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Abstract An analogue over imaginary quadratic fields of >1 result in algebraic number theory known as Ihara's lemma Ls
established. More precisely, we show that for a prime ideal P of the ring of integers of an imaginary quadratic field F. The

kernel of the sum of the two

cohomology /1 (X o= M) HELA L Al Kiscnstein.
Curves\ [ \ and \ [N} \ P

congruence subgroup property for the group S

standard P-‘eeneracy maps

1. INTRODUCTION

IHARA'SLEMMA IN THE VERSION STATED IN [6] ASSERTS THAT

THE KERNEL OF THE wmap @ :-Jo{N)® = Jo{Nplg
EISENSTEIN IF (N,p) = 1. HERE JO(N') DENOTES THE
JACOBIAN OF THE COMPACTIFIED MODULAR CURVE

YA
L'n !N JVH, AND A IS THE SUM OF THE TWO STANDARD P-

DEGENERACY MAPs From olVIto JalNpl The
ORIGINAL PROOF OF THE RESULT IS DUE TO IHARA [4] AND
USES ALGEBRAIC GEOMETRY. IN [6] RIBET GAVE A DIFFERENT
PROOF WITHOUT APPEALING TO ALGEBRO-GEOMETRIC
METHODS. THE RESULT WAS LATER IMPROVED UPON BY
KHARE [5] TO DISPOSE OF THE CONDITION THAT N BE
COPRIME TO P. KHARE ALSO GIVES A REARRANGED PROOF IN
THE CASE WHEN (N,P) = 1 USING THE METHOD OF MODULAR
SYMBOLS (CF. [5], REMARK 4). WE WILL USE HIS APPROACH
TO GENERALIZE THE RESULT TO IMAGINARY- QUADRATIC
FIELDS, WHERE ALGEBRO-GEOMETRIC TECHNIQUES ARE NOT
AVAILABLE.

Let F denote an imaginary quadratic extension

of Qand Orits ring of integers. The reason why over F the
algebro-geometric machinery is not available is the fact
that the symmetric space on which automorphic forms are
defined is the hyperbolic- 3-space, the product

ofCand B+-and the analogues X, of the modular curves
are not algebraic varieties (cf. section 2). However, [5]
uses only group cohomology and his method may be
adapted to the situation over an imaginary quadratic field.
In this setting the Jacobians are replaced with certain

———m—————

between the
NoandNian; analogues over F of the modular

cuspidal sheaf

respectively. To prove our theorem we use the method of modular symbols and the
2which Ls due to Serre.

1% a5

sheaf cohomology groups H, (‘K”-"\‘I”}and for a
prime? C Op we have analogues of the two standard p-
degeneracy maps whose
sum H (X0 Mo)® = HI(X0. Miywe  will  call @ (For
precise definitions see section 2.) The main result of this
note (Theorem 3.1) then asserts that the kernel of a is
Eisenstein (for definition of "Eisenstein” see section 3).

Originally lhara's lemma had been used by Ribet [6] to
prove the existence of congruences between modular
forms of level N and those of level Np. His result, valid for
forms of weight 2, was later generalized to arbitrary
weight by- Diamond [2], who used the language of
cohomology like we chose to. A crucial ingredient in

Diamond's proof is the self-duality of 1 (I“‘(N}, M). Over

imaginary- quadratic fields, as over@there is a
connection between the space of automorphic forms and

1rv  ar "
the cohomology groupsH! (‘\‘”’M’*--}called the Eichler-
Shimura-Harder isomorphism (cf. [10]). However, there
seems to be no obvious way to adapt the approach of

E Ll (-Yﬁ ' —"P}n )

Ribet and Diamond to our situation as is not

self-dual.

Ihara's lemma was also used in the proof of modularity of
Galois representations attached to elliptic curves

over @ ([11], [1]D- Thanks to the work of Taylor [9] one
can attach Galois representations to a certain class of

C: I.“_:_a ;»‘ ra )

automorphic forms on Resijqf -One could hope
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that Ihara's lemma in our formulation could be useful in
proving the converse to Taylor's theorem, i.e., that
ordinary Galois representations ofGal(F/FJ(satisfying
appropriate conditions) arise from automorphic forms, but
at this moment this is a mere speculation as too many
other important ingredients of a potential proof seem to
be missing.

The author would like to thank Trevor Arnold, Tobias
Berger, Brian Conrad, Chandrashekhar Khare and Chris
Skinner for many helpful and inspiring discussions.

2. PRELIMINARIES

Let F be an imaginary quadratic extension of Qand
denote byof’its ring of integers. LetTlbe an ideal

of O such that the Z-ideal M N Zhas a generator greater

than 3. Let P be a prime ideal such that ¥ * M penote by
C1F the class group of F and choose representatives of
distinct ideal classes to be prime
ideals P:» ¢ = 1. .. # Clr . relatively prime to
both Mand?- Let 7. {resp. milhe a uniformizer of the
completion Fp (resp. Fp) of F at the prime ¥ (1¢P- Pi):angd
put T (resp. i)y be the
idele

(....La.1l,...) € Af (vesp. (....Lw1....) € A}),
where # {re¢sp. miioccurs at the  p-th  place
(resp. P-th place). We also put

i ) e d
Oy = Ui ™7 O

For each™ &%

of CL2(Arp)

=0-we define compact open subgroups

{
K, = {{‘j (;} € [ Gla(Orgq)ic e ‘Ytp}

qfec

Here A1.f denotes the finite adeles of F and ¥#7 the ring
of integers of Fa- For

- - —1
k¥ = [7’ J 0, [7’ ]
set L 1

For any compact open subgroup K o

Y
n > Owe also

fGLz(Af“=f)we put

Xy = GLa{F)\ GLo(A ) /K - U5(C) - Zge,

where Zo = CTig the center of GL,(C)
Ty L J 1 7 . _" — )
and "2} := {A'f e GL2(C) [ MM =1} (here ‘bar'

denotes complex conjugation and h stands for the 2 x 2-
identity matrix). If K is sufficiently large (which will be the
case for all compact open subgroups we will consider)

this space is a disjoint union of#C'Fc_onnected
F# Oy

components X =[5 Tr) N E,

whereZ = GE2(C)/U:(C)CT and
R

(Fx) = GLoAF) N 1 U 1o ease

X=X XJ = X Ty =

notation we put

(Tp, )i and T} = (Cpo ki

We have the following diagram:

g A ¢
'“%B”'H Ky, > Kt >
L ;- !
e _C it I{p \ ],’\'IJ C N I‘:p C y
nti "t T ’
2.1)

where the horizontal and diagonal arrows are inclusions
and the vertical arrows are conjugation by the

w

maps [ 1]. Diagram (2.1) is not commutative, but it is
"vertically commutative", by which we mean that given
two objects in the diagram, two directed paths between
those two objects define the same map if and only if the
two paths contain the same number of vertical arrows.

Diagram (2.1) induces the following vertically
commutative diagram of the corresponding symmetric
spaces:

? Xn-~—1 —

B
A\
=
=
4
R
-
=1
o
=

2.2)

The horizontal and diagonal arrows in diagram (2.2) are

the natural projections and the vertical arrows are maps
—1

given by- (95297) (9009717171,
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Let M be a torsion abelian group of exponent relatively
prime to#c);‘: endowed with a GLy(F)-action. Denote
by M the sheaf of continuous sections of the topological
covering GL»(F) \ (GL,(Af)/K
w L2(C) - 2o} X M = Xi\where GL,(F) acts
diagonally on (GE- 2(Ar)/RUAC)Zx0 %M Here M s

equipped with the discrete topology. Since we will only be
concerned with the case when M is a trivial GLZ(F)

module, we assume itfrom now on. This means that M is
a constant sheaf. As above, we

out M, = Mr, an df\-f b= M.

Givena surjective map ¢ ° Xp = -X_f\"*we get an

isomorphism of sheaves ¢ Mpr = Mg \which yields a
map on cohomology
HY(Xpo, Mgy = H'(Xg, 07 ' Myo) = H'( Xk, Mg).

Hence diagram (2.2) gives rise to a vertically
commutative diagram of cohomology groups:

[“1|,n+| ) &.l.n-\,,w

e H9 Ky M) HY(Y, M) —— (Y, g ——

1y -1l
11& ef1lp a‘ D

L ) e AT

-1

—— XD, A

nil)

J—
(2.3)

These sheaf cohomology groups can be related to the
al P

group cohomology of Do and Lo with coefficients in M.

In fact, for each compact open subgroup K with

- #r
corresponding decomposmon“LA = IEr Tuch \Z
have the following com mutative diagram in which the
horizontal maps are inclusions:

H{ (X ke, Mye) ———— H'(Xyc. M)

| T

FETHL (T M) —— @FETT HO(T )3, M)
(2.4)

Here H(Xk. Mr) denotes the image of the cohomology
with compact support

H'r.'-'(X’\"'Mf\)|n3|de Xk M")andHI 'denotes the

parabolic Cohomology ie.,

T My = bl BT A = @ HUTw0 M

wherebls the set of Borel subgroups of GL"F)
and (rl\)f B = = (L'w)i M B. The vertical arrows in diagram
(2.4) are isomorphisms provided that there exists a

torsion-free  normal subgroup of T)iof finite index
relatively prime to the exponent of M. If K = K,

— p . - . . g
orfe = K5 2 Ouypis condition is satisfied because of our

assumptlon that MNZ has a generator greater than 3

iy
and the exponent of M is relatively prime to #Or (cf. [10],
section 2.3). In what follows we may therefore identify the
sheaf cohomology with the group cohomology. Note that
all maps in d*ia*gram (2.3) preserve parabolic cohomology.

The maps ™t are the natural restriction mapson group
cohomology, so in particular they preserve the

#C -
decomposmonea " HY((Uw )i, M)

Using the identifications of diagram (2.4) we can prove
the following result which will be useful later:

[)1 . 1 ks 4,“ 1 > f
Lemma 2.1. The map ™t ° Hi (Xo. Ma) = H (X0, Mg

injective.

Proof. Using the isomorphism between group and sheaf
cohomology all we need to prove is that the restriction

maps res, : HY(To, M) = HY(Typi M) gre injective.

Since M is a trivial  oa-module: the cohomology groups
are just Homs, so it is enough to show the following
statement: if G denotes the smallest normal subgroup

ofrﬂ:fcontaining TiiithenG =To.i. For this we use the
decomposition

. D . |4 B
Ty, = H i L, I] aly [C’ D} .

ke ROy /1)
ke

A B
where the matrix[(-" D]is chosen so that C and D are
relatively prime elements of

Of with C € M D €p.gng € Ur: B EWigaiisty AD —
BC = 1. Here O+ /P) denotes a set of representatives in
Op of the of Or /P et

‘o b . - -1
|,- ,;_J € I'iiwith 4 € P-Then for any;“ € M Or we have

a b 7'[L+bdk Bk ] [a B] 1
¢ d AL 1-—bdk| |e d| — |k 1

distinct residue classes
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14bdk —h%k ]

Ak 1 bk

i
and the matrix { “"hence G containsand

T 1
=T Hhemoﬁmh.a[k 1]=
thus =" = =40 ke

We can augment diagram (2.1) on the right by introducing
one more group:

le =

afpoc afx

The group K-1 is not compact, but we can still define

- - —1
kil - KN

fort = L. # Cle After identifying the sheaf cohomology

groups 1} (Xo. M) and H(XE. ME) with the

7l : agl 1] A
groups @, Hp (Lo M) gng D Hrf’{r‘l-f’‘1‘”{}’respectively,
using diagram (2.4), we can augment diagram (2.3) on
the right in the following way-

I‘,—.y,- = GT‘&J(F) M

Rl

o ~ .
b (X M) e HY(Xo, M) e HI(X 0

ap.lp

o b (XD M) ——— H(XE )
(2.5)

Here we putﬂf{xﬁl.ﬂfjﬁ,l) =@ HPT 1M 4y the
. .10 a1
maps %t and "

maps.

are direct sums of the restriction

The sheaf and group cohomologies are in a natural way
modules over the corresponding Hecke algebras. (For the
definition of the Hecke action on cohomology, see [10] or
[3]). Here we will only consider the subalgebra T of the
full Hecke algebra which is generated over Z by the

1
Ty = K ["T 1]
double cosets 4K and

TFI:P] =K I:Tr l‘:| o C) +
7| 7y ofOFsuch that’ f M- The

algebra T acts on all the cohomology groups in p Ty T

A b { 1 H ~ X
L (J € GLy(Fy) x [] GLa(Opg) e M, ad~bee Hogq}.

the group
il
decomposition@': H({

cohomology
Ui M)

respects the
, where * = ¢ or P.

3. MAIN RESULT

We will say that a maximal ideal n of the Hecke algebra T
is Eisenstein if 1= N+ 1(mod n) for all ideals |
of O which are trivial as elements of the ray- class group
of conductor n. Such ideals | are principal and have a

generator | with / = 1n NI denotes the ideal norms From
now on we fix a non-Eisenstein maximal ideal m of the
Hecke algebra T. Our main result is the following
theorem.

Theorem i 3.1. i Consider the
mapff!i(.‘rg,f\fg)g i I]Il(‘yl"‘njl)dEﬁHEd as :

(f.g) 0 o' F+alal'g. The

injective.

localization “™of ¢t is

We prove Theorem 3.1 in two steps. Define a
mapiﬁ ¥ I’I!l (JY_],ﬂf_q) ¥
H!' (Xo. Mo)? by ¢ = (—u“(r,,”l’opg'.(1‘{1’@!)')and

7 n note
that @4 = U py the ver

tical commutativityﬁ of
a D 3{HNX. M., ))

diagram (2.5), ie.,

ker . We first prove

Al Y Y
Proposition 3.2. ker® = A(H(X 1. M)

Then we show

Slev L AT . _
Proposition 3.3.H’ (X1 Moy =0

Propositions 3.2 and 3.3 imply Theorem 3.1.

The idea of the proof is due to Khare [5] and uses
modular symbols, which we now define. Let D denote the
free abelian group on the set B of all Borel subgroups of
GL,(F). The action of GL,(F) on by conjugation gives
rise to a Z-linear action of GL,(F) on D. We sometimes

gy — f& - y =
identifyBwith £ (£} ={Zla€Op.ce
Or\{0}; U{ochon which GL,(F) acts by the linear
fractional transformations.

LetDU = {Z'n'g_Bg_ e D i n; & ZBI < B’.an = U} be
the subset of elements of degree zero.

WY& = LLTi\ Zithen for each Tithe exact sequence
(0~ Homg (£, M) — Homyg (D, M) - Homg{Ds, M) — 0
gives rise to an exact sequence
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(31) 0- M — Homgyp (D, M) = Homgy (Do, M) =

o> BN, M) =+ YT, Homg(D, M),

The group HUmZ{[‘;](Dn, AN

symbols.

is called the group of modular

Lemma 3.4. LetT be a group acting on the set Bof Borel
subgroups 0o/GL,(F) and let C denote a set
representatives for the T-orbits of 5. Then for any trivial
F-module W,

HY(T'.Homgz{D, W)

@le W)

where L'z is the stabilizer of ¢ inL-

Proof. The I-modidestructure on Homz(D,W) is defined

o (x) = G{v !

. )
via -’ ’

PYRIE
and on EB(.E(-« Ind B via

(f(.'l ----- f('” ]q (7('1 veaes Yoy, )= (f('l ----- f{.',, )(7('1 TFraw Ty, v

Note that we have
a -modnle jsomorphism
¢ Homg (D W) = P fnd{:u i,

given by 2(g)(7) = oly .}'Thus

. GB Indj_117)

HY(T, Homz(D. W)

s .
since the action ofI'stabilizes M. w for every ¢ € C.

rlie 11
The last group is in turn isomorphic to Becc H TN )by

Shapiro's Lemma.

By taking the direct sum of the exact sequences (3.1) and
using Lemma 3.4, we obtain the exact sequence

(32) 0 P M~ P Homgpr (D, M) -

- @ Homgr, (Do, M) =+ ) HE(T, M) = 0,

i i

1w . AT,
where the last group is isomorphic to HE(X k. M)

Remark 3.5. The space of modular

symbols B Homzw 1 {Do. Mis 2156 2 Hecke module in a
natural way. In fact it can be shown (at least if N is

@H (. Ind}. W

square-free) that the localized
map{®! H()T!I_ZU‘}J‘( D‘ .’11']’))m — (@ H()'{llz (1)() 1]))“”

s an isomorphism, but we will not need this fact.
4. PROOF OF PROPOSITION
Suppose (f.9) E‘_km'a, 10y a-?‘l f= n‘n? B Lot by =

MMEM%wwmwmdeMWMWMMﬂHW

ﬂﬂm:nﬁf &mOMMmm,mi[lgm(ﬂ i e

'

l
U !

wwﬁﬂp”w:mphEH(WJﬁ)

Iy} qmwz N

RSN T
Iy by =0 T = 0y . Sl s an omon s

For K C K' two compact open subgroups of Ta{Ar ) gor
WthhY":Hr\ Zand\’\'_IIE \Z
with 1: 7 € Gie 1 © T \ye have a commutative diagram

H(}I]ly[ (D(] M} —) HI;(F-Jf Al .

iu(.'lusi(m/[ F’t‘bT
(J i

Homyy (Do M) —— HL(T), M)
(4.1)

where the maps T and®Tdenote the appropriate
connecting homomorphisms from exact sequence (3.2).
So far we have shown that

wa? g = a?’lph A “2)

(9:): € @; Hp(Tos M)

= (X4

We identify g with a tuple and

define (M1)i € Hp (Lo, M) and (ha}; € H}’(Fﬁ:f"u)similarl
y. Equality (4.2) translates

—gilpe . = (hadifpe . = (ha)ifpy
to 1.i 1.z 1.4 (4 3)

—1
. Gmod.i € ¢pv (g) .
Fix” "~ "' and regard it as an element of Homz(-

Do) M) invariant under To,,. Using diagram (4.1)

b ‘P
with i = Fiyaud T = T4, 5y equality (4.3) we
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fry FITTE (S} 1y i?.#_))s
conclude that there exists( 2D l‘il{( ‘)such

that (2med,i = —gmod. regarded as elements of

Homz(Dy,M). Hence 9med.ijs invariant under both Vo.:
P a 1
and 0 Lemma 41  For'— too# Clrge

p
groups Foiang I'g: generate | A Using Lemma 4.1 we
conclude  that fmod: € Homzgr_, (Do, M}, Put g; =

"’"“1-»‘(ff“""""-)‘Agaln, by the commutativity of diagram

4.1) with I = Ti andli = Toipe
have %iTo: = % Hence

g = (gl € P HME 4, M) = HE . AR)
satisfiesJ =a . Thus

01 G,1p  ~1.0 4

U—n,l f+(t a[}lpgz f+u, o ey g
By the vertical comutativity of diagram (2.5) we have

ﬂéa?w% 1,0 _n,? lagm 1.0p 00_3?1f..|..

0.1 e T
o, n-ga | . Since a? is injective by Lemma 2.1, 1]
Hence

1,01 —1.0
(f.9) = (=ajay "Wg'ay V) €
Completing the proof of Proposition 3.2

5. PROOF OF PROPOSITION 3.3

In this section we prove that for a principal
ideal! = () € Orsuch that 7= L(mod N) we
have 71f = (N(+ L fon

clements f € HNX. 1 M) = @ HLT 4 M) g,
such an ideal [, the operators T[ preserve each direct
sum-  mandZp{T-1i.3M).The  restriction of T{
toH}’(F*”‘M) is given by the usual action of the double
coset I 1. [*]r. ‘Iion group cohomology (see eg,
B). For k!€0pye putorsi=[Mil =[] 1
describe the action of Ilexpllcnly we use the foIIowmg
lemma.

Lemma 5.1. Let | = (I) be a principal ideal
of V¥ and,” Z ~1-Then

. 1
I-n,‘i I: ]:| F'u.,i = H Fn:zn’k,I L I"Ia.,'irrf:
' EERIOF /D
kED:
where OF /D genotes  a  set  of
of OF/Lin Or- proof. This is easy.

representatives

BHNX 1. M_),

Lemma 5.2. Let™ 2 3pe an odd integer. Every ideal
class c of F contains infinitely many prime ideals g such
that (Ng —1I,n) =1

Proof. We assume! MQ(¢:) = Qithe other case being
easier. , ) Let(! = Gal(F/Q).
N = Gal{Q(G )/ Q) andC = Gal(H/F) = Clr.where  H
denotes the Hilbert class field of F. We have the following

diagram of fields
FH
/'// \\\‘N
o ¢ \\
k= FQ(G) P il
. \\Q' P
’ L S ) /
(H) F
\K
// G
RN
0 (5.1)

Choose {o.7) € GallF,H/H) % GallF,HTEy 2 N 1 C, such tha
o€ GalFL A 2 (1)

corresponds to an
~ x -

element @ € (Z/nZ}" ith & # 1 modulo any of the

divisors of n,

and” € GallF,H/F,)= € = Clpcorresponds to  the
ideal class c. By the Chebotarev density theorem

Froba = (7.7). exist infinitely many primes 2of the

there
ring £ H q of Cf)i”lying under such Qsatisfy the condition

of the lemma, i.e., 1 € “and

(Wag-1,n) = 1.

By Lemma 5.2 we may assume that the ideals p were
chosen so that ¥ 9: — 1js relatively prime to the exponent
of Mforalli =1t.....#Cly.

Let f € Hp(T 1. M) gng

let' = pe a principal ideal ofof"?,withl =1 (mod R,
We will prove thatft = Tuf = (Nl+1) =0.gy the
definition of parabolic cohomology, we
have b, nBy = Ufor al B € B.

Proof of Proposition 3.3.
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Moreover, as the exponent of M is relatively prime since ! = 1 (mod M) 504 we can always
] ke .
to # it is enough to prove choose * € M:-Thus fi = [,

that F1(F) = 0. \where Li = To1.: N SLa(F). p REFERENCES
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