.

In our prior work ([3], [4]), we have addressed the issue of interaction-aware query scheduling and

presented solutions that significantly improve performance over interactionoblivious schedulers.

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659
In this paper, as well as in [3] and [4], we use experiment-driven performance modeling to capture

the effect of query interactions.

Experiment-driven performance modeling is gaining wide acceptance as a way to build robust
performance models for complex systems. A relevant work from this area is [5], which uses
statistical learning techniques to predict performance metrics for database queries. That paper is
able to make performance predictions for individual query types with less than 20% error for 85%
of the test cases. However, the paper focuses exclusively on single query types and does not
consider interactions and query mixes, which are our focus in this paper. By using our interaction-
aware techniques, we are able to achieve prediction accuracy similar to [5] for batch Bl workloads

with interacting queries.

We present our approach for predicting the completion time of a workload in Section Il. Section

Il presents a brief empirical evaluation of this approach using TPC-H queries on DB2. We

Set of Query Training Dafa
Types E:pvurir_nunhl for Model Sutls_tlul
Sampling of .| Modeling of
Mixas Interactions

conclude in Section IV.

Off-line sampling Performance
and model learming Model
Workload g
Simulate "
Fredicting imulater 1€
for a given _______/
workload Workload
o ﬂr‘_ﬁj
* Predicted Completion
Time

Fig. 2. Solution overview

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

Il. PREDICTING COMPLETION TIME OF A WORKLOAD

An overview of our solution is presented in Figure 2. Our solution has two parts: (1) an
experiment-driven model learning component that we use to build interaction-aware performance
models, and (2) a workload simulator that uses these performance models to predict the
completion time of a given workload. We assume that the set of query types is known a priori,
determined by the DBA. When predicting the execution time of a given workload, we assume that
the full batch of queries in this workload is known and queued for execution. The queries are

dispatched to the database system and they execute concurrently until the workload completes.

We assume that the number of queries that execute concurrently, also known as the multi-
programming level (MPL), is fixed, which is typically the case in batch Bl systems [6]. Next, we

describe the two parts that make up our solution.

Experiment-driven Modeling: To predict the completion times of different workloads, we need
interaction-aware performance models that predict the completion times of individual query types
in different query mixes. It may be possible to observe different query interactions through
passively monitoring the workloads in a production system. If we monitor the execution of
production workloads, we could determine which query mixes are actually encountered in these
workloads, how long each mix runs, and what effect each mix has on the completion time of each
query type. We could then train statistical models for the performance of different query types
based on these observations. This, however, cannot guarantee comprehensive coverage of the
space of possible query mixes and can therefore result in inaccurate models. Thus, there is a need
to generate a representative set of sample query mixes and to train the models based on these

samples.

Our approach to building performance models is to run experiments to collect samples from the
space of possible query mixes and fit statistical models to the observed query performance in these

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

samples. This experiment-driven modeling is an off-line process that is done once for a given set
of query types. The models generated via this one-time process can be used to predict the

completion time of any future workload composed of queries from this set of query types.

The model for a given query type, say @i s trained from a set of n samples, where sample
si.1 <4< nhas the form & = (madi) = (Moo, Nirs Aij). Sample si denotes an
observation that the average run time of Q; queries when run in mix mi is A;; (T is the number of
query types). One simple technique to generate a representative set of samples is to choose
randomly from the space of possible query mixes. However, random sampling is inefficient from

the modeling perspective because mixes from the same local space may be repeated unnecessarily.

The family of space-filling designs contains more efficient sampling techniques. Latin Hypercube
Sampling (LHS) comes from this family and performs well in practice [7]. LHS has the nice
properties of efficiency and good coverage of the mix space. It has successfully been used in other

work on database systems (e.g., [8], [9]). In our setting, we adjust the mix generated by LHS such

that Z;l Nij = M. where M is the multi-programming level of the system. Also, we observed
that the number of distinct query types in a mix m has a strong impact on query interactions. Let
us define the interaction level of a mix m as the number of distinct query types in m. The
maximum number of interaction levels possible in the system is num ILs = min(T;M). We make
sure that our set of representative mixes contain roughly equal number of samples for all

interaction levels in 11:-- - - numAILs}.

Sampling the space of possible query interactions is the first step towards modeling the effect of
these interactions on performance. The next step is to fit a statistical model to the observed

performance in the samples. Our goal is to obtain a function for each query type Qj of the form

Aj = F(N1. Na oo NT). \where f{-Jrepresents the statistical model. The form of f(.) depends

on the type of model that we use (the model structure). There are many well-known model

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

structures, such as linear regression, regression trees, locally weighted linear regression, and

Gaussian processes.

The choice of model structure impacts model accuracy, but if the training data is representative,
then a good model can typically be found easily. In our work, we use Gaussian processes [10]
since we found them to be a good model structure that is accurate for a broad spectrum of query

mixes.

Workload Simulator: To estimate the completion time of a given workload, we use a workload
simulator that simulates the changing query mixes during workload execution. To predict these
changing query mixes and estimate the time that each mix will run for, the workload simulator
uses the interaction-aware performance models built in our off-line modeling phase. From the run

times of the mixes, the simulator estimates the completion time of the entire workload.

We consider the execution of the workload as a sequence of mixes of M queries each, where M is
the multi-programming level of the system. These mixes, which we call workload phases, change

when one query finishes and another starts.

The simulator tracks the fraction of total work completed by each query in each phase. Consider a

query instance, qj , of type Qi This query instance will start with the start of some workload
phase, and this workload phase would be query phase 1 for this query instance. The query will
execute through different workload phases until it completes all the work it needs to perform. Let

Weij be the fraction of qj ’s work completed in its query phases 1 to i. When qj starts, its

wegg = 0, 3nd qj is done when its ¢ = 1-We define the following recurrence relation to keep
track of wcij through the different query phases:

g j = 1

wey; = weg—1); + (1 —weg_1y;) * fij 1)

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

The fraction of qj ’s work completed up to query phase i-1 is “'“(i~1)i* and the remaining work
after phase i - 1is (1 = ®C(i—1)j)- The fraction of this remaining work that is completed during
query phase i is fis = 1i/ @ijs\where l; is the length of phase i and a;; is the predicted remaining
completion time of query instance gj when it executes in the query mix of phase i. If gj continues

executing in this mix, it would finish in time a; . Since phase i will end in time li, gj will only

l

complete il % of its remaining work in this phase.

To estimate a;; , the simulator uses the performance model to obtain the estimated completion time

of gj in the mix of phase i, “4ii- This is the time required for q; to execute from start to finish in

this mix. Since g; has already completed *“(i—1)i of its work, the simulator multiplies the

estimate L7 by (1= We(i-1)).

di; = (1— u!f*u_lu) * ,-1” (2)

To estimate I;, the length of phase i, we observe that phase i will continue until one of the running
queries finishes, at which point the simulator will transition to phase i+1. Thus, phase i will end at
the earliest time a query finishes. That is,

[; = min (a;; (3)
j:l..._-'n"(i)

In phase i, the simulator uses Equation 1 to update the work completed for all queries running in
this phase. After this update, some queries will have “¢; = L. and these queries are finished and
removed from the mix. The next queries in the workload will take their place to start phase i + 1.
In phase i + 1, the query mix is different from the one in phase i, so the simulator uses Equation 2

to recompute the estimated remaining time “(:+1)7 for all queries in the mix. The simulator then

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

estimates the length of phase i+1 using Equation 3. The simulator then transitions from phase i+1

to phase i+2, and this continues until all Wi workload queries are executed.

The simulator estimates the completion time for the whole workload, LW, as the total length of all

the workload phases:

|W | =M 41

Lw= Y &

i=1
I1l. EXPERIMENTS

Our experiments are run on a machine with dual 3.4GHz Intel Xeon CPUs and 4.0GB of RAM
running Windows Server 2003. The database server we use is DB2 version 8.1. We use the TPC-
H database with scale factors 1GB and 10GB. The buffer pool size of the database was set to
400MB and 2.4GB for the 1GB and 10GB databases, respectively. We use all 22 TPC-H query
types except for Q5 which creates and drops a view. We generate different workloads for our
experiments by varying the database size, the number of query types, the arrival order of the
queries, the MPL, and the scheduling policy. Some workloads use all 21 TPC-H query types,
while others use the 6 or 12 longest running query types. To vary the arrival order of the queries in
the workloads, we generate each workload by going over the different query types in a round-
robin fashion and placing B instances of each query type in the arrival queue, until all queries are
in the queue. By varying B, we vary the skew in the arrival order. For some workloads, we use
First Come First Served as the scheduling policy and for others we use Shortest Job First. In total,
we generate 90 different workloads with actual completion times ranging from 30 minutes to more

than 5 hours. Our metric for evaluating the accuracy of completion time prediction for a given

: . : : L : . rel = leredzactl oy,
workload is the relative error in predicted completion time, defined as: act

where pred is the predicted and act is the actual completion time. To build the performance

models required by our workload simulator, we

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

collect samples and train a Gaussian processes model using the Weka data mining toolkit [11] .

Figure 3 shows the cumulative frequency distribution of the relative error in prediction for the 90
workloads used in our experiments. (A cumulative distribution towards the upper-left corner
represents lower error than one towards the lower-right corner.) The figure shows the error for two
cases. In one case, we use performance models trained on 5T samples and in the other we use
models trained on 10T samples (recall that T denotes the number of query types). Thus, for 21
TPC-H

query types, we collect no more than 105 sample mixes in the case of 5T, and no more than 210

sample mixes for 10T.

From Figure 3, we can see that the prediction errors in case of 5T training samples are less than
20% about 80% of the time. If the DBA has a larger sampling budget and is willing to collect up
to 10T samples, then the overall accuracy improves to the point where the prediction errors are
less than 20% around 90% of the time. These end-to-end results show that our sampling,
modeling, and workload simulation algorithms result in accurate and robust predictions across a

wide range of workloads. The DBA can now make highly

120%

+10T-LHS
“+5T-LHS
100% |

Y

S 80% |

L o

@ 60%

=

=

E 40% |

=

o

20%

0%
0% 10% 20% 30% 40% 50%
Percent error in prediction

Fig. 3. Prediction error across all workload runs for 5T and 10T training Samples

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

accurate predictions for future workloads in her database by collecting a small number of samples

just once (which can be done along with initial system setup and tuning).
IV. CONCLUSION

DBAs in a business intelligence setting often need to predict the completion time of different
batch workloads. In this paper, we present an approach for predicting workload completion times
that takes into account the effect of interaction among concurrently running queries. This
approach relies on: (1) experiment driven performance modeling, and (2) a workload simulator
that uses the performance models to simulate the execution of a workload and thereby predict its

completion time.

An experimental evaluation of our approach demonstrates that it can predict completion times

with a high degree of accuracy across a broad spectrum of workloads.

REFERENCES

[1] D. Feinberg and M. A. Beyer, “Magic quadrant for data warehouse database management systems,”

Gartner Research Note, 2008, mediaproducts. gartner.com/reprints/microsoft/vol3/article7/article7.html.

[2] M. Ahmad, A. Aboulnaga, and S. Babu, “Query interactions in database workloads,” in Proc. Int.
Workshop on Testing Database Systems (DBTest), 2009.

[3] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala, “QShuffler: Getting the query mix right,” in Proc.
Int. Conf. on Data Engineering (ICDE), 2008.

[4] ——, “Modeling and exploiting query interactions in database systems,” in Proc. ACM Conf. on

Information and Knowledge Management (CIKM), 2008.

[5] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox, M. Jordan, and D. Patterson, “Predicting multiple

metrics for queries: Better decisions enabled by machine learning,” in Proc. Int. Conf. on Data Engineering
(ICDE), 20009.

www.ignited.in

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-ll, ISSUE - 1] WAUT{K aawiek]

ISSN-2230-9659

[6] A. Mehta, C. Gupta, and U. Dayal, “BI Batch Manager: A system for managing batch workloads on
enterprise data warehouses,” in Proc. Int. Conf. on Extending Database Technology (EDBT), 2008.

[7] C. R. Hicks and K. V. Turner, Fundamental Concepts in the Design of Experiments. Oxford University
Press, 1999.

[8] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration parameters with iTuned,” in Proc.
Int. Conf. on Very Large Databases (VLDB), 20009.

[9] S. Tozer, T. Brecht, and A. Aboulnaga, “Q-Cop: Avoiding bad query mixes to minimize client timeouts
under heavy loads,” in Proc. Int. Conf. on Data Engineering (ICDE), 2010.

[10] T.J. Santner, B. J. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 1st ed.
Springer, 2003.

[11] 1. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques, 2nd ed. Morgan
Kaufmann, 2005.

www.ignited.in

