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Abstract An analogue over imaginary quadratic fields of >1 result in algebraic number theory known as lhara's lemma Ls 
established. More precisely, we show that for a prime ideal of the ring of integers of an imaginary quadratic field F. The 

kernel of the sum of the two standard maps between the cuspidal sheaf 

cohomology is Kiscnstein. Here and an; analogues over F of the modular 

curves  respectively. To prove our theorem we use the method of modular symbols and the 

congruence subgroup property for the group which Ls due to Serre. 
 

------------------------------------------♦----------------------------------------- 

 

1. INTRODUCTION 

IHARA'SLEMMA IN THE VERSION STATED IN [6] ASSERTS THAT 

THE KERNEL OF THE MAP IS 

EISENSTEIN IF (N,P) = 1. HERE JO(N') DENOTES THE 

JACOBIAN OF THE COMPACTIFIED MODULAR CURVE 

 AND A IS THE SUM OF THE TWO STANDARD P-

DEGENERACY MAPS FROM TO  THE 

ORIGINAL PROOF OF THE RESULT IS DUE TO IHARA [4] AND 

USES ALGEBRAIC GEOMETRY. IN [6] RIBET GAVE A DIFFERENT 

PROOF WITHOUT APPEALING TO ALGEBRO-GEOMETRIC 

METHODS. THE RESULT WAS LATER IMPROVED UPON BY 

KHARE [5] TO DISPOSE OF THE CONDITION THAT N BE 

COPRIME TO P. KHARE ALSO GIVES A REARRANGED PROOF IN 

THE CASE WHEN (N,P) = 1 USING THE METHOD OF MODULAR 

SYMBOLS (CF. [5], REMARK 4). WE WILL USE HIS APPROACH 

TO GENERALIZE THE RESULT TO IMAGINARY- QUADRATIC 

FIELDS, WHERE ALGEBRO-GEOMETRIC TECHNIQUES ARE NOT 

AVAILABLE. 

Let F denote an imaginary quadratic extension 

of and its ring of integers. The reason why over F the 
algebro-geometric machinery is not available is the fact 
that the symmetric space on which automorphic forms are 
defined is the hyperbolic- 3-space, the product 

of and and the analogues Xn of the modular curves 
are not algebraic varieties (cf. section 2). However, [5] 
uses only group cohomology and his method may be 
adapted to the situation over an imaginary quadratic field. 
In this setting the Jacobians are replaced with certain 

sheaf cohomology groups and for a 

prime p we have analogues of the two standard p-
degeneracy maps whose 

sum we will call (For 
precise definitions see section 2.) The main result of this 
note (Theorem 3.1) then asserts that the kernel of a is 
Eisenstein (for definition of "Eisenstein" see section 3). 

Originally Ihara's lemma had been used by Ribet [6] to 
prove the existence of congruences between modular 
forms of level N and those of level Np. His result, valid for 
forms of weight 2, was later generalized to arbitrary 
weight by- Diamond [2], who used the language of 
cohomology like we chose to. A crucial ingredient in 

Diamond's proof is the self-duality of , M). Over 

imaginary- quadratic fields, as over there is a 
connection between the space of automorphic forms and 

the cohomology groups called the Eichler-
Shimura-Harder isomorphism (cf. [10]). However, there 
seems to be no obvious way to adapt the approach of 

Ribet and Diamond to our situation as is not 
self-dual. 

Ihara's lemma was also used in the proof of modularity of 
Galois representations attached to elliptic curves 

over ([11], [1])- Thanks to the work of Taylor [9] one 
can attach Galois representations to a certain class of 

automorphic forms on One could hope 
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that Ihara's lemma in our formulation could be useful in 
proving the converse to Taylor's theorem, i.e., that 

ordinary Galois representations of (satisfying 
appropriate conditions) arise from automorphic forms, but 
at this moment this is a mere speculation as too many 
other important ingredients of a potential proof seem to 
be missing. 

The author would like to thank Trevor Arnold, Tobias 
Berger, Brian Conrad, Chandrashekhar Khare and Chris 

Skinner for many helpful and inspiring discussions. 

2. PRELIMINARIES 

Let F be an imaginary quadratic extension of and 

denote by its ring of integers. Let be an ideal 

of such that the Z-ideal has a generator greater 

than 3. Let be a prime ideal such that Denote by 
C1F the class group of F and choose representatives of 
distinct ideal classes to be prime 

ideals relatively prime to 

both and Let be a uniformizer of the 

completion Fp (resp. Fpi) of F at the prime and 

put to be the 
idele

 
where occurs at the p-th place 

(resp. place). We also put 

 

For each we define compact open subgroups 

of  

 

Here denotes the finite adeles of F and the ring 

of integers of For we also 

set  

For any compact open subgroup K of we put 

 

where is the center of GL2(C) 

and  (here 'bar' 

denotes complex conjugation and h stands for the 2 x 2-
identity matrix). If K is sufficiently large (which will be the 
case for all compact open subgroups we will consider) 

this space is a disjoint union of connected 

components  

where  and 

. To ease 

notation we put   

 

We have the following diagram: 

          (2.1) 

where the horizontal and diagonal arrows are inclusions 
and the vertical arrows are conjugation by the 

maps . Diagram (2.1) is not commutative, but it is 
"vertically commutative", by which we mean that given 
two objects in the diagram, two directed paths between 
those two objects define the same map if and only if the 
two paths contain the same number of vertical arrows. 

Diagram (2.1) induces the following vertically 
commutative diagram of the corresponding symmetric 
spaces: 

(2.2) 

The horizontal and diagonal arrows in diagram (2.2) are 
the natural projections and the vertical arrows are maps 

given by-  
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Let M be a torsion abelian group of exponent relatively 

prime to endowed with a GL2(F)-action. Denote 

by the sheaf of continuous sections of the topological 
covering GL2(F) \ (GL2(Af)/K 

■ where GL2(F) acts 

diagonally on . Here M is 
equipped with the discrete topology. Since we will only be 
concerned with the case when M is a trivial GL2(F)-

module, we assume itfrom now on. This means that is 
a constant sheaf. As above, we 

put and  

Givena surjective map we get an 

isomorphism of sheaves which yields a 
map on cohomology 

 

Hence diagram (2.2) gives rise to a vertically 
commutative diagram of cohomology groups: 

     
(2.3)  

These sheaf cohomology groups can be related to the 

group cohomology of  and with coefficients in M. 
In fact, for each compact open subgroup K with 

corresponding decomposition we 
have the following com mutative diagram in which the 
horizontal maps are inclusions: 

                   (2.4) 

Here denotes the image of the cohomology 
with compact support 

inside and denotes the 

parabolic cohomology, i.e., 

 

where is the set of Borel subgroups of GL^iF) 

and The vertical arrows in diagram 
(2.4) are isomorphisms provided that there exists a 

torsion-free normal subgroup of of finite index 
relatively prime to the exponent of M. If K = Kn 

or this condition is satisfied because of our 

assumption that  has a generator greater than 3 

and the exponent of M is relatively prime to (cf. [10], 
section 2.3). In what follows we may therefore identify the 
sheaf cohomology with the group cohomology. Note that 
all maps in diagram (2.3) preserve parabolic cohomology. 

The maps are the natural restriction mapson group 
cohomology, so in particular they preserve the 

decomposition  

Using the identifications of diagram (2.4) we can prove 
the following result which will be useful later: 

Lemma 2.1. The map is 
injective. 

Proof. Using the isomorphism between group and sheaf 
cohomology all we need to prove is that the restriction 

maps res, : are injective. 

Since M is a trivial the cohomology groups 
are just Homs, so it is enough to show the following 
statement: if G denotes the smallest normal subgroup 

of containing then . For this we use the 
decomposition 

 

where the matrix is chosen so that C and D are 
relatively prime elements of 

Of with and satisfy AD — 

BC = 1. Here  denotes a set of representatives in 

Op of the distinct residue classes of Let 

with Then for any we have 
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and the matrix hence G containsand 

thus  

We can augment diagram (2.1) on the right by introducing 
one more group: 

 

The group K-1 is not compact, but we can still define 

 

for After identifying the sheaf cohomology 

groups and with the 

groups and respectively, 
using diagram (2.4), we can augment diagram (2.3) on 
the right in the following way- 

      (2.5) 

Here we put and the 

maps and  are direct sums of the restriction 
maps. 

The sheaf and group cohomologies are in a natural way 
modules over the corresponding Hecke algebras. (For the 
definition of the Hecke action on cohomology, see [10] or 
[3]). Here we will only consider the subalgebra T of the 
full Hecke algebra which is generated over Z by the 

double cosets K and 

p of such that The 

algebra T acts on all the cohomology groups in p  

the group cohomology respects the 

decomposition , where  or P. 

3. MAIN RESULT 

We will say that a maximal ideal n of the Hecke algebra T 

is Eisenstein if (mod n) for all ideals l 

of which are trivial as elements of the ray- class group 
of conductor n. Such ideals l are principal and have a 

generator I with n  denotes the ideal norms From 
now on we fix a non-Eisenstein maximal ideal m of the 
Hecke algebra T. Our main result is the following 
theorem. 

Theorem 3.1. Consider the 

map defined as  

The localization of is 
injective. 

We prove Theorem 3.1 in two steps. Define a 

map  

and note 

that by the ver 

tical commutativity of diagram (2.5), i.e., 

ker . We first prove 

Proposition 3.2. ker   

Then we show  

Proposition 3.3.  

Propositions 3.2 and 3.3 imply Theorem 3.1. 

The idea of the proof is due to Khare [5] and uses 
modular symbols, which we now define. Let D denote the 

free abelian group on the set of all Borel subgroups of 

GL2(F). The action of GL2(F) on by conjugation gives 
rise to a Z-linear action of GL2(F) on D. We sometimes 

identify with  

on which GL2(F) acts by the linear 
fractional transformations. 

Let be 
the subset of elements of degree zero. 

If then for each the exact sequence 

 
gives rise to an exact sequence  
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The group is called the group of modular 
symbols. 

Lemma 3.4. LetT be a group acting on the set of Borel 
subgroups o/GL2(F) and let C denote a set 
representatives for the T-orbits of . Then for any trivial 
F-module W, 

 

where is the stabilizer of c in  

Proof. The structure on Homz(D,W) is defined 

via  

and on via 

 

Note that we have 

a isomorphism

 

given by Thus 

 

since the action of stabilizes W for every . 

The last group is in turn isomorphic to by 
Shapiro's Lemma.  

By taking the direct sum of the exact sequences (3.1) and 
using Lemma 3.4, we obtain the exact sequence 

 

where the last group is isomorphic to  

Remark 3.5. The space of modular 

symbols is also a Hecke module in a 
natural way. In fact it can be shown (at least if N is 

square-free) that the localized 

map i
s an isomorphism, but we will not need this fact. 

4. PROOF OF PROPOSITION  

 

 

 

 

 

For K C K' two compact open subgroups of for 

which  and  

with we have a commutative diagram 

(4.1) 

where the maps and denote the appropriate 
connecting homomorphisms from exact sequence (3.2). 
So far we have shown that 

(4.2) 

We identify g with a tuple and 

define and similarl
y. Equality (4.2) translates 

to (4.3) 

Fix and regard it as an element of Homz(-
Do) M) invariant under To,,. Using diagram (4.1) 

with and equality (4.3) we 
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conclude that there exists such 

that  regarded as elements of 

Homz(D0,M). Hence is invariant under both  

and  Lemma 4.1. For the 

groups and generate  Using Lemma 4.1 we 

conclude that  

Again, by the commutativity of diagram 

(4.1) with  and we 

have Hence

 HF , AF_i) 

satisfies  Thus 

By the vertical comutativity of diagram (2.5) we have 

 

 

Hence  

 Completing the proof of Proposition 3.2 

5. PROOF OF PROPOSITION 3.3 

In this section we prove that for a principal 

ideal such that (mod N) we 

have on 

elements  For 
such an ideal [, the operators T[ preserve each direct 

sum- mand The restriction of T{ 

to is given by the usual action of the double 

coset on group cohomology (see, e.g., 

[3]). For we put To 

describe the action of explicitly we use the following 
lemma. 

Lemma 5.1. Let l = (I) be a principal ideal 

of and, Then 

 

where denotes a set of representatives 

of in  Proof. This is easy.  

Lemma 5.2. Let be an odd integer. Every ideal 
class c of F contains infinitely many prime ideals q such 
that (Nq — l,n) = 1. 

Proof. We assume the other case being 

easier. Let  

and where H 
denotes the Hilbert class field of F. We have the following 
diagram of fields 

        (5.1) 

 

corresponds to an 

element with modulo any of the 
divisors of n, 

and corresponds to the 
ideal class c. By the Chebotarev density theorem 

there exist infinitely many primes of the 

ring q of lying under such satisfy the condition 

of the lemma, i.e., and 

(Wq-l,n) = l. □ 

By Lemma 5.2 we may assume that the ideals p were 

chosen so that is relatively prime to the exponent 

of M for all  

Proof of Proposition 3.3. Let and 

let be a principal ideal of with . 

We will prove that By the 
definition of parabolic cohomology, we 

have for all  
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Moreover, as the exponent of M is relatively prime 

to it is enough to prove 

that where Put 

 

We first show that on the z-th principal 
congruence subgroup 

 

 

by the definition of parabolic 

cohomology. So  on the smallest normal 

subgroup H of containing matrices of the 

form  with By a theorem of Serre [7], 

 

Thus  on Put 

 

Since PNPi is a normal subgroup of of index 

have  by Lemma 5.2 and our 
choice of p. On one hand ft is zero on the elements of the 

form (again by the definition of 
parabolic cohomology) and on the other hand elements of 

this form together with generate so 

as asserted. 

Thus  descends to the quotient However, on 

this quotient all and act as the identity, 

since and we can always 

choose Thus . 
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