
[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

1 www.ignited.in

Validating and Attacking Distributed Software Diversity

Amandeep Kaur
Research Scholar, CMJ University,
Shillong, Meghalaya

ABSTRACT:-

The field of viral propagation modeling has garnered a great deal of attention in recent years

as computer security researchers attempt to find ways of mitigating rapid malcode

propagation. A variety of techniques have been suggested which can delay the spread of a

worm, including rate-limiting network cards , targeted immunization of highly connected

nodes and a combination of address blacklisting and content filtering. In complementary

work, researchers have been focusing on the software monoculture on the Internet and its

relationship to viral epidemics. The value of software diversity to computer security comes

from the fact that an attack written for one piece of software rarely works for a different but

functionally equivalent software package. By increasing the number of diverse software

packages present on the network, the research argues, the chances that an attack will be

effective against a randomly selected node will decrease.

The research literature in software diversity suggests that the introduction of different

software packages is an effective method of disrupting the activities of an attacker or a worm,

particularly one which repeatedly utilizes a pre-written and unchanging attack to compromise

machines. However, there have been no quantitative evaluations of the impact of software

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

2 www.ignited.in

diversity on malcode propagation in real network topologies. These technologies serve as an

effective method for preventing worm epidemics.

INTRODUCTION :

While the number of monochromatic edges is an effective metric as an optimization goal, it

does not directly express the ability of the diversity assignment algorithm to limit the

virulence of a worm. This section, on the other hand, quantifies the quality of a software

diversity assignment by focusing on the effect that network assignments of diverse software

has upon the propagation of worms. Given a worm whose rate of propagation from an infected

node to each of its vulnerable neighbors is b and the rate at which infected nodes are

disinfected is a, we study the epidemic threshold, or the ratio of a/b below which an

infectious agent will burn itself out i.e., the ratio below which there will be no infected nodes

in the network at steady state.

One of the goals of any virus mitigation technique should be to increase the epidemic

threshold of the network. In this chapter, our goal is to study:

1. The epidemic threshold with a randomized distribution of diverse software packages to

nodes in a real network (an IPv6 BGP topology) as well as a synthetically generated an Erd¨os-

R´enyi random graph network topology.

2. The relationship of the above results to the number of different software packages available

to distribute among the nodes.

3. The epidemic threshold on the same networks with a topology-sensitive algorithm driven

distribution of diverse software packages.

As before, we represent a network of computers by graph G and a set of diverse software

packages which can be assigned to nodes on the network by C. We consider a contagion

which can infect only a single software package in C. Assume that the number of software

packages available in C is greater than or equal to the chromatic number of the graph (G). If

the software packages are randomly distributed to the network, then a portion but not all of

the nodes will be rendered immune to the infection. However, if a graph coloring algorithm is

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

3 www.ignited.in

used to assign the software in C to the nodes in G, then no edges will be left to spread the

infection, and the infection is guaranteed to die out.

The remainder of this section is organized as follows. We validate these models using

simulations of virus propagation on both synthetic and real network topologies. The

simulations show that the improvement in the epidemic threshold experienced under an

algorithm-driven diversity assignment algorithm is significantly higher than that predicted by

the bounds generated by our models for real-world graphs.

VIRAL PROPAGATION AND SOFTWARE DIVERSITY

It is possible to show that, regardless of the underlying viral propagation model, an

assignment of software packages to a graph such that the assignment forms a perfect graph

coloring will force the epidemic threshold to infinity. Consider a perfect coloring, where there

are no edges across which a virus can propagate. The only infected hosts that exist are those

which are initially infected by a virus. Because this set cannot increase, the disinfection rate

of systems will continually decrease the number of infected systems until all systems are

uninfected.

It may not be possible to guarantee that a sufficient number of software systems will be

available to perfectly color the network. It would then be more appropriate to assign the

limited amount of diversity so as to limit the number of monochromatic edges and thus

increase the epidemic threshold. To achieve this goal, we use the COLOR FLIPPING algorithm.

The distributed algorithm has each node choose an initial software package, or color, and, at

random intervals, communicate with their immediate neighborhood of nodes to discover their

current color. The node initiating the communication will then switch to the neighborhood’s

minority software package if it finds a majority of its neighbors are running the same software

package.

It is important to note that it is not necessary to examine every variation of the coloring

algorithms for their effect on the viral propagation metrics. We are interested in showing the

trends that a decreasing defective edge count has upon the studied viral propagation

characteristics, which will be provided by any of the distributed algorithms.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

4 www.ignited.in

The introduction of a graph coloring algorithm removes some of the assumptions of

randomness that underpin the statistical models which results in loose bounds on the

epidemic threshold on networks colored using the COLOR FLIPPING algorithm. Rather than

providing only loose bounds, we examine the effect of algorithm-driven color assignments on

the epidemic threshold primarily through the use of simulation.

STATISTICAL MODELS

We can consider nodes which run software packages which are different from their neighbor

to be relatively immune to attack from their neighbor. Assuming a randomized distribution of

diverse software packages, if there are c software packages available for n nodes, it is

expected that n − n/c nodes will be relatively immune to the n/c vulnerable nodes.

A similar analysis can be done for the Pastor-Satorras and Vespignani model, which shows an

increase in the epidemic threshold by a similar factor. In order to test the utility of diversity

assignments for increasing the epidemic threshold, it is necessary to either generate or

measure a network topology for simulation study.

Our first network was generated by collecting a list of the BGP peers present in the IPv6

network by accessing the routing table from IPv6 capable Looking Glass routers. A second

network was created using an Erdos-Renyi random graph generator. Both graphs contain 266

nodes and approximately 7, 500 edges. While both graphs have similar average degree, the

degree distribution for both graphs is dramatically different.

While we utilized larger networks to study the coloring algorithms , the computational load

associated with executing the viral propagation simulations makes this option infeasible. The

rest of the simulation studies presented in the section follow a standard methodology; a single

color is tagged as being vulnerable to infection, and the graph is assigned an initial coloring.

A high percentage of the nodes assigned the vulnerable color are randomly chosen to be the

nodes which initially contain the infection. We experimentally determine the epidemic

threshold by progressively changing relative to a fixed until a persistent infection is not seen

over numerous simulation runs with both the same initial infection set and with alternate

initial infection sets.

GRAPH THEORY DERIVED MODELS

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

5 www.ignited.in

In a fashion consistent with Wang’s model, we are able to restate the goal of the software

assignment in terms of graph partitions and the subsequent eigen values of the sub graphs.

We denote our software assignment as

f : V (G) 7→ C,C = {1, 2, ..., c},

where C is the set of available software packages.

Loose bounds for general graphs and hard bounds on regular graphs can be determined for

the largest eigen value of the adjacency matrix of a diversified network. Rather than relying

upon the loose bounds, we directly measure the eigen value of a network which is actively

undergoing diversification to predict the epidemic threshold.

To examine the impact the number of monochromatic edges has upon the epidemic threshold,

we simulate a homogeneous network of systems, then allow each system to minimize its

number of monochromatic neighbors by executing the COLOR FLIPPING algorithm. At each

time-step, we compute the epidemic threshold predicted by the Pastor-Satorras and

Vespignani model and Wang’s eigen value model. The Kephart and White model is

inappropriate for use with networks using an algorithm-driven diversity assignment as the

application of the algorithm to the network removes the homogeneous degree distribution on

the network.

It is clear from the simulation studies that reducing the number of monochromatic edges in

the network is an extremely effective method of increasing the epidemic threshold. The

simulation studies confirm the utility of recomputing the eigen value-derived epidemic

threshold with each step of the graph coloring operation is an effective method of

approximating the epidemic threshold. Furthermore, the experiment shows that decreases in

the number of defective edges go hand in hand with increases in the epidemic threshold.

While a wide variety of techniques for mitigating rapid malware propagation have been

analyzed and simulated using standard virus modeling techniques, the contributions of the

software diversity community have not yet been fit into this framework. In this section, we

make the first contributions toward analyzing viral propagation modeling in the presence of

software diversity. We use both models and simulations to show that on both simulated and

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

6 www.ignited.in

real networks of systems, a natıve, randomized software diversity assignment is able to

increase the epidemic threshold.

ATTACKING NETWORK DIVERSITY ASSIGNMENTS

We propose a set of primitive behaviors exhibited by a malicious node from which any attack

can be created:

SPREADING

Upon inspection, instead of looking to flip its color, a node that is malicious will look to

subvert a neighboring node that is of its own color.

MISREPRESENTATION

A node may falsely report its current color when it is queried for its color by neighboring

nodes. Additionally, a node may falsely report its defective edge reduction to neighboring node

wishing to conduct a color swap.

INERTIA

A node will not change its color regardless of external stimulus.

The first algorithm analyzed is robust against attacks directed toward the algorithm itself. The

RANDOMIZED COLORING algorithm requires nodes to set their color without examining their

environment. In turn, any network implementing the algorithm is not affected by the last two

attacks, and can only be affected by the spreading attack.

The COLOR FLIPPING algorithm introduces an inherent security flaw. Any node looking to flip

its color must trust that their neighbors will be truthful in reporting their own color

assignment. If a malicious node decides to lie about its own color, it can influence a querying

node’s color choice, but not force a color assignment upon the querying node. For example, a

malicious node can falsely report to a node that its color is the same as a querying node,

which would contribute to the querying node’s defect count. If the malicious node is

fortunate, the defective edge count observed by the querying node would become greater than

⌊d(v)/k⌋. This will cause the querying node to flip to a new color. The goal of the malicious

node is to push the querying node to flip to a specific vulnerable color. If a flip takes place,

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

7 www.ignited.in

the malicious node has no way of being certain the querying node will flip to a vulnerable

color.

Both the MUTUALLY BENEFICIAL SWAPPING and GREATER GOOD SWAPPING algorithms

introduce a security flaw due to the inherent trust associated with a color swap. If a malicious

node either proposes or agrees to a swap with a participating neighbor, it can keep its own

color even after the neighbor has completed switching to the new color. The action would

create a defective edge that the malicious node can use to propagate an attack.

In the case of the mutually beneficial swap algorithm, a swap would never be acceptable to a

node unless the defective edge count of the node decreases. Even if a malicious node wants to

“push” a vulnerable color onto a node, it would only be able to do this to the subset of its

neighbors which would stand to gain from an honest swap. The GREATER GOOD SWAPPING

algorithm, however, has a larger security vulnerability associated with it. A malicious node

can force a color change onto a neighboring node by claiming an extremely high defect

improvement. To the neighbor, it would appear that the proposed swap is globally beneficial,

regardless of its own increase in the number of defective edges. Therefore, a single

compromised node can spread a chosen color across an entire network, one node at a time.

There does not exist a single optimal attack that works against both algorithms, however. If

the network implements a swapping algorithm, lying about a malicious node’s own color

would lead a querying node to swap to a random, non-vulnerable color. Rather than

increasing the number of nodes that can be attacked in the network, running the optimal

swapping algorithm attack on a network running the color flipping algorithm would actually

decrease the number of vulnerable nodes. Vulnerable nodes, which were previously unable to

swap their color to one which would induce less defective edges because of a lack of potential

swapping partners would find nodes with a previously unseen color in their neighborhood.

Therefore, not only would the number of vulnerable nodes decrease, the number of defective

edges present across the network would decrease as well.

Likewise, a network running the color flipping algorithm would not be impacted by the

contract breaking attack mentioned above. No inter-node contracts are involved in the

algorithm, and correspondingly, there is no opportunity to break a color-changing agreement.

[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL.-II, ISSUE - I] August 1, 2011

 ISSN-2230-9659

8 www.ignited.in

REFERENCES

 R. Albert, H. Jeong, and A. L. Barab´asi. Error and Attack Tolerance of Complex

Networks. Nature, 406:378–382, July 2000.

 S. Alexander. Defeating compiler-level buffer overflow protection. ;login:, 30(3):59—71,

June 2005.

 P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network

vulnerability analysis. In Proceedings of the 9th ACM conference on Computer and

communications security, pages 217–224. ACM Press, 2002.

 W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnerability: A case study

analysis. IEEE Computer, 33:52–59, December 2000.

 Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V.

Kann. Complexity and Approximation: Combinatorial Optimization Problems and Their

Approximability Properties. Springer-Verlag New York, Inc., 1999.

 Aviˇzienis. Fault-tolerance and fault-intolerance: Complementary approaches to reliable

computing. In Proceedings of the international conference on Reliable software, pages 458–

464, Los Angeles, California, 1975. ACM Press.

 P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth

ACM symposium on Operating systems principles, pages 164–177, New York, NY, USA, 2003.

ACM Press.

 E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovi´c, and D. D. Zovi. Randomized

instruction set emulation to disrupt binary code injection attacks. In Proceedings of the 10th

ACM conference on Computer and communication security, pages 281–289. ACM Press,

2003.

 S. M. Bellovin. Distributed firewalls. ;login:, pages 39–47, November 1999.

 S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient approach

to combat a broad range ofmemory error exploits. In Proceedings of the 12th USENIX Security

Symposium, pages 105–120, Washington D.C., USA, August 2003.

 Bulba and Kil3r. Bypassing StackGuard and StackShield. Phrack Magazine, 0xA (0x38),

May 2000.

