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ABSTRACT: We propose a new number representation and arithmetic for the elements of the ring of integers modulo p. 
The so- called Polynomial Modular Number System (PMNS) allows for fast polynomial arithmetic and easy parallelization. 
The most important contribution of this paper is the fundamental theorem of a Modular Number System, which provides a 

bound for the coefficients of the polynomials used to represent the set  However, we also propose a complete set of 
algorithms to perform the arithmetic operations over a PMNS, which make this system of practical interest for people 
concerned about efficient implementation of modular arithmetic. 
 

------------------------------------------♦------------------------------------- 
 

1. INTRODUCTION 

Efficient implementation of modular arithmetic is an 

important prerequisite in today's public-key cryptography 

[10]. The celebrated RSA algorithm [13], and the cryp- 

tosystems based on the discrete logarithm problem, such 

as Diffie-Hellman key exchange [6], need fast arithmetic 

modulo integers of size 1024 to roughly 15000 bits. For the 

same level of security, elliptic curves defined over prime 

fields, require operations modulo prime numbers whose 

size range approximately from 160 to 500 bits [8]. 

 

Classic implementations use multiprecision arithmetic, 

where long integers are represented in a predefined high- 

radix (usually a power of two depending on the word size 

of the targeted architecture). Arithmetic operations, namely 

modular reduction and multiplication, are performed using 

efficient algorithms, such as as Montgomery [12], or Barrett 

[3]. (For more details, see [10], chapter 14.) These general 

algorithms do not require the divisor, also called modulus, 

to be of special form. When this is the case, however, 

modular multiplication and reduction can be accelerated 

considerably. Mersenne numbers, of the form 2
m
 — 1, are 

the most common examples. Pseudo-Mersenne numbers 

[5], generalized Mersenne numbers [14], and their ex-

tension [4] are other examples of numbers allowing fast 

modular arithmetic. 

 

In a recent paper [2], we have defined the so-called Mod-

ular Number Systems (MNS) and Adapted Modular Num-

ber Systems (AMNS) to speed up the arithmetic operations 

for moduli which do not belong to any of the previous 

classes. In this paper, we propose a new representation, 

and the corresponding arithmetic operations for the 

elements of the ring of integers modulo p. (The integer 

p does not have to be a prime, although it is very likely to 

be prime for practical cryptographic applications.) We 

define the Polynomial Modular Number System (PMNS), 

over which integers are represented as polynomials. 

Compared to the classical (binary) representation, 

polynomial arithmetic offers the advantages of no carry 

propagation and easiest paral- lelization. The main 
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contribution of this paper is the fundamental theorem of a 

MNS, which provides a bound for the coefficients of the 

polynomials used to represent the elements of This 

theorem is presented in Section 3. It uses results from 

lattice reduction theory [9, 11]. The second half of the 

paper focuses on the arithmetic operations; in Section 4, 

we propose algorithms for the basic operations - addition, 

multiplication, conversions - which all require a final step, 

called coefficient reduction ,that we present in details in 

Section 5. A numerical example is provided in Section 6. 

2. Modular number systems 

In classic positional number systems, every non-negative 

integer, x, is uniquely represented in radix r as 

 

If xn-1 =0, x is said to be a n-digit radix-r number. 

In most public-key cryptographic applications, compu-

tations have to be done over finite rings or fields. In prime 

fields gf (p), we deal with representatives of equivalence 

classes modulo p (for simplicity we generally use the set of 

positive integers {0,1,...,p — 1}), and the arithmetic oper-

ations - addition and multiplication - are performed modulo 

p. In order to represent the set of integers modulo p, we 

define a Modular number system, by extending the Defini-

tion (1) of positional number systems. 

Definition 1 (MNS) A Modular Number System, B, is a 

quadruple  such that every positive integers, 

 satisfy 

 

The vector (x0,..., xn-1)B denotes a representation of x in 

 

In the rest of the paper, we shall omit the subscript (.)B 

when it is clear from the context. We shall represent the in-

teger, a, either as the vector, a, or the polynomial, A, with-

out distinction. We shall use ai to represent both for the ith 

element of a, and the ith coefficient of A. (Note that we use 

a left-to-right notation; i.e., a0, the left-most coefficient of A, 

is the constant term.) Hence, depending on the context, we 

shall use  to refer to the norm of the vector, or 

the corresponding polynomial. We shall also use the no-

tation ai to refer to the ith vector within a set of vectors or a 

matrix. 

Example 1 Let us consider a MNS defined with p = 

 Over this system, we represent 

the elements of  as polynomials in of degree at most 

2, with coefficients in { — 1,0,1} (cf. table 1). 

 

Table 1. The elements of  in the MNS defined as B = 

MNS (17, 3, 7, 2) 

In example 1, we remark that the number of polynomials of 

degree 2, with coefficients in {—1,0,1} is equal to 3
3
 = 27. 

Since we only have to represent 17 values, the system is 

clearly redundant. For example, we 

have = The 

level of redundancy depends on the parameters of the 

MNS. Note yet that, in this paper, we shall take advantage 

of the redundancy only by considering different 

representations of zero. 

In a MNS, every integer, is thus represented 

as a polynomial in But; what do we know about the 
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coefficients of those polynomials? Are they bounded by 

some value which depends on the parameters of the 

MNS? In other words, given the integers p and n, are we 

able we determine and construct a MNS? We answer 

these questions in the next section. We prove the 

fundamental theorem of a MNS, using results from lattice 

reduction theory, and we introduce the concept of 

Polynomial Modular Number System (PMNS). 

3. Polynomial Modular Number Systems 

In this section, we consider special cases of modular 

number systems, where is a root (modulo p) of a given 

polynomial E. In the following fundamental theorem of a 

MNS, we prove that if is greater than a certain bound, 

then it is always possible to define a valid MNS. Roughly 

speaking, Theorem 1 says that there exists a MNS, 

 where one can represent every 

integer less than p, as a polynomial of degree at most n — 

1, with coefficients all less than C x p
1/n

, where C is a small 

constant. 

Theorem 1 (Fundamental theorem of a MNS) Let us de-

fine p,n > 1, and a polynomial   

with  such that  (mod p), and E irre 

ducible in  If   

then, the parameters define a modular number 

system,  Sketch of proof: (A 

complete, detailed, proof can be found in [1].) 

The proof is based on the theory of lattice reduction [9, 11]. 

A lattice  is a discrete sub-group of  or equiv- alently 

the set of all the integral combinations of  linearly 

independent vectors over  

 

The matrix A = (a1,..., ad) is called a basis of It is known 

that, every vector over  can be reduced, modulo the 

lattice, within the fundamental domain of given by  

 

In order to prove Theorem 1, we first define the lattice, 

 of all the multiples of p in B; or 

equivalently, the set of vector of  defined by 

 

From Minkowski's theorem [9, 7], and because we have 

 we prove that there exists a vector  

such that  We then define a second lattice, 

of dimension n, with B=(b1,..., bn), 

such that 

 

To conclude the proof, we simply remark that every 

integer,  can be first associated with the vector a = 

(a, 0,..., 0), and reduced modulo  to a vector  which 

belongs to the fundamental domain  Since  can 

be overlapped by spheres of radius  and 

centers the vertices of  and because all the points of a 

lattice are equivalent, we conclude that 

 

Definition 2 (PMNS) A modular number 

system  which satisfies the conditions 

of Theorem 1 is called a Polynomial Modular Number 
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System (PMNS). We shall denote 

 In practice, we shall define the 

polynomial E with  as small as possible. 

Example 2 We define the PMNS with 

 

We easily check that = 13 is a root of E in  and E is 

irreducible in  We represent the elements of  as 

polynomials of degree at most 2, with coefficients in { — 

1,0,1}. 

4. Conclusions 

In this paper, we have proposed a new representation 

for the elements of Zp, the ring of integers modulo p, called 

Polynomial Modular Number Systems. In this system, inte-

gers are represented as polynomials in 7, of degree less 

than n, with coefficients bounded by (|a| + |ft|)p
1/n

, where a, 

ft are very small integers. Since p
1/n

 is a minimum value, 

 

Table 2. The iterations performed by the CTCR 

Algorithm 3 

only a few extra bits are required for each coefficient. Com-

pared to the classic multiprecision representation, the poly-

nomial nature of PMNS allows for no-carry propagation, 

and efficient polynomials arithmetic. The algorithms pre-

sented in this paper for the arithmetic operations must be 

seen as a first step in doing the arithmetic over this new 

representation. Many improvements are still to come... 
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