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ABSTRACT: This paper describes a computer-aided constraint programming system. Traditional Constraint Programming
Languages have been built on top of host languages such as Prolog, Lisp, C++. This means that the user must have
reasonable knowledge of the syntax and semantics of the host language before being able to use the constraint
technology effectively. On top of this, the user may also be required to specify the heuristics and, or algorithm to solve the
constraint problem. This leads to a bottleneck in the amount of people who have the necessary expertise in both
constraint programming and the host language to implement practical systems, which use constraint satisfaction
techniques. Our aim is to abstract out as many of these details as possible, to produce a high level system, where the
problem specification is the focus. We have defined a simple, intuitive, high level, declarative (the order in which
constraints are specified has no significance) language called EaCL for specifying constraint satisfaction problems. We
propose an open architecture in which future constraint solvers can reside. The architecture also allows multiple flexible
interfaces. In this paper we present as an example, an exam time tabling system built on top of our system, using Visual
Basic and Automation.

_____ *----- - -

1. INTRODUCTION with constraint technology. This means that the user of

these constraint programming systems needs to have two
A constraint satisfaction problem is a problem where one is  pasic skills before they can make use of the traditional
given a finite set of variables, each of which is associated  gnstraint programming systems:

with a (normally finite) domain. Constraints restrict the
values to be taken by the variables simultaneously. The Be able to formulate the problem as a constraint
problem is to assign a value to each variable satisfying all ~ satisfaction problem,

the constraints [14],[3],[5].
) Be able to program in the host language.

Constraint programming systems have had remarkable
Some recent global optimisation modelling languages, e.g.

HELIOS, ILOG Numerica [8],[15] allow users to define their

problems, mathematically, almost as they would in

achievement in many applications. Many more applications
could have benefited from it had there been more experts
in the field to exploit the technology. Successful though
they are, previous approaches to building technical papers.
constraintprogramming systems have been based on o S )

_ Our aim is to minimise the amount of knowledge required
taking some host language, e.g. C++ (e.g. ILOG solver
[10]), Lisp (e.g. PECOS [11]) or Prolog (e.g. ECLIPSE [7],

CHIP [12], the CHIC 2 project [2]), augmented in some way

by the end user to be able to start using our system. Our
approach is to use a high level language similar in some
ways to HELIOS and ILOG Numerica, but targeted at
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Constraint Satisfaction Problems, while still maintaining the

ability of our system to be used for practical applications

applications to be built on top of ZDC or ZDCDirect. This
could be done using Visual Basic, Visual C++ or JAVA, or
from another application such as ACCESS, EXCEL or
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Figure 1: The CACP Architecture

At the top level our current implementation supports two

user interfaces for entering constraint satisfaction
problems, ZDC (see Figure 2) and ZDCDirect (see Figure
3). ZDCDirect allows direct entry of the problem, using the

EaCL without any special graphical user interfaces.

ZDC contains a formulation wizard, domain, variable and
constraint builders, problem browser and online tutorials
and examples, all aimed at easing the problem formulation
process. In addition to this, both of these can be used as
Automation Servers (automation is a technique which
allows objects to make functions and data available to
other objects or [13]), real

applications allowing

ViewVarable...

Figure 2: The ZDC interface and constraint builder

Both ZDC (Figure 2) and ZDCDirect (Figure 3) use EaCL,
a high level declarative language, as their core language
for describing CSPs. Once a problem has been formulated
in EaCL using either interface, its syntax and semantics
are checked to ensure they are correct and, if not, the
interface will return a error message indicating where the
error occurred and what it might be. Then the EaCL is
translated into a solver-independent representation, which

can then be translated by a solver object generator (one for
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each solver in the system) into solver dependent objects,
and solved by that particular solver, with the solution
returned by the interface (the user may also find all
solutions, or a maximum number of solutions etc.). This
makes it very easy to incorporate a new solver into our
system, since all that is required is an object generator to
be built which translates the solver independent objects

into the new solver’s representation.

Thus we have a very open architecture, because addition
of a new solver requires no modification of the top level
parser or language, and only knowledge of the solver-
independent objects and the new solver. This means that a
well-written third party solver could be incorporated into our
architecture with minimum effort, as long as it supports the
constraints in our language. So far, we have implemented
two solvers, one based on the Forward Checking algorithm
[4] (a complete algorithm) and another based on Guided
[17] both
generalized to handle EaCL.

Local Search (an incomplete algorithm),
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Figure 3: The ZDCDirect Interface

3. THE EaCL LANGUAGE

Here we give a brief description of the EaCL language
Version 1.0, which forms the core of our system (for a full
[9l,

http://cswww.essex.ac.uk/CSP/cacp.html).

description see available through

The problem file for EaCL 1.0 is split into four subsections

(see Figure 4).

Problem: TheProblemName

[

Data

{

//Constant data relevant to a particular problem

Domains

{

//Domain declarations

Variables

{

//Variable declarations

Constraints

{

//Constraint declarations

Figure 4: The skeleton of an EaCL file

The data section can be used to store named constant
data, which will typically define an instance of a particular
problem. For example, it may contain a named list of lists

defining what exam which student takes, etc. The domains
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section defines named sets of values which a variable can
take, and the variables section declares the variables
present in the problem, together with the name of their
with

domain, the constraints section defining the

constraints on the variables for the problem.

The EaCL language Version 1.0 allows for three types of
variables: boolean variables, integer variables and set
variables. Integer and set variables must have their
domains specified in the domains section, whilst boolean
variables obviously only have one possible domain (0,1).
Below is a list of constraints, functions and operators,

which can be used to form constraints in EaCL 1.0:
Logical: And, Or, Xor, Not, Iff, Implies

-, +, * [, %, Abs, Power, Sum, ScalProd,

Count, Minimum, Maximum, =, <>, <, >, <=, >=

Integer:

Set: Member, NotMember, Subset, StrictSubset, Union,

Intersection, AllDisjoint, #

Symbolic: AlIDifferent, Circuit, Sequence, Element

These constraints are similar to the types of constraints
found in large commercial constraint programming libraries
and CLPs such as ILOG solver [10] or CHIP [12], and
therefore are the kinds of constraints which are likely to be
useful for building real applications. Since these may not
cater for every eventuality, user-defined constraints may be
added which are only expressed in terms of the constraints
and functions above, and other user-defined constraints,

for example:

Constraint AtLeastButAtMost (NMin, NMax, Vars, Vals)
Count (Varg, Vals) >= NMin;

Count (Vars, Valg) <= NMax;

In other environments, e.g. in ILOG solver, user defined
constraints are sometimes defined by daemons (functions
which when some event occurs, perform some action)
which define how each user defined constraint is
propagated, when a variable’s domain is modified. Whilst
this increases the power of these kinds of user-defined
constraints, it also requires the user to have a deep

understanding of constraint technology.

If the user requires some other function to be defined, this

can also be done in a similar way. For example:

Function Squared(X)

{

return X * X;

In addition to this, Forall constructs can be used to index
arrays of variables, to generate groups of similar

constraints, e.g. constraints in the N- queens problem:

Forall (i in [0..n-1], j in [i+41..n-1])
{

Row[i] <> Row[j];

Row[i] - Row[]] <> 1 - J;

Row[i] - Row[]] <> § - i;

The language also supports intensional lists and sets. For
example one can define a constraint that sums the values
of all elements of an array up to element j, and specify that

it is less than a certainTotal:

Sum([ x[i] | i<3j, 1in [0..N]]) < Total;

In addition to these features, EaCL 1.0 also supports:
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If-Else constructs on indexes for conditional definition of

constraints,

Concatenation of lists and arrays, e.g. [1,2] ++ [3,4] etc.

3.1 EXAMPLE EACL FILE:
PROBLEM

THE PUZZLER

The puzzler problem (From Computer Weekly, 7th August
1997) is a simple example of how elegantly a problem can
be specified in EaCL 1.0. It consists of a 4'4 Magic Square,
which is made up using the consecutive series 5-t0-20 and
gives a Constant total of 50 in many different ways. The 50

total is produced by the sum of:

o 4horizontals: ABCD, EFGH, ITKL, MNOP
o dverticals: AEIM. BEIN, CGKO. DHLP
o 2long diagonals: AFKP, MIGD

» 4 threc-ong broken diagonals: DOTE, MBGL, ANKH, PIFC

o two-two broken diagonals: CHIN. EBLO

o 9 seaments: ABEF, BCEG, CDGH,
EFIJ. FGIK, GHKL,
IIMN, JKNO, KLOP

v bopposits: ABMIN, BCNO, CDOP,
AEDH, EIHL, IMLP

o The puzzle also spectfies that P should be sef fo 3 and F set fo 20.

As one can see below, this problem is very simple to
specify using EaCL 1.0, although it only shows the basic
features of EaCL 1.0. The formulation consists of 16
variables, name A to P, which must take values from the
Domain square, defined to be the range of integers from 5
to 20.

Then an AllDifferent constraint specifies that all the
variables should take different values (i.e. use the whole 5
to 20

range of values), and then various equality

constraints define the combinations which add up to 50.
Two equality constraints, setting P =5 and F = 20 are also

used.

Problem:Puzzler

{

Domaing

{
}

Variables

{

IntDom square=[5,20];

IntVar A,B,C,D::
IntVar E,F,G, H::
IntVar I,J,K, L::
IntVar M,N,0,P::

square;
square;
square;
square;

}

Constraints

//Made up using consecutive series
AllDifferent ([A,B,C,D,E,F,G,H,1,J,K,L,MN,0,P]);

//4 horizontals

gum([A,B,C,D]) = 50;
sum([E,F,G,H]) = 50;
Sum([I,J,K,L]) = 50;
Sum([M,N,QO,P]) = 50;
//4 wverticals

Sum([A,E,I,M]) = 50;
Sum( [B,F,Jd,N]) = 50;
sum([C,3,K,0]) = 50;
Sum([D,H,L,P]) = 50;

//2 long diagonals
Sum([A,F,K,P]) = 50;
Sum([M,J,G,D]) = 50;

//4 3-1 diagonals

Sum([A,N,K,H]) = 50;
Sum([P,I,F,C]) = 50;
Sum([D,0,J,E]) = 50;
Sum([M,L,G,B]) = 50;

//2 2-2 diagonals
Sum([I,N,H,C]) =

50;
Sum( [B,E,O,L]) = 50;
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//9 Segments

Sum( [A,B,E,F]) = 50;
Sum([B,C,F,G]) = 50;
Sum([C,D,G,H]) = 50;
Sum( [E,F,I,J]) = 50;
Sum([F,&,J,K]) = 50;
csum( [G,H,K,L]) = 50;
Sum( [I,J,M,N]) = 50;
Sum([J,K,N,0]) = 50;
gum( [K,L,0,P]) = 50;
/ /6 ocpposites

Sum([A,B,M,N]) = 50;
Sum( [B,C,N,Q]) = 50;
Sum( [C,D,0,P]) = 50O;
Sum([A,E,D,H]) = 50;
Sum([E,I,H,L]) = 50;
Sum( [I,M,L,P]) = 50;

P = 5;
20;

[

4. EXAMPLE
TIMETABLING

APPLICATION: EXAM

As an example of the use of our system, we solve a real
world problem of exam timetabling [1]. Many Universities
and schools face this type of problem, which is typically
solved by hand over a period of weeks. The problem is
defined as follows:

Given:

a set of slot times when exams may take place

. the default length of each exam

. the minimum time period a student must have

between each exam

o a set of time slots, when specific exams must or

must not take place

. which exams each student must take.

Find:

an assignment of slots to exams, such that no student is
required to take exams less than the minimum time period

apart, and no exam takes place in an illegal slot.

& Exam Timetable . O] %]
Exam Timetable Planner
Results
Open Tables Graphs
Example Exam with Slot . Student .
File . Slat Details . SlatUsage .
Database . Stucents' Slots .
Data Stydent Exam Times .
Students
Exams
Exam Slot

Slat Restrictions

Solve ‘ Quit l

Time Intenval

Figure 5: The Exam time tabling application built on top of
ZDC

This problem can be formulated as a CSP as follows:

Variables represent the slot number when each exam

takes place:
IntVar ExamSlots [NumExams] ::Slots;

The domain of all variables is the set of all the possible slot

numbers:
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IntDom Slots = [0,NumSlots] ;

Constraints:

1. Some exams must not take place in certain slots, and

some must take place in certain slots:

ExamSlot [ExamExcluded] <> ExcludedSlot;
ExamSlot [ExamMust ] = MustSlot;

2. Exam containing common students, must be at least the

minimum time period apart:

Aos (ot Tines [ExanSlots [exanIdxComnon) |-
SlotTines ExanSlots [examIdxCommon]] | sMinInterval;

(SlotTimes is an array in the data section, specifying the
time in minutes when a slot for a possible exam starts each

day)

Automation is used from Visual Basic to call our ZDC
application, to assemble the data, domains, variables and
constraints necessary to solve a particular instance of an
exam time tabling problem. The details of each problem
are stored in a Microsoft Access database (students and
exams they take, slot times and the time interval allowed

between exams).

Figure 6: Data flow in the exam timetabling application, built
on top of ZDC

Once the problem has been solved, the solution can be
visualised in lots of different ways (these are implemented

using standard Visual Basic components). For example:

Which slot each exam takes place in,
The exam timetable for each student (see Figure 7).
Bar chart of the number of students per slot (see Figure 8),

Bar chart of the number of exams per slot,
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The exams in each slot.

We have found that our system solves the exam
timetabling problem adequately using either solver

(although the aim of our system is not outright
performance, but usuability). It required only half a day to
build the constraint programming part (the basic problem
formulation was developed in ZDC and then integrated with

the rest of the timetabling system) of the system.

Together with a non-trivial set of statistics (to allow users to
verify the results and to visualize the timetable), it took less
than a week to build a practical exam timetabling system
which is capable of using publicly available instances of the

exam timetabling problem1.

This shows how effective and easy it is to use our system.
It also shows how feasible it is to represent and solve real-

world problems using our system.

& Students Exam Timetable

- [0]X]

StudentD | DayD: 300 | DayD: 11:00) Dayl: 1400 | Dayd: 16:00| Day!: £00 | Day1: 11:00| Dayt: 1400| Day!: 16:00| Day2: 300 4
5499406166 lisp o g5l
5509408626 lisp g5l
5519402348 lisp inlp oS
5h29403759 Mvis lisp sc

5539407156 lisp cnnn J
5543410440 1vis lisp [ o
5559412081 lisp inlp

shB34062T3 lisp nlp 852
sh79408667 lisp

sHB041295 lisp

5599054032 568 a5p a0
5609411786 568 a5p 80
sh19411687 se8 asp a0
5620411843 &0
shafd15634 oA

5543405895 ooa

sH55406000 ooa

5hBB345602 i e

sh79407859 o]

5hB9407642 aps e [

sh99407634) aps ome cnnn

5709407180 [ric} M
q o] 4%

Figure 7: Visualising the Solution, using Visual Basic: the
exam timetable for each individual student

5. CONCLUSION

We have presented an open architecture and language for
constraint programming, which greatly reduces the amount
of knowledge required by the user to use Constraint
Satisfaction technology, which is open and is thus easily
extendible to use other constraint solvers. We have given
an example showing how a real application can be simply
and easily built, in the chosen language of the user, which
architecture for
This

architecture is easy to use, open and extensible and is

uses our solving exam

that

timetabling

problems. demonstrates our proposed

capable of solving real problems.
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