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ABSTRACT:- 

The field of viral propagation modeling has garnered a great deal of attention in recent years 

as computer security researchers attempt to find ways of mitigating rapid malcode 

propagation. A variety of techniques have been suggested which can delay the spread of a 

worm, including rate-limiting network cards , targeted immunization of highly connected 

nodes and a combination of address blacklisting and content filtering. In complementary 

work, researchers have been focusing on the software monoculture on the Internet and its 

relationship to viral epidemics. The value of software diversity to computer security comes 

from the fact that an attack written for one piece of software rarely works for a different but 

functionally equivalent software package. By increasing the number of diverse software 

packages present on the network, the research argues, the chances that an attack will be 

effective against a randomly selected node will decrease. 

The research literature in software diversity suggests that the introduction of different 

software packages is an effective method of disrupting the activities of an attacker or a worm, 

particularly one which repeatedly utilizes a pre-written and unchanging attack to compromise 

machines. However, there have been no quantitative evaluations of the impact of software 
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diversity on malcode propagation in real network topologies. These technologies serve as an 

effective method for preventing worm epidemics. 

INTRODUCTION : 

While the number of monochromatic edges is an effective metric as an optimization goal, it 

does not directly express the ability of the diversity assignment algorithm to limit the 

virulence of a worm. This section, on the other hand, quantifies the quality of a software 

diversity assignment by focusing on the effect that network assignments of diverse software 

has upon the propagation of worms. Given a worm whose rate of propagation from an infected 

node to each of its vulnerable neighbors is b and the rate at which infected nodes are 

disinfected is a, we study the epidemic threshold, or the ratio of a/b below which an 

infectious agent will burn itself out i.e., the ratio below which there will be no infected nodes 

in the network at steady state. 

One of the goals of any virus mitigation technique should be to increase the epidemic 

threshold of the network. In this chapter, our goal is to study: 

1. The epidemic threshold with a randomized distribution of diverse software packages to 

nodes in a real network (an IPv6 BGP topology) as well as a synthetically generated an Erd¨os-

R´enyi random graph network topology. 

2. The relationship of the above results to the number of different software packages available 

to distribute among the nodes. 

3. The epidemic threshold on the same networks with a topology-sensitive algorithm driven 

distribution of diverse software packages. 

As before, we represent a network of computers by graph G and a set of diverse software 

packages which can be assigned to nodes on the network by C. We consider a contagion 

which can infect only a single software package in C. Assume that the number of software 

packages available in C is greater than or equal to the chromatic number of the graph (G). If 

the software packages are randomly distributed to the network, then a portion but not all of 

the nodes will be rendered immune to the infection. However, if a graph coloring algorithm is 
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used to assign the software in C to the nodes in G, then no edges will be left to spread the 

infection, and the infection is guaranteed to die out. 

The remainder of this section is organized as follows. We validate these models using 

simulations of virus propagation on both synthetic and real network topologies. The 

simulations show that the improvement in the epidemic threshold experienced under an 

algorithm-driven diversity assignment algorithm is significantly higher than that predicted by 

the bounds generated by our models for real-world graphs. 

VIRAL PROPAGATION AND SOFTWARE DIVERSITY 

It is possible to show that, regardless of the underlying viral propagation model, an 

assignment of software packages to a graph such that the assignment forms a perfect graph 

coloring will force the epidemic threshold to infinity. Consider a perfect coloring, where there 

are no edges across which a virus can propagate. The only infected hosts that exist are those 

which are initially infected by a virus. Because this set cannot increase, the disinfection rate 

of systems will continually decrease the number of infected systems until all systems are 

uninfected. 

It may not be possible to guarantee that a sufficient number of software systems will be 

available to perfectly color the network. It would then be more appropriate to assign the 

limited amount of diversity so as to limit the number of monochromatic edges and thus 

increase the epidemic threshold. To achieve this goal, we use the COLOR FLIPPING algorithm. 

The distributed algorithm has each node choose an initial software package, or color, and, at 

random intervals, communicate with their immediate neighborhood of nodes to discover their 

current color. The node initiating the communication will then switch to the neighborhood’s 

minority software package if it finds a majority of its neighbors are running the same software 

package. 

It is important to note that it is not necessary to examine every variation of the coloring 

algorithms for their effect on the viral propagation metrics. We are interested in showing the 

trends that a decreasing defective edge count has upon the studied viral propagation 

characteristics, which will be provided by any of the distributed algorithms. 
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The introduction of a graph coloring algorithm removes some of the assumptions of 

randomness that underpin the statistical models which results in loose bounds on the 

epidemic threshold on networks colored using the COLOR FLIPPING algorithm. Rather than 

providing only loose bounds, we examine the effect of algorithm-driven color assignments on 

the epidemic threshold primarily through the use of simulation. 

STATISTICAL MODELS 

We can consider nodes which run software packages which are different from their neighbor 

to be relatively immune to attack from their neighbor. Assuming a randomized distribution of 

diverse software packages, if there are c software packages available for n nodes, it is 

expected that n − n/c nodes will be relatively immune to the n/c vulnerable nodes. 

A similar analysis can be done for the Pastor-Satorras and Vespignani model, which shows an 

increase in the epidemic threshold by a similar factor. In order to test the utility of diversity 

assignments for increasing the epidemic threshold, it is necessary to either generate or 

measure a network topology for simulation study. 

Our first network was generated by collecting a list of the BGP peers present in the IPv6 

network by accessing the routing table from IPv6 capable Looking Glass routers. A second 

network was created using an Erdos-Renyi random graph generator. Both graphs contain 266 

nodes and approximately 7, 500 edges. While both graphs have similar average degree, the 

degree distribution for both graphs is dramatically different. 

While we utilized larger networks to study the coloring algorithms , the computational load 

associated with executing the viral propagation simulations makes this option infeasible. The 

rest of the simulation studies presented in the section follow a standard methodology; a single 

color is tagged as being vulnerable to infection, and the graph is assigned an initial coloring. 

A high percentage of the nodes assigned the vulnerable color are randomly chosen to be the 

nodes which initially contain the infection. We experimentally determine the epidemic 

threshold by progressively changing relative to a fixed until a persistent infection is not seen 

over numerous simulation runs with both the same initial infection set and with alternate 

initial infection sets. 

GRAPH THEORY DERIVED MODELS 
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In a fashion consistent with Wang’s model, we are able to restate the goal of the software 

assignment in terms of graph partitions and the subsequent eigen values of the sub graphs. 

We denote our software assignment as 

f : V (G) 7→ C,C = {1, 2, ..., c}, 

where C is the set of available software packages. 

Loose bounds for general graphs and hard bounds on regular graphs can be determined for 

the largest eigen value of the adjacency matrix of a diversified network. Rather than relying 

upon the loose bounds, we directly measure the eigen value of a network which is actively 

undergoing diversification to predict the epidemic threshold. 

To examine the impact the number of monochromatic edges has upon the epidemic threshold, 

we simulate a homogeneous network of systems, then allow each system to minimize its 

number of monochromatic neighbors by executing the COLOR FLIPPING algorithm. At each 

time-step, we compute the epidemic threshold predicted by the Pastor-Satorras and 

Vespignani model and Wang’s eigen value model. The Kephart and White model is 

inappropriate for use with networks using an algorithm-driven diversity assignment as the 

application of the algorithm to the network removes the homogeneous degree distribution on 

the network. 

It is clear from the simulation studies that reducing the number of monochromatic edges in 

the network is an extremely effective method of increasing the epidemic threshold. The 

simulation studies confirm the utility of recomputing the eigen value-derived epidemic 

threshold with each step of the graph coloring operation is an effective method of 

approximating the epidemic threshold. Furthermore, the experiment shows that decreases in 

the number of defective edges go hand in hand with increases in the epidemic threshold. 

While a wide variety of techniques for mitigating rapid malware propagation have been 

analyzed and simulated using standard virus modeling techniques, the contributions of the 

software diversity community have not yet been fit into this framework. In this section, we 

make the first contributions toward analyzing viral propagation modeling in the presence of 

software diversity. We use both models and simulations to show that on both simulated and 
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real networks of systems, a natıve, randomized software diversity assignment is able to 

increase the epidemic threshold. 

ATTACKING NETWORK DIVERSITY ASSIGNMENTS 

We propose a set of primitive behaviors exhibited by a malicious node from which any attack 

can be created: 

SPREADING 

Upon inspection, instead of looking to flip its color, a node that is malicious will look to 

subvert a neighboring node that is of its own color. 

MISREPRESENTATION 

A node may falsely report its current color when it is queried for its color by neighboring 

nodes. Additionally, a node may falsely report its defective edge reduction to neighboring node 

wishing to conduct a color swap. 

INERTIA 

A node will not change its color regardless of external stimulus. 

The first algorithm analyzed is robust against attacks directed toward the algorithm itself. The 

RANDOMIZED COLORING algorithm requires nodes to set their color without examining their 

environment. In turn, any network implementing the algorithm is not affected by the last two 

attacks, and can only be affected by the spreading attack. 

The COLOR FLIPPING algorithm introduces an inherent security flaw. Any node looking to flip 

its color must trust that their neighbors will be truthful in reporting their own color 

assignment. If a malicious node decides to lie about its own color, it can influence a querying 

node’s color choice, but not force a color assignment upon the querying node. For example, a 

malicious node can falsely report to a node that its color is the same as a querying node, 

which would contribute to the querying node’s defect count. If the malicious node is 

fortunate, the defective edge count observed by the querying node would become greater than 

⌊d(v)/k⌋. This will cause the querying node to flip to a new color. The goal of the malicious 

node is to push the querying node to flip to a specific vulnerable color. If a flip takes place, 
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the malicious node has no way of being certain the querying node will flip to a vulnerable 

color. 

Both the MUTUALLY BENEFICIAL SWAPPING and GREATER GOOD SWAPPING algorithms 

introduce a security flaw due to the inherent trust associated with a color swap. If a malicious 

node either proposes or agrees to a swap with a participating neighbor, it can keep its own 

color even after the neighbor has completed switching to the new color. The action would 

create a defective edge that the malicious node can use to propagate an attack. 

In the case of the mutually beneficial swap algorithm, a swap would never be acceptable to a 

node unless the defective edge count of the node decreases. Even if a malicious node wants to 

“push” a vulnerable color onto a node, it would only be able to do this to the subset of its 

neighbors which would stand to gain from an honest swap. The GREATER GOOD SWAPPING 

algorithm, however, has a larger security vulnerability associated with it. A malicious node 

can force a color change onto a neighboring node by claiming an extremely high defect 

improvement. To the neighbor, it would appear that the proposed swap is globally beneficial, 

regardless of its own increase in the number of defective edges. Therefore, a single 

compromised node can spread a chosen color across an entire network, one node at a time. 

There does not exist a single optimal attack that works against both algorithms, however. If 

the network implements a swapping algorithm, lying about a malicious node’s own color 

would lead a querying node to swap to a random, non-vulnerable color. Rather than 

increasing the number of nodes that can be attacked in the network, running the optimal 

swapping algorithm attack on a network running the color flipping algorithm would actually 

decrease the number of vulnerable nodes. Vulnerable nodes, which were previously unable to 

swap their color to one which would induce less defective edges because of a lack of potential 

swapping partners would find nodes with a previously unseen color in their neighborhood. 

Therefore, not only would the number of vulnerable nodes decrease, the number of defective 

edges present across the network would decrease as well. 

Likewise, a network running the color flipping algorithm would not be impacted by the 

contract breaking attack mentioned above. No inter-node contracts are involved in the 

algorithm, and correspondingly, there is no opportunity to break a color-changing agreement. 
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