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Abstract We study the problem of finding nonconstant algebric integer polynomials, normalized by their degree, with
small supremum on an interval I. The algebric integer transfinite diameter™(/) is defined as the infimum of all such
supremums. We show that if | has length 1 then taild) :% We make three general conjectures relating to the value
of 71t for intervals | of length less that 4. We also conjecture a value fort{[0.21) where 0 <5 < Lwe give some partial
results, as well as computational evidence, to support these conjectures. We define functions £~ and L+ {*}. which

measure properties of the lengths of intervals | with ™) on either side of t. Upper and lower bounds are given for these

functions. We also consider the problem of determining?M{/)when | is a Farey interval. We prove that a conjecture of
Borwein, Pinner and Pritsker concerning this value is true for an infinite family of Farey intervals.

- e ——————————— - —

1. INTRODUCTION polynomials with real coefficients. It is well known

. . L thatcap(l) = |‘(|/4 for an interval | of length I”-Further,
In this paper we continue a study, recently initiated by

Borwein, Pinner and Pritsker [2], of the algebric integer it 2 dnen fzl) = () = Cap(])by [2] so that the
transfinite diameter of a real interval. We write the

. . challenge for evaluating zM(l)’as for’ZU)vlies in intervals
normalized supremum on an interval | as

with | < 4.

1Pl = sup P(x)| /4" |

P I/) 1 : For these intervals we knowfrom [2, Prop. 1.2]
X

that"M(")< l'However, in contrast to the study

Note that this is not a norm. Then the algebric integer of‘{Z’l(‘{)’in the algebric case it is possible to evaluate

transfinite diameter ™M(/)is defined as : : :
fal/) exactly over some such intervals. Our first result is

the following.

t(l) = inf||Pl7,
]

Theorem 1.1. All intervals | of length 1 have‘(M(l) ~ 2'In
fact, slightly more is true:
polynomials with integer coefficients. We call M([)the 1 << 1< 1.008848 then ty(]) =

algebric integer transfinite diameter of | (also called the i =7

algebric  integer  Chebyshev  constant [1, 2]).

Clearly m(l) z rz(l), where 1z(1) denotes the integer 3 b and o

transfinite diameter, defined using the same infimum, but  with H=bandt(l) < Zoynile for h > 1.064961507
taken over the larger set of all non-constant polynomials ‘ |[J == baﬁd!M(l) > %

with integer coefficients [3, 4, 5].

where the infimum is taken over all non-constant algebric

af—

Furthermore for any b < 1 there is an interval |

there is an interval | with

Further (/) 2 cap(/), e capacity or transfinite diameter The proof, which is essentially a corollary of Theorem
of 1 [6, 14], which can be defined again using the same 1.2 (a) below, is discussed in Section 5.
infimum, but this time taken over all non-constant algebric
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The numbers, 1.008848 and 1.064961507 in Theorem 1.1,
like most numerical values given in this paper, are
approximations to some exact algebraic number. These
numbers are rounded in the correct direction, if necessary,
to ensure an inequality still holds. The polynomial
equations that they satisfy are given within the text. We
have tried to do this for all numerical values.

To measure the range of lengths of intervals having a
particular algebric integer transfinite diameter t, we
introduce the following two functions:

L) = 11}1‘{[ call) >t}
Loty = s?p{IIE:IM(!)gi}.
It follows from [2, Prop. 1.3] that

both L—-(f)andLJr(f) are nondecreas- ing functions of t.

Also[‘"" (7) <1y () " see Lemma 3.1(a) below. We give
(Proposition 3.1) general method for finding upper and

lower bounds for L—{f)andZ. ()and apply these

methods to get such bounds for’ <<l They are
constructive, using both the LLL basis-reduction algorithm
and the Simplex method. These techniques were first
applied in this area by Borwein and Erdelyi [3], and then by
Habsieger and Salvy [7]. These bounds are given in
Theorem 4.1 and Proposition 4.1 - see also Figures 1 and
2.

Atl'—-h

say more.

we pushed this method further, and were able to

Theorem 1.2. We have
(a) 1.008848 < L_ (1) < 1.064961507

and

Further properties ofL*and .- are given in Lemma 3.1.

2. DEFINITIONS, CONJECTURES AND FURTHER
RESULTS

In this section, we state some old and some more new
results, and (perhaps a little recklessly) make four
conjectures.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

The following result is simple but fundamental. It is useful

for determining lower bounds for!M (/).

Lemma BPP (Borwein, Pinner and Pritsker [2, p.1905]).

Let Qx) =

4gx” + -+ dpe a nonmonic irreducible polynomial

with integer coefficients, all of whose roots lie in the interval
N /d
. Then M ”1 Zd; " or

every algebric integer
ma(l) > a;'*
polynomial P, so that'M d  'Furthermore, if
—=1/d jd
P17 = o penta(d) = a; " g
T/degt __ - 1/d
rB) “d for every  root BOfQ’and

Res(Pv Q) ==l

The proof follows straight from the classical fact that, for
the conjugates Bi ofB

Res(#, Q) = agegp HP B:)

1)

is a nonzero integer, giving

1
;i
I,fdch I /
! _m_
T H PR} >ad Res(PO) T >a

(2)
This result is a variant of a similar one in the theory

of[Z(])—see Lemma 7.1.

-1 'd
We call such a value 4 in Lemma BPP an obstruction

for 1, with obstruction polynomiaIQ(x). From Lemma BPP

we see that ‘M (])is bounded below by the supremum of all
such obstructions. If this supremum is attained by some
—1/d

value %4 coming from Ofx) = adxd"‘“""a“vthen we
is a maximal obstruction, and Q(x)is a maximal
obstruction polynomial. It is not known whether such a
polynomial exists for all intervals | of length less than 4
(see Conjecture 2.3).
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We say that the algebric integer polynomial P(x) is an

optimal algebric integer Chebyshev polynomial for |
#
dlPli =m0 | has  a maximal  ob-
-1/d ~1/d

struction?d  with M U) =4 and an optimal algebric

integer Chebyshev polynomial P then we say that P attains
~1/d
the maximal obstruction ™"

Throughout this paper, P(x) will denote a algebric integer

polynomial, Q(x)a nonmonic integer polynomial and R X
any integer polynomial.

One very nice property of the algebric integer transfinite
diameter problem, not shared by its nonmonic cousin, is

that often exact values can be computed for"MUr ). In all
cases where this has been done, including Theorem 1.1, it
was achieved by finding a maximal obstruction, and a

corresponding optimal algebric integer Chebyshev
polynomial. Simple examples of this are given ([2,
Theorem 1.5]) by _ the

intervals? = 10, 1/#]5or 1 > 2, where Ofx) =nx—1 is a
maximal obstruction polynomial, and P x x is an optimal
algebric integer Chebyshev polynomial. For n=

ml(0,1]) = 3, - —x (X"

1, e 2'with Q{x) = 2x— 1 and P(x) =x(x" 1).
This was the case too in [2, Section 5] in the proof of the
Farey Interval conjecture for small-denominator intervals.

A much less obvious example is the interval | = [—

0.3319,0.7412], of  length 1.0731. Here, we
—_— * p— |n"j ~

havetM([) - HP”I =7 0. 522awnh maximal

obstruction polynomial 7x® — 7x* + 1 and where P is the
optimal algebric integer Chebyshev polynomial

P(X) - 776507 (Jf— 1)29858(1‘2 -I-Y“ 1)14929

-
(X 7x6+194x‘w70v - 1x‘+18x2+x~1)7935
u MHWlm+m+m W+W%
-
4

P-4 xlwwmm4w—mﬂw%

of degree 670320. (Tighter endpoints for this interval, and
its length, can be computed by solving the

o = 18 - x4 1P

/3 o8
, P(x)mi( /-) ) . .
equation The discovery of this
polynomial required the use of Lemma 6.1 below.

For the nonmonic transfinite diameter - Pritsker [13,
Theoreml1.7] has recently proved that no integer

polynomial R x can attaln”R )”f “’Z(l)’ this value
being achieved only by a normalized product of infinitely
many polynomials. An immediate consequence of his
result is the following.

Proposition 2.1. If an interval | has an optimal algebric

integer Chebyshev polynomial then mall) > 1z(1).

A fundamental question for both the algebric and nonmonic
integer trans- finite diameter of an interval is whether its
value can be computed exactly. In [2, Conjecture 5.1],
Borwein et al make a conjecture for Farey intervals
[bl ba}
(intervals L1 " €2  where

bacy —bica = 1y concerning the exact value of their
algebric transfinite diameter.

!’J|,1”12,C],C2 S Zand

Conjecture BPP(Farey Interval Conjecture [1, p. 82], [2,
Conjecture 5.1]). Suppose thatis a Farey interval, neither of

b b
. . . E
whose endpoints is an integer. Then 1! 2

by ]
MAlerre]) ™ min{c ]
; 1:02)

Borwein et al verify their conjecture for all Farey intervals
having the denominators€1:€2less than 22. In Section 8
we extend the verification to some infinite families of Farey
intervals (Theorems 8.2 and 8.3).

We next investigate what happens to m(i0, bthen bis
1
closeto »°

For these intervals, some surprising things happen. Using
the polynomial P(x) = X, we know

(10, b|)<b< ith <

that #'In fact it appears likely

thath([O’b])-“clearly a non-decreasing function of b, has a

=1/n (n>1) “On the other hand,

we show in Theorem 9.1 that Mis locally constant on an
|
interval of positive length On to the right of »* Further,

left discontinu ity at
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Theorem 9.2 gives much larger values for 8Nfor n=23

and 4, as well as an upper bound for 52,

In fact, more may be true.

Conjecture 2.1 (Zero-endpoint Interval Conjecture).
— T A

it = LO,b] is an in terval

withb < ]Jthen IMU) = 1/”: where!! = Max (2’ {%|)|s

the smallest integer”? = 2for which 1/n<b.

What little we know aboutIM(iO’bDfor b 1 is given in
Theorem 9.2 (c), (d).

Both Conjecture BPP and Conjecture 2.1 are a
consequence of the following conjecture.
obstruction

Conjecture 2.2 (Maximal

impliesfM([)Conjecture). If an interval | oflength less than

4 has a maximal obstruction m, then tm(l) = m.

We were at first tempted to conjecture here that'MU )aas
well as equaling its maximal obstruction, is always attained
by some algebric integer polynomial. However, the
following counterexample eliminates this possibility in
general.

Counterexample 2.1. The polynomial 7x® + 4x* — 2x — 1
is a maximal obstruction polynomialfor the interval | = [—
0.684,0.517]. However, there is nomonic integer

*
polynomial P with”P”lequaI to the maximal obstruction
70 1.

This result is proved in Section 10.

Our next result proves the existence of maximal
obstructions for many intervals.

Theorem 2.1. Every interval not containing an integer in its
interior has a maximal obstruction.

Based on Conjecture 2.2 and Theorem 2.1 we make the
following conjecture.

Conjecture 2.3 (Maximal Obstruction Conjecture). Every
interval of length less than 4 has a maximal obstruction.

We do not have much direct evidence for this conjecture.
However, our next conjecture, Conjecture 2.4, implies it. To

describe this implication, we need the following notion,
taken from Flammang, Rhin and Smyth [5]. An irreducible
— d . )
polynomial @(¥) = agx® + -+ ay € Zix] yith % > O, all
-1 f't{
of whose roots lie in an interval |, and for which e s
greater than the (nonmonic) transfinite diameterz([)is
called a critical polynomial for I. Here we are interested

only in nonmonic  critical polynomials.

It may be that every interval of length less than 4 has
infinitely many nonmonic critical polynomials - see
Proposition 2.2 below. We make the following weaker
conjecture.

Conjecture 2.4 (Critical Polynomial Conjecture). Every
interval of length less than 4 has at least one nonmonic
critical polynomial.

From Theorem 2.1 below, this conjecture is true for
intervals not containing an integer. For intervals | of length
less than 4 that do contain an integer (say 0), then,

since’z (I) < Lthe polynomial x is a critical polynomial for
I. Thus 'nonmonic' is an important word in this conjecture.

In Theorem 7.1 we prove that Conjecture 2.4 implies
Conjecture 2.3. More interestingly, we also prove in
Corollary 7.1 that Conjecture 2.2 and Conjecture 2.3
together imply Conjecture 2.4.

We observe in passing the following conditional result for
the integer transfinite diameter Z

Proposition 2.2. Suppose that an interval | has infinitely
many critical

1 _"_ 0 : ff - .
ponnomiaIsQ’ {x) = aq,x" + +a“="Then

This result is proved in Section 7. Montgomery [11, p.182]
conjectured this result unconditionally for the interval 10 1.

3.  UPPER AND  LOWER
For! (O aNDL+ () FOR FIXED T

BOUNDS

The following lemma contains some simple properties, as

well as alternative definitions, of[‘— and s

Lemma 3.1. We have
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(O <L) forr20;

) 0for0<1 S%

0> for0<1< 1/

) =supdd gl <o forall Twith ] =d} for 2%
H=inffd ngl) > ¢ for all Twith 1) = d} for 1 (>0;
A=l () =dfore>1,

—

Proof. First note that, by [2, equation (1.11)], M
11
the zero-length interval [5’ fJ >from which (b) follows.

el =1

Part (c) follows from the fact that

(>3

To prove (d), take "Then the set

S = {d  m(l) <t forall / with |[/| = d}

contains 0 (by (b)), so is nonempty. Puts = SUPsS:and
taked € S.Since ' T implies that M) < nald) (2,
prop. 1.3]), anydwithO ¢ <d 450 lies in S, so
thatS = [0:5) or [0.5]. Hence 7~ (f) > S.0n the other

hand, for each d s there is an interval |
with 1= and’MU) > 1. Hence
L (1)< d’gwmg‘r (1) =s.

Now (@) follows straight from (b) and (d). The proof of
(e), similar to that of (d), is left as an exercise for the
reader.

Finally, part (f) follows from the fact that for -----

It}
have M) = tall) = cap(l) = 3 (see for instance [2]).

Next, we give a simple lemma, needed for applying
Proposition 3.1 below.

Lemma 3.2. Suppose that!i = i, by {i=1,... .n) are
withé1 < ay < - <Lay =ap+ 1, gpg

a;),m = min;_ 11 (b

intervals

M= maxf;ll (bir1—

put it 1) Th

en
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(a) Any interval of length at least M contains an integer
translate of some If.

(b) Any interval of length at most m is contained in an
integer translate of some I;.

Proof. Given an interval | of Iengthgawe can, after
translation by an integer, assume

— L . :
that] =i, b]*wherea.i Sa<ajlgor somet < -

(&) Suppose

thatLaJ*:rl;bﬁlJ [a»"+g]~

(b)  Suppose
thatf < #2.Then

that a £ C

biZaj o +m>a+4t
ajbyl.

’SO

The following proposition will be used to obtain explicit

upper and lower bounds for[ (t)ande( )for particular
values of t.

Proposition 3.1.

(a) O1X) = agx’ ot an, with integer coefficients

andd > L has roots spanning an interval of Iengthé then

~1/d
for anyr <43 " we have
L_(1)<¥¢
(b) Suppose that we have a finite set of
Ax) = T .
ponnomiaIsQ’(‘r)“adh‘x T +C’°f’with
a
all " dui with the property that every interval of

length£contains an integer translate of the roots of at least
one of the polynomials Qi‘Then

L.t

(c) Suppose that we have a finite set of intervals Is such

that for Each I; there is a algebric integer polynomial Pg
with HP"“L =t Suppose too that every interval of length |

is contained in an integer translate of some/i-Then

I_(t)>¢.
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*
(d) |f”P||I ““m""rfor some algebric integer polynomial P
and interval | of length , then
Le(r) = L.
Proof.

a. Given such a@®) £and interval 1 of length £,
1/d

and” ™ *then from Lemma BPP we

. ~1/d
have' IMU) = a, >lg that, from the def inition

of[*—("), we have /(1) S £

b. Suppose that every interval | of Iengthl’-contains

some integer translate of the set of roots of some Qi.
Then, by Lemma BPP, ml) 2
a""]/d"';vt i

i "Hence nal/ ) > Lior any interval of

length Iz £ and sol+{f) <L

C. Here, for every interval I of
length £ with +7 C Lisay, (with* € Z), we have

* * *
t > ||Bly, = |8l = P+l = mald),

> thatany /'with (/") > ¢ has [/ > £
HenceL (1) = £,

d If 1Pll; =1 ang 1= Eipentmll) <1, S0
that 7+ (1) 2 £

REFERENCES

. Borwein, Peter. Computational excursions in analysis

and number theory, Springer- Verlag, New York,
2002. MR 03m: 11045

. P. B. Borwein, C. G. Pinner, and |. E. Pritsker,
Algebric integer Chebyshev problem, Math. Comp.
72 (2003), 1901-1916. MR 04e: 11022

. Peter Borwein and Tam'as Erd'elyi, The integer
Chebyshev problem, Math. Comp. 65 (1996), no.
214, 661-681. MR 969:11077

G. V. Chudnovsky, Number theoretic applications of
polynomials with rational coefficients defined by
extremality conditions. Arithmetic and geometry, Vol.
I, 61-105, Progr. Math., 35, Birkhduser Boston,
Boston, MA, 1983. MR 86¢: 11052

V. Flammang, G. Rhin, and C. J. Smyth, The integer
transfinite diameter of intervals and totally real
algebraic integers, J. Th'eor. Nombres Bordeaux 9
(2997), no. 1,137168. MR 98g: 11119

G. M. Goluzin, Geometric theory of functions of a
complex variable, Translations of Mathematical
Monographs, Vol. 26, American Mathematical
Society, Providence, R.1., 1969. MR 40 #308

Laurent Habsieger and Bruno Salvy, On integer
Chebyshev polynomials, Math. Comp. 66 (1997), no.
218, 763-770. MR 97f: 11053

Kevin G. Hare, Some applications of the LLL
algorithm, Proceedings from the Maple Summer
Workshop, 2002, Maple Software, Waterloo, 2002.

K. Lenstra, H. W. Lenstra, Jr.,, and L. Lov ‘'asz,
Factoring polynomials with rational coefficients,
Math. Ann. 261 (1982), no. 4, 515-534. MR 84a:
12002

J.F. McKee and C.J. Smyth, Salem numbers of trace
— 2 and traces of totally positive algebraic integers,
Proc. 6th. Algorithmic number theory Symposium,
(University of Vermont, 13 - 18 June 2004), Lecture
Notes in Comput. Sci., vol. 3076, Springer, Berlin,
2004, pp. 327-337.

Montgomery, Hugh L. Ten lectures on the interface
between analytic number theory and harmonic
analysis. CBMS Regional Conference Series in
Mathematics, 84. American Mathematical Society,
Providence, RI, 1994. MR 96i: 11002

Igor E. Pritsker, Chebyshev polynomials with integer
coefficients, Analytic and geometric inequalities and
applications, Math. Appl., vol. 478, Kluwer Acad.
Publ.,, Dordrecht, 1999, pp. 335-348. MR
2001h:30007

Small polynomials with integer coeffi cients, J. Anal.
Math, (to appear).

Thomas Ransford, Potential theory in the complex
plane, London Mathematical Society Student Texts,

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 6



Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

vol. 28, Cambridge University Press, Cambridge,
1995. MR 96€:31001

. Raphael M. Robinson, Algebraic equations with span
less than 4, Math. Comp. 18 (1964), 547-559. MR 29
#6624

. Schrijver, Theory of linear and integer programming,
John Wiley & Sons Ltd., Chichester, 1986, A Wiley-
Interscience Publication. MR 88m:90090

. Christopher Smyth, Totally positive algebraic integers
of small trace, Ann. Inst. Fourier (Grenoble) 34
(1984), no. 3, 1-28. MR 86f: 11091

. Vladimir G. SprindZuk, Classical Diophantine
equations, Lecture Notes in Mathematics, vol. 1559,
Springer-Verlag, Berlin, 1993, Translated from the
1982 Russian original. MR 95¢g: 11017

. Weiss, Edwin. Algebraic numbertheory. McGraw-Hill
Book Co., Inc., New York-San Francisco-Toronto-
London 1963 (Reprinted by Dover Publications, Inc.,
Mineola, NY, 1998.) MR 28 #3021

Available online at www.ignited.in Page 7
E-Mail: ignitedmoffice@gmail.com



