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ABSTRACT

The object of the this paper are to find two general class of unified finite integrals. We use the technique of Euler integral

formula and fractional integral operator in applications. These integrals involve the product of the H' function, a
generalized polynomial set and generalized associated Legendre function of second kind with arguments of the

form(x-a-1z-ay -9+ d)(ex+ 1)’ Some special cases and applications are also discussed. Since functions and
polynomials occurring in these integrals are general in nature, these results provide interesting unifications and
extensions of a large number of new and known results.
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1. INTRODUCTION

A large number of integral formulae involving different types of special functions have been developed by many authors.
Garg and Mittal [1]obtained an interesting unified integral involving Fox H-function. Considering the work of Garg and
Mittal [1], Ali [2]gave three interesting unified integrals involving the hypergeometric function ;F,.By using Ali’'s method [2]
Choi and Agarwal [3] presented two generalized integral formulas involving the Bessel function of the first kind , which
are expressed in terms of the generalized (Wright) hypergeometric functions.

Agarwal[4] study some new unified integral formulae associated with the H -function. Each of these formulae involves a

product of the H -function and Srivastavapolynomials with essentially arbitrary coefficients. They evaluated the formulae

. z N _ I'(z s
in terms of l//( )[Iogar|thm|c derivative of ( )]. Recently Chouhan and Khan [5] presents two new unified integral
formulae involving the Fox H-function and M-Series. These results were expressed in terms of the H function.
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2. DEFINITIONS
21 Riemann-Liouville Fractional Integral Operator

The Riemann-Liouville fractional integral operator of order v[6], [7] and [8]is defined by

l l I (z=1)"" f(r)dt ,Re(v) <0

v | T(=v)~-

D' {f(z)} = o (2.1
]d DI {f(z)} , m=1<Re(v)<m ;

where m is a positive integer and the integral exists.

I

2.2 -Function

A more general function known as H tunction was introduced by Inayat-Hussain [9] in the following form

it = = [ sk G e

Where

M N
[Ir®, -] [ira-a,+aé)}™

¢ (&) =—4 = _ (2.3)
[T ra-5,+85" [] Ta,-a,¢)

j=M+l1 J=N+1

and 1= V=1 Here a(=1,.,P)yand b; (j =1,...,Q) are complex parameters, o, 200 S8 i SRS 1.--Q) and
the exponents A; (j = 1,...,N) and B; (j = N+1,...,Q) can take any non-integer values .

When allthe exponents A; and Bjtakes the value unity, the H-function reduces to the well-known Fox’s H-function [10](see
also [11]).

Buschman and Srivastava [12]has proved that the integral represented by Eq.(2.2) is absolutely convergent when Q> 0
and | arg z | < 1/2 nQ), where

Q-= Zﬂ+ZAa—ZBﬂ Ya >0 .(24)

=M+l =N+l

The following functions are represented in terms of H function by choosing parameters specifically.

0] The function connected with certain class of Feynman integrals

K, I'(s+ I)F[ l .

i
.&'[}’.I},r.x::]' \/_( —— "( 2]r) H "[—: | }(25)
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Where

(S
L

N
N

=Z = [13]

(ii) The polylogarithm function of order s introducedby Erdelyi et.al. [14] is

F[z.s]= 0" I:—z \} .. (2.6)

(L1),(0,1:5)

2.3 Generalized Polynomial Set

a,pir
The generalized polynomial set ™" [X] is defined by the following Rodrigues typeformula [15]

S [x] = (Ax+B)“(1-rx")"" T: {(m +B)*N(1- m-")g'””} (2.7)
with the differential operator being defined as
T, ;=x"(k+xD,)
Where
D =d/dx
Raizada [15] presented SEE in the following series form
S "Ix] = Z o(b,b,,a,,a,) x" (1-rx')y" " ..(2.8)

B by aya,

where

B” £"(-1)" (-1)"(-a,), (=), (@), (~a—bn),,

a,la,'b'b,\(1-a-b,),

é(b,b,.a,,a,)=

! (—;/z—s") [L’*M_J (%] «W(29) R = fn + b +1a,
.. (2.10)

S M W 3 'X (2.11)

Bbyapay,  a=0 a,=0 A=0 k=0
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2.4 Generalized Associated Legendre Polynomials

Kuipers and Meulenbeld [16] introduced generalized associated Legendre functions
R (2).Q0 (2)
,F(a,b;c;z)

This function can be presented in terms of hypergeometric function

o r(m”’*"+1]r(k+”"”+l)
- 2 2 Lk "

or"(z)=e™2" 2 SETTTY x(z=1)"77 (z+1)3

as

- i
F,(k—mz B +1,A—+’";” +1,2k +2; ) . (2.12)

Where

2 n
—i<1, k+mi; #-1,-2,..,.2k+2#0,-1,-2,

o

3. INTEGRAL FORMULAE

In this section, two integrals will be evaluated. The integrals are associated with the product of the generalized

polynomial set, the H _function and generalized associated Legendre functions. The integrals are as follow:

3.1 First Integral

.['V("._")M(b'""""“'-““”"‘-&'-“‘r./')“ s[‘ (x-a)’(b-x)’ ]
(x—a-1): "L (ex+d) (ge+ f)

=y e Ul ) s |
o 7§, &=9 (h—x) or (l— 2 ]dx
|7 (ex+d) (gx+ f)° X—a

. Y § ot 9 lVI T =
=(b-a)"*" (ac+dY (bg+f) &2\ (—l)“ 1] ( +m2"+l)

m-—n m+n :
("'2+'),_r(“ 2 ”“‘Jr’ " (a, - sn),
> Z F(2k+2+7,) IRURTRTR

by by ey s 0

ac+d

(h—(l) yH Rt W+ I]|0(h h‘ a Wa., )(C(u_b))'f[g([’_a)]'.
(ac+d)™" " (bg + /)'R Hap bg+ [

P (b—,a) \ ‘ PETAEEN | D
2|7 (ac+d)’ (bg + )" 14w inmagi
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where

Li=(l+y—{,—(R+t{)E, pil), (1+0—=F, = (R+1tl))v,q:1),

. w.(3:2)
(=A-k—=t,—t,—(R+tL)ou;1),(1-u—t,—(R+tl)n,v:1)

Li=(1+y—(R+t¢ )¢, pil), (1+06—(R+14))v,q:1), (33)
('—/l——y-k-(’: +0,+ r-'J)—(R+t('l)(a+q).u+v;l) T

The conditions of validity of Eq (3.1) are

@) Re(A,u) >0
(b) min {O-’ 1, 6,0, UV, p, q}Z 0 (not all zero simultaneously)

1+Re(A+k)+Re(o)+u min Re (b;/ ;) >0
(C) 1<j<M

Re(u)+ Re(n7)+v .!ni‘n“ Re (b, /f,)>0

max cb=a) | fa(b-a) <1b #a

« ac+d |'| bg+f ' '
m+n W 9 _

© Ifk+ > #-1-2,...k+ 5 A | 2K12%0-1-2, . |z—1|>2

a,p.r
PROOF. Let L.H.S. of Eq(3.1) is A, .To evaluate the integral, the generalized polynomial set " [Z] is replaced by its

series representation from using Eq(2.8), H -function is replaced by its Mellin-Barnes contour integral form using
m,n

Eq(2.2)and <k ( ) is replaced by its hypergeometric function form using Eq(2.11)in the left hand side ofEq(3.1). Then

the powers of (x - a), (b - x), (cx+d) and (gx+f) are collected. In the resulting expression the order of integration and

summation is interchanged (which is permissible under the conditions stated with (3.1)) and integral is expressed as

follows
o 7 y™ " (a, —sn) f foim. N B
A= Z ()(h‘.b,.al.a:) Z (”' 6 emig T () (42 'r(,"‘*m n l]
iy oy (=0 . : 2
(o M= <) s Ml )
l./\— 5 »IJI"I‘\A+ 5 ’*l?"‘.)
x;l r(2A+2+I‘)f'}!

| el o r . Ashal a{Ratt Yosus paf Batl hpavé-1 y-(Retl) - ps
- &)z | (x- b—x) W (ex +d Y Jzie
XZ,TiI"¢(' LJ'-“ a) (b—x) (ex+d)

(gx+ f )""R'N' "W"‘-d.\‘jlll'._f

A =2+k+ 0+ (R+tl)o+ué, p = u+(R+t0)n+VE, y" =y —(R+t0,) ¢ — pé
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# — _ _
07 =0 (R +t€1)u as and simplifying the powers of (cx+d) and (gx+f) by applying binomial expansions for x €[a,

b]

(ex+d)" =(ac +(1)"'Z( m), {_C('\._;)} J(x=a) | < |ac+d |
= ac +

-x)| < |bg+ [ ]

2 (- ) b-x)]"

f,=0 ~-*

[ m-n

/ Ratpt \
'y (a, —sn S (1.0 -
v (4, )'. LLE l'(—l)"“':"l[‘(k+m ”+l]

A=Y (b .byaa,) Y 2

£, =0

o By ey

(k-”"”+1) F(k+"'+”+l+l:")
, 2 s 2 :

& ") {—c(x-a)}’-'

ac+d

I(\—-tl) (b—x)""(ac+d) Z

3=0 3

X
-
‘&
11‘“
) o=l

£y

w (= —
x (bg+ f) Z( ; ')" {i)(:+ ;) dx |d&

The innermost integral is simplified with the help of the Eulerian type integral given by Eq(3.6).

l IH.:_II 1 1

/ Rl ot
'y (a, —sn), m-—n

A:= Z 8(’71.[71.111,02) Z - T L gmig \ 2 (_l)'k-:-llr(k+—_2_+lJ

fy=0 e

h ‘h: Wy iy

(k—m—"+l) F(k+m+"+l+f‘} /
. 2 ‘ 2 - (_l):(,‘ gu

XZ ‘ AYE z 'RY. ‘v.
2+ by

t4=0 I“(2k+2+f'3)ﬁ_‘, ot
[ F(&)2(~1"), (-8"), (ac+dy ®K-teré (pg 4. pyirh-tcs
A-”’ fy fa -
5 (b_a)/.ol./_,.l‘,"}'”t"lr,i(t?-l])t/l'(uu).;' B(zy +,‘1 " L#“ + (4)(1‘5

The beta function is simplified in terms of gamma function and resulting Mellin-Barnes contour integral is interpreted as

H -function. After little simplification the right hand side of Eq(3.1) is obtained.
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3.2 Second Integral

b (x—a)(b—x)*" g {y (cx+d) (gx + f)”}
“(ex+dY (gx+f)‘$(x—a—1)% (e—a)* (b—x)

x ]__]‘”"\' {Z (C)C+d)p (gx_*_f)Q} QAI-"-" (1_ 2 jdx

oe (x—a)'(b—x)" x—a

m-n

(- (ae+d (bg+ £Y =2 T )y () r(k s +1j

(k_m—n+1) F(k+m+"+l+f"1) e
N i T Al G ) e )
£y fs by =0

b kome FbiE [(2k+2+¢,) £ 10 Ve V]

X

(ac+d)""* (bg +_/')‘R""'“9(bI b, .a, .a:)((»(a _h)]f" [g(h—a))u

(b—a) "7 ac+d ) \ bg+f

X

g [, (ae+df(bg+ 1y
P304 (b —a )H~t

l...,.ll,.l,l:»\.(.:‘,u,Al\,L)v 1_‘ ] N (3.4)
where
L =(y—(R+10,)¢, p).(6 - (R+10))v.q),
(I+A+pu+k+L,+0,+L,—(R+1L)(o+n),u+Vv) « (3:5)

Ly=(y+£,—(R+t£)$, p), (5 + €, —(R+1(,)v,9),
(l+A4+k+2, 44, =(R+1E)o,u), (u+L,—(R+LL In,v), . (3.6)

6(b,b,.a,,),R and . . ;
and wewne  @re as given in Eqs (2.9), (2.10) and (2.11) respectively.

The conditions of validity for (3.4) are

@ Re(hn) >0
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(b) min {0-’77’ "t uv,p,a} =0 (not all zero simultaneously)

a -1
1+Re(1 +k)—Ro —u max Re ( L ]>0

(C) lSjSN al
a -1
Re(u)—Re(n7)-v max Re | - ]>0
1<j<N al
max{ c(b—z) I gb(b—af) }<1, b #a.
) ac+ g+
m+n . m-n _
© i K+ #z-1-2,..;k* 5 #0,£1,+2,...; K220,-1-2..

lz-1>2

PROOF. The integral (3.4) can be evaluated in a similar way as that of the first integral.
4. SPECIAL CASES

Each of our integral formulae (3.1) and (3.4) are unified in nature and possesses manifold generality. On suitably

a,fr

specializing the parameters of the H -function, the generalized polynomial set Sh [X] in our main integrals, a large

number of new integrals can be obtained as their special cases. one of them are discussed below.

In the third integral reducing H ' function to F(-z, s) function as given by Eq(2.6) and the generalized associated

Q"(x Q(x

Legendre polynomial ( ) to the associated Legendre polynomial ( ) as given by Eq(2.12), following result is

obtained.

o

J‘/-(.\'-tl)"'"(l)—.\')”"((:\'+d)"'(g.\'+./')"' SH'}“|:\-‘ (x—a)’(b—x)"
(r—a-1) | it 7

3 u Y o)
v F{—: (x—a)'(b .\). JQ:[]‘ 2 )dx
(ex+d)’ (gx+ f)! x—a

l dok+u ¥ AO 2w I
:-2-(1;-—a)) “(ac+d) (bg+ f) ()Ill,'.'l'(_l)-;ﬁ~j<l‘

= (k+1+£,)T(k+n+1+2,) 7"y

: Z Z F(2k+2+¢,) £10,1¢4,1¢,)

by apaay 50504, 0,=0

“(a, —sn),
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X

(b—a)wm"‘)w")H(b.,bz,al,az)(c(a—b) “(gb-a))"
(ac+d)*" (bg + f)*P  ac+d bg+ f

e [_—Il.o Z (b—a) 13, (LI1), (1,1:5) (41)
6.5 (ac+d)l’(bg+f)(] (L1).(0,1;5), Lg

Where Lz and L,are same as given by Egs(3.5) and (3.6).
5. APPLICATIONS

The results obtained from these integrals can be applied to obtain Riemann-Liouville fractional calculus operator of
unified functions. One of the examples is shown below.

Taking b =z, n = v = 0 in Eq(3.1), the Riemann-Liouville fractional calculus operator of order of a unified function is
obtained as

"

o |G-y (e+dy (g + ) o[ (-a)
: (:—u—])g ' (cz+d) (gz+1)"

— M ® (: —d )“ . - 2 ] [
H z L
F [ (c:+d)"(g:+,/')"]Q‘ ( z-a)|

fm-n
+1

=Cm.712_" 2 '(_])~|A~;~I=r[k+’"—'”

+l)l‘(,u) (z—=a)""""(ac+d) (gz+ )’

-

m-=n m-+n
B(I)X.h.,.al.a:).\'kqllrlv (al —S") (A = 2 +l) r[‘ + 5 +l+ f ‘)

Z e,14,14.1¢,! F(2k+2+7,)

3

Iy by gty Fy Tyl =0 1°%20 53

(1) (z —u_)""'"""m(;l).‘ [('(: —u))" g(z—a) ]
(ac+d)™"% (gz+ )" _ gz+ f

— MN4) _.'_"(;_-—(1)” ’l: €par i L N
H vl
o Lac«rd)"(g:a» L sty nato o3, mag L.} (B4

where

ac+d

Li=(1+y—4,—(R+t6 ). pid), (148 -6, —(R+tf o qil)(-A—k- ,— ,—(R+1 )o.u:l)

Li=(1+y=(R+16 )¢, p ), (145 < (R+t/ o, l) (A= pu~k=f,- .= ,~(R+¢ )o.ul)

and other symbols are same as given in EQs(2.9), (2.10) and (2.11) respectively. The conditions of validity of
Eqgs(5.1)can be obtained from those stated with (3.1) and (3.4).
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