
Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

A Study to Design Computer Aided

Programming System

Avtar Singh

Research Scholar, Manav Bharti University, Himachal Pradesh, India

ABSTRACT: This paper describes a computer-aided constraint programming system. Traditional Constraint Programming
Languages have been built on top of host languages such as Prolog, Lisp, C++. This means that the user must have
reasonable knowledge of the syntax and semantics of the host language before being able to use the constraint
technology effectively. On top of this, the user may also be required to specify the heuristics and, or algorithm to solve the
constraint problem. This leads to a bottleneck in the amount of people who have the necessary expertise in both
constraint programming and the host language to implement practical systems, which use constraint satisfaction
techniques. Our aim is to abstract out as many of these details as possible, to produce a high level system, where the
problem specification is the focus. We have defined a simple, intuitive, high level, declarative (the order in which
constraints are specified has no significance) language called EaCL for specifying constraint satisfaction problems. We
propose an open architecture in which future constraint solvers can reside. The architecture also allows multiple flexible
interfaces. In this paper we present as an example, an exam time tabling system built on top of our system, using Visual
Basic and Automation.

--♦-------------------------------------

1. INTRODUCTION

A constraint satisfaction problem is a problem where one is

given a finite set of variables, each of which is associated

with a (normally finite) domain. Constraints restrict the

values to be taken by the variables simultaneously. The

problem is to assign a value to each variable satisfying all

the constraints [14],[3],[5].

Constraint programming systems have had remarkable

achievement in many applications. Many more applications

could have benefited from it had there been more experts

in the field to exploit the technology. Successful though

they are, previous approaches to building

constraintprogramming systems have been based on

taking some host language, e.g. C++ (e.g. ILOG solver

[10]), Lisp (e.g. PECOS [11]) or Prolog (e.g. ECLiPSE [7],

CHIP [12], the CHIC 2 project [2]), augmented in some way

with constraint technology. This means that the user of

these constraint programming systems needs to have two

basic skills before they can make use of the traditional

constraint programming systems:

 Be able to formulate the problem as a constraint

satisfaction problem,

 Be able to program in the host language.

Some recent global optimisation modelling languages, e.g.

HELIOS, ILOG Numerica [8],[15] allow users to define their

problems, mathematically, almost as they would in

technical papers.

Our aim is to minimise the amount of knowledge required

by the end user to be able to start using our system. Our

approach is to use a high level language similar in some

ways to HELIOS and ILOG Numerica, but targeted at

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

Constraint Satisfaction Problems, while still maintaining the

ability of our system to be used for practical applications

2. ARCHITECTURE

At the top level our current implementation supports two

user interfaces for entering constraint satisfaction

problems, ZDC (see Figure 2) and ZDCDirect (see Figure

3). ZDCDirect allows direct entry of the problem, using the

EaCL without any special graphical user interfaces.

ZDC contains a formulation wizard, domain, variable and

constraint builders, problem browser and online tutorials

and examples, all aimed at easing the problem formulation

process. In addition to this, both of these can be used as

Automation Servers (automation is a technique which

allows objects to make functions and data available to

other objects or applications [13]), allowing real

applications to be built on top of ZDC or ZDCDirect. This

could be done using Visual Basic, Visual C++ or JAVA, or

from another application such as ACCESS, EXCEL or

even WORD. See Section 4 for an example

Figure 2: The ZDC interface and constraint builder

Both ZDC (Figure 2) and ZDCDirect (Figure 3) use EaCL,

a high level declarative language, as their core language

for describing CSPs. Once a problem has been formulated

in EaCL using either interface, its syntax and semantics

are checked to ensure they are correct and, if not, the

interface will return a error message indicating where the

error occurred and what it might be. Then the EaCL is

translated into a solver-independent representation, which

can then be translated by a solver object generator (one for

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

each solver in the system) into solver dependent objects,

and solved by that particular solver, with the solution

returned by the interface (the user may also find all

solutions, or a maximum number of solutions etc.). This

makes it very easy to incorporate a new solver into our

system, since all that is required is an object generator to

be built which translates the solver independent objects

into the new solver’s representation.

Thus we have a very open architecture, because addition

of a new solver requires no modification of the top level

parser or language, and only knowledge of the solver-

independent objects and the new solver. This means that a

well-written third party solver could be incorporated into our

architecture with minimum effort, as long as it supports the

constraints in our language. So far, we have implemented

two solvers, one based on the Forward Checking algorithm

[4] (a complete algorithm) and another based on Guided

Local Search [17] (an incomplete algorithm), both

generalized to handle EaCL.

Figure 3: The ZDCDirect Interface

3. THE EaCL LANGUAGE

Here we give a brief description of the EaCL language

Version 1.0, which forms the core of our system (for a full

description see [9], available through

http://cswww.essex.ac.uk/CSP/cacp.html).

The problem file for EaCL 1.0 is split into four subsections

(see Figure 4).

Figure 4: The skeleton of an EaCL file

The data section can be used to store named constant

data, which will typically define an instance of a particular

problem. For example, it may contain a named list of lists

defining what exam which student takes, etc. The domains

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

section defines named sets of values which a variable can

take, and the variables section declares the variables

present in the problem, together with the name of their

domain, with the constraints section defining the

constraints on the variables for the problem.

The EaCL language Version 1.0 allows for three types of

variables: boolean variables, integer variables and set

variables. Integer and set variables must have their

domains specified in the domains section, whilst boolean

variables obviously only have one possible domain (0,1).

Below is a list of constraints, functions and operators,

which can be used to form constraints in EaCL 1.0:

Logical: And, Or, Xor, Not, Iff, Implies

Integer: -, +, *, /, %, Abs, Power, Sum, ScalProd,

Count, Minimum, Maximum, =, <>, <, >, <=, >=

Set: Member, NotMember, Subset, StrictSubset, Union,

Intersection, AllDisjoint, #

Symbolic: AllDifferent, Circuit, Sequence, Element

These constraints are similar to the types of constraints

found in large commercial constraint programming libraries

and CLPs such as ILOG solver [10] or CHIP [12], and

therefore are the kinds of constraints which are likely to be

useful for building real applications. Since these may not

cater for every eventuality, user-defined constraints may be

added which are only expressed in terms of the constraints

and functions above, and other user-defined constraints,

for example:

In other environments, e.g. in ILOG solver, user defined

constraints are sometimes defined by daemons (functions

which when some event occurs, perform some action)

which define how each user defined constraint is

propagated, when a variable’s domain is modified. Whilst

this increases the power of these kinds of user-defined

constraints, it also requires the user to have a deep

understanding of constraint technology.

If the user requires some other function to be defined, this

can also be done in a similar way. For example:

In addition to this, Forall constructs can be used to index

arrays of variables, to generate groups of similar

constraints, e.g. constraints in the N- queens problem:

The language also supports intensional lists and sets. For

example one can define a constraint that sums the values

of all elements of an array up to element j, and specify that

it is less than a certainTotal:

In addition to these features, EaCL 1.0 also supports:

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

If-Else constructs on indexes for conditional definition of

constraints,

Concatenation of lists and arrays, e.g. [1,2] ++ [3,4] etc.

3.1 EXAMPLE EACL FILE: THE PUZZLER

PROBLEM

The puzzler problem (From Computer Weekly, 7th August

1997) is a simple example of how elegantly a problem can

be specified in EaCL 1.0. It consists of a 4´4 Magic Square,

which is made up using the consecutive series 5-to-20 and

gives a Constant total of 50 in many different ways. The 50

total is produced by the sum of:

As one can see below, this problem is very simple to

specify using EaCL 1.0, although it only shows the basic

features of EaCL 1.0. The formulation consists of 16

variables, name A to P, which must take values from the

Domain square, defined to be the range of integers from 5

to 20.

Then an AllDifferent constraint specifies that all the

variables should take different values (i.e. use the whole 5

to 20 range of values), and then various equality

constraints define the combinations which add up to 50.

Two equality constraints, setting P = 5 and F = 20 are also

used.

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

4. EXAMPLE APPLICATION: EXAM

TIMETABLING

As an example of the use of our system, we solve a real

world problem of exam timetabling [1]. Many Universities

and schools face this type of problem, which is typically

solved by hand over a period of weeks. The problem is

defined as follows:

Given:

a set of slot times when exams may take place

 the default length of each exam

 the minimum time period a student must have

between each exam

 a set of time slots, when specific exams must or

must not take place

 which exams each student must take.

Find:

an assignment of slots to exams, such that no student is

required to take exams less than the minimum time period

apart, and no exam takes place in an illegal slot.

Figure 5: The Exam time tabling application built on top of

ZDC

This problem can be formulated as a CSP as follows:

Variables represent the slot number when each exam

takes place:

The domain of all variables is the set of all the possible slot

numbers:

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

Constraints:

1. Some exams must not take place in certain slots, and

some must take place in certain slots:

2. Exam containing common students, must be at least the

minimum time period apart:

(SlotTimes is an array in the data section, specifying the

time in minutes when a slot for a possible exam starts each

day)

Automation is used from Visual Basic to call our ZDC

application, to assemble the data, domains, variables and

constraints necessary to solve a particular instance of an

exam time tabling problem. The details of each problem

are stored in a Microsoft Access database (students and

exams they take, slot times and the time interval allowed

between exams).

Figure 6: Data flow in the exam timetabling application, built

on top of ZDC

Once the problem has been solved, the solution can be

visualised in lots of different ways (these are implemented

using standard Visual Basic components). For example:

Which slot each exam takes place in,

The exam timetable for each student (see Figure 7).

Bar chart of the number of students per slot (see Figure 8),

Bar chart of the number of exams per slot,

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 8

E-Mail: ignitedmoffice@gmail.com

The exams in each slot.

We have found that our system solves the exam

timetabling problem adequately using either solver

(although the aim of our system is not outright

performance, but usuability). It required only half a day to

build the constraint programming part (the basic problem

formulation was developed in ZDC and then integrated with

the rest of the timetabling system) of the system.

Together with a non-trivial set of statistics (to allow users to

verify the results and to visualize the timetable), it took less

than a week to build a practical exam timetabling system

which is capable of using publicly available instances of the

exam timetabling problem1.

This shows how effective and easy it is to use our system.

It also shows how feasible it is to represent and solve real-

world problems using our system.

Figure 7: Visualising the Solution, using Visual Basic: the

exam timetable for each individual student

5. CONCLUSION

We have presented an open architecture and language for

constraint programming, which greatly reduces the amount

of knowledge required by the user to use Constraint

Satisfaction technology, which is open and is thus easily

extendible to use other constraint solvers. We have given

an example showing how a real application can be simply

and easily built, in the chosen language of the user, which

uses our architecture for solving exam timetabling

problems. This demonstrates that our proposed

architecture is easy to use, open and extensible and is

capable of solving real problems.

7. REFERENCES

[1] Corne, D., Fang, H-L., & Mellish, C., “Solving the

Modular Exam Scheduling Problem with Genetic

Algorithms”, DAI Research Paper No. 622, Department of

Artificial Intelligence, University of Edinburgh, UK.

[2] The CHIC-2 project, See http://www-

icparc.doc.ic.ac.uk/chic2/.

[3] Freuder, E.C. & Mackworth, A., (ed.), “Constraint-

based reasoning”, MIT Press, 1994.

[4] Haralick, R.M. & Elliot, G.L., “Increasing Tree

Search Efficiency for Constraint Satisfaction Problems”,

Artificial Intelligence 14 (1980) 263-313.

[5] Kunstmann, T. & Muller, R., “A Constraint Based

Language for Spreadsheets”, Proceedings of PACT96,

pages 445-452, 24-26th April 1996, London, UK.

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 9

E-Mail: ignitedmoffice@gmail.com

[6] Marriott, K. & Stuckey, P.J., “Programming with

constraints, an introduction”, MIT Press, 1998.

[7] Meier, M. & Schimpf, J., “An Architecture for Prolog

Extensions”, Proceedings of the 3rd International

Workshop on Extensions of Logic Programming, Bologna,

1992.

[8] Michel, L. & Van Hentenryck, P., “Helios: A

Modeling Language for Global Optimization”, Proceedings

of PACT 96, pages 317-336, 24-26th April 1996, London,

UK.

[9] Mills, P., Tsang, E., Williams, R, Borrett, J., Ford,

J., “EaCL: An Easy abstract Constraint programming

Language”, Technical Report CSM-321, Department of

Computer Science, University of Essex, Colchester, UK,

December 1998.

[10] Puget, J-F., “A C++ Implementation of CLP”,

Proceedings of SPICIS 94, November 1994, Singapore.

[11] Puget, J-F., “PECOS: a high level constraint

programming language”, Proceedings of SPICIS 92,

September 1992, Singapore.

[12] Simonis, H., “The CHIP system and its

applications”, in Montanari, U. & Rossi, F. (ed.),

Proceedings, Principles and Practice of Constraint

Programming (CP'95), Lecture Notes in Computer Science,

Springer Verlag, Berlin, Heidelberg & New York, 1995,

643-646.

[13] Templeman, J., “Beginning MFC COM

Programming”, Wrox Press, 1997.

[14] Tsang, E., “Foundations of Constraint

Satisfaction”, Academic Press 1993.

[15] Van Hentenryck, P., Michel, L. & Deville, Y.,

“Numerica: A Modeling Language for lobal Optimization”,

MIT Press, spring 1997.

[16] Van Hentenryck, P., “The OPL Optimization

Programming Language”, MIT Press, 1999.

[17] Voudouris, C., “Guided Local Search for Combinatorial

Optimization Problems”, PhD Thesis, Department of

Computer Science, University of Essex, Colchester, UK,

July, 1997.

