
Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 1 

E-Mail: ignitedmoffice@gmail.com 

The Algebraic Integer Transfinite Diameter 
 

 

Navneet Agrawal 

Research Scholar, CMJ, University, Shillong, Meghalaya  

Abstract We study the problem of finding nonconstant algebric integer polynomials, normalized by their degree, with 

small supremum on an interval I. The algebric integer transfinite diameter is defined as the infimum of all such 

supremums. We show that if I has length 1 then  We make three general conjectures relating to the value 

of for intervals I of length less that 4. We also conjecture a value for  where We give some partial 

results, as well as computational evidence, to support these conjectures. We define functions and which 

measure properties of the lengths of intervals I with on either side of t. Upper and lower bounds are given for these 

functions. We also consider the problem of determining when I is a Farey interval. We prove that a conjecture of 
Borwein, Pinner and Pritsker concerning this value is true for an infinite family of Farey intervals. 
 

------------------------------------------♦----------------------------------------- 

 

1. INTRODUCTION  

In this paper we continue a study, recently initiated by 
Borwein, Pinner and Pritsker [2], of the algebric integer 
transfinite diameter of a real interval. We write the 
normalized supremum on an interval I as 

 

Note that this is not a norm. Then the algebric integer 

transfinite diameter is defined as 

 

where the infimum is taken over all non-constant algebric 

polynomials with integer coefficients. We call the 
algebric integer transfinite diameter of I (also called the 
algebric integer Chebyshev constant [1, 2]). 

Clearly   where  denotes the integer 
transfinite diameter, defined using the same infimum, but 
taken over the larger set of all non-constant polynomials 
with integer coefficients [3, 4, 5]. 

Further the capacity or transfinite diameter 
of I [6, 14], which can be defined again using the same 
infimum, but this time taken over all non-constant algebric 

polynomials with real coefficients. It is well known 

that for an interval I of length Further, 

if then by [2] so that the 

challenge for evaluating as for lies in intervals 

with  

For these intervals we knowfrom [2, Prop. 1.2] 

that However, in contrast to the study 

of in the algebric case it is possible to evaluate 

exactly over some such intervals. Our first result is 
the following. 

Theorem 1.1. All intervals I of length 1 have In 
fact, slightly more is true: 

if  

Furthermore for any b < 1 there is an interval I 

with  while for h > 1.064961507 

there is an interval I with  

The proof, which is essentially a corollary of Theorem 
1.2 (a) below, is discussed in Section 5. 
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The numbers, 1.008848 and 1.064961507 in Theorem 1.1, 
like most numerical values given in this paper, are 
approximations to some exact algebraic number. These 
numbers are rounded in the correct direction, if necessary, 
to ensure an inequality still holds. The polynomial 
equations that they satisfy are given within the text. We 
have tried to do this for all numerical values. 

To measure the range of lengths of intervals having a 
particular algebric integer transfinite diameter t, we 
introduce the following two functions: 

 

It follows from [2, Prop. 1.3] that 

both and are nondecreas- ing functions of t. 

Also see Lemma 3.1(a) below. We give 
(Proposition 3.1) general method for finding upper and 

lower bounds for and apply these 

methods to get such bounds for  They are 
constructive, using both the LLL basis-reduction algorithm 
and the Simplex method. These techniques were first 
applied in this area by Borwein and Erdelyi [3], and then by 
Habsieger and Salvy [7]. These bounds are given in 
Theorem 4.1 and Proposition 4.1 - see also Figures 1 and 
2. 

we pushed this method further, and were able to 
say more. 

Theorem 1.2. We have 

 

and 

 

Further properties of and are given in Lemma 3.1. 

2. DEFINITIONS, CONJECTURES AND FURTHER 

RESULTS 

In this section, we state some old and some more new 
results, and (perhaps a little recklessly) make four 
conjectures. 

The following result is simple but fundamental. It is useful 

for determining lower bounds for  

Lemma BPP (Borwein, Pinner and Pritsker [2, p.1905]). 

Let  

be a nonmonic irreducible polynomial 
with integer coefficients, all of whose roots lie in the interval 

I. Then for every algebric integer 

polynomial P, so that Furthermore, if 

then and

for every root and 

Res  

The proof follows straight from the classical fact that, for 

the conjugates of  

                                           
(1) 

is a nonzero integer, giving 

                 (2) 

This result is a variant of a similar one in the theory 

of —see Lemma 7.1. 

We call such a value in Lemma BPP an obstruction 

for I, with obstruction polynomial . From Lemma BPP 

we see that is bounded below by the supremum of all 
such obstructions. If this supremum is attained by some 

value coming from then we 

say is a maximal obstruction, and is a maximal 
obstruction polynomial. It is not known whether such a 
polynomial exists for all intervals I of length less than 4 
(see Conjecture 2.3). 
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We say that the algebric integer polynomial P(x) is an 
optimal algebric integer Chebyshev polynomial for I 

if If I has a maximal ob-

struction with and an optimal algebric 
integer Chebyshev polynomial P then we say that P attains 

the maximal obstruction . 

Throughout this paper, P(x) will denote a algebric integer 

polynomial, a nonmonic integer polynomial and R x 
any integer polynomial. 

One very nice property of the algebric integer transfinite 
diameter problem, not shared by its nonmonic cousin, is 

that often exact values can be computed for In all 
cases where this has been done, including Theorem 1.1, it 
was achieved by finding a maximal obstruction, and a 
corresponding optimal algebric integer Chebyshev 
polynomial. Simple examples of this are given ([2, 
Theorem 1.5]) by the 

intervals for where is a 
maximal obstruction polynomial, and P x x is an optimal 
algebric integer Chebyshev polynomial. For n= 

1, with Q{x) = 2x— 1 and P(x) =x(x^ 1). 
This was the case too in [2, Section 5] in the proof of the 
Farey Interval conjecture for small-denominator intervals. 

A much less obvious example is the interval I = [—
0.3319,0.7412], of length 1.0731. Here, we 

have with maximal 
obstruction polynomial 7x

3
 — 7x

2
 + 1 and where P is the 

optimal algebric integer Chebyshev polynomial 

 

of degree 670320. (Tighter endpoints for this interval, and 
its length, can be computed by solving the 

equation The discovery of this 
polynomial required the use of Lemma 6.1 below. 

For the nonmonic transfinite diameter Pritsker [13, 
Theorem1.7] has recently proved that no integer 

polynomial R x can attain  this value 
being achieved only by a normalized product of infinitely 
many polynomials. An immediate consequence of his 
result is the following. 

Proposition 2.1. If an interval I has an optimal algebric 

integer Chebyshev polynomial then  

A fundamental question for both the algebric and nonmonic 
integer trans- finite diameter of an interval is whether its 
value can be computed exactly. In [2, Conjecture 5.1], 
Borwein et al make a conjecture for Farey intervals 

(intervals where and

) concerning the exact value of their 
algebric transfinite diameter. 

Conjecture BPP(Farey Interval Conjecture [1, p. 82], [2, 
Conjecture 5.1]). Suppose thatis a Farey interval, neither of 

whose endpoints is an integer. Then  

 

Borwein et al verify their conjecture for all Farey intervals 

having the denominators less than 22. In Section 8 
we extend the verification to some infinite families of Farey 
intervals (Theorems 8.2 and 8.3). 

We next investigate what happens to when b is 

close to  

For these intervals, some surprising things happen. Using 
the polynomial P(x) = x, we know 

that In fact it appears likely 

that clearly a non-decreasing function of b, has a 

left discontinu ity at On the other hand, 

we show in Theorem 9.1 that is locally constant on an 

interval of positive length to the right of  Further, 
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Theorem 9.2 gives much larger values for for n = 2,3 

and 4, as well as an upper bound for  

In fact, more may be true. 

Conjecture 2.1 (Zero-endpoint Interval Conjecture). 

If is an in terval 

with then where is 

the smallest integer for which  

What little we know about for b 1 is given in 
Theorem 9.2 (c), (d). 

Both Conjecture BPP and Conjecture 2.1 are a 
consequence of the following conjecture. 

Conjecture 2.2 (Maximal obstruction 

implies Conjecture). If an interval I oflength less than 

4 has a maximal obstruction m, then  

We were at first tempted to conjecture here that as 
well as equaling its maximal obstruction, is always attained 
by some algebric integer polynomial. However, the 
following counterexample eliminates this possibility in 
general. 

Counterexample 2.1. The polynomial 7x
3
 + 4x

2
 — 2x — 1 

is a maximal obstruction polynomialfor the interval I = [—
0.684,0.517]. However, there is nomonic integer 

polynomial P with equal to the maximal obstruction 

for I. 

This result is proved in Section 10. 

Our next result proves the existence of maximal 
obstructions for many intervals. 

Theorem 2.1. Every interval not containing an integer in its 
interior has a maximal obstruction. 

Based on Conjecture 2.2 and Theorem 2.1 we make the 
following conjecture. 

Conjecture 2.3 (Maximal Obstruction Conjecture). Every 
interval of length less than 4 has a maximal obstruction. 

We do not have much direct evidence for this conjecture. 
However, our next conjecture, Conjecture 2.4, implies it. To 

describe this implication, we need the following notion, 
taken from Flammang, Rhin and Smyth [5]. An irreducible 

polynomial with all 

of whose roots lie in an interval I, and for which is 

greater than the (nonmonic) transfinite diameter is 
called a critical polynomial for I. Here we are interested 
only in nonmonic     critical polynomials. 

It may be that every interval of length less than 4 has 
infinitely many nonmonic critical polynomials - see 
Proposition 2.2 below. We make the following weaker 
conjecture. 

Conjecture 2.4 (Critical Polynomial Conjecture). Every 
interval of length less than 4 has at least one nonmonic 
critical polynomial. 

From Theorem 2.1 below, this conjecture is true for 
intervals not containing an integer. For intervals I of length 
less than 4 that do contain an integer (say 0), then, 

since the polynomial x is a critical polynomial for 
I. Thus 'nonmonic' is an important word in this conjecture. 

In Theorem 7.1 we prove that Conjecture 2.4 implies 
Conjecture 2.3. More interestingly, we also prove in 
Corollary 7.1 that Conjecture 2.2 and Conjecture 2.3 
together imply Conjecture 2.4. 

We observe in passing the following conditional result for 

the integer transfinite diameter  

Proposition 2.2. Suppose that an interval I has infinitely 
many critical 

polynomials Then 

 

This result is proved in Section 7. Montgomery [11, p.182] 
conjectured this result unconditionally for the interval I 0 1 . 

3. UPPER AND LOWER BOUNDS 

FOR AND FOR FIXED T 

The following lemma contains some simple properties, as 

well as alternative definitions, of and  

Lemma 3.1. We have 
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Proof. First note that, by [2, equation (1.11)], for 

the zero-length interval from which (b) follows. 

Part (c) follows from the fact that   

To prove (d), take Then the set 

 

contains 0 (by (b)), so is nonempty. Put and 

take Since implies that ([2, 

Prop. 1.3]), any with  also lies in S, so 

that Hence On the other 
hand, for each d s there is an interval I 

with and Hence 

giving  

Now (a) follows straight from (b) and (d). The proof of 
(e), similar to that of (d), is left as an exercise for the 
reader. 

Finally, part (f) follows from the fact that for we 

have  (see for instance [2]).
  

Next, we give a simple lemma, needed for applying 
Proposition 3.1 below. 

Lemma 3.2. Suppose that {i=1,... ,n) are 

intervals with  and 

put Th
en 

(a) Any interval of length at least M contains an integer 
translate of some If. 

(b) Any interval of length at most m is contained in an 
integer translate of some If. 

Proof. Given an interval I of length we can, after 
translation by an integer, assume 

that where for some  

(a)  Suppose 

that Then so 

that   

(b)  Suppose 

that Then so 

that  

The following proposition will be used to obtain explicit 

upper and lower bounds for and for particular 
values of t. 

Proposition 3.1. 

(a)  If with integer coefficients 

and has roots spanning an interval of length then 

for any we have 

 

(b)  Suppose that we have a finite set of 

polynomials with 

all with the property that every interval of 

length contains an integer translate of the roots of at least 

one of the polynomials Then 

 

(c)  Suppose that we have a finite set of intervals If such 
that for each If there is a algebric integer polynomial Pf 

with Suppose too that every interval of length I 

is contained in an integer translate of some Then 
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(d)  If for some algebric integer polynomial P 
and interval I of length , then 

 

Proof. 

a. Given such a and interval I of length , 

and then from Lemma BPP we 

have so that, from the def inition 

of , we have  

b. Suppose that every interval I of length contains 

some integer translate of the set of roots of some . 

Then, by Lemma BPP,  

Hence for any interval of 

length , and so  

c. Here, for every interval I of 

length with say, (with ), we have 

 

 so thatany with . 

Hence . 

d. If and then , so 

that . 
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