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ABSTRACT: We propose a new number representation and arithmetic for the elements of the ring of integers modulo p.
The so- called Polynomial Modular Number System (PMNS) allows for fast polynomial arithmetic and easy parallelization.
The most important contribution of this paper is the fundamental theorem of a Modular Number System, which provides a

bound for the coefficients of the polynomials used to represent the set “#* However, we also propose a complete set of
algorithms to perform the arithmetic operations over a PMNS, which make this system of practical interest for people
concerned about efficient implementation of modular arithmetic.

1. INTRODUCTION modular multiplication and reduction can be accelerated

considerably. Mersenne numbers, of the form 2™ — 1, are
Efficient implementation of modular arithmetic is an . o 00000 examples. Pseudo-Mersenne numbers
important prerequisite in today's public-key cryptography
[10]. The celebrated RSA algorithm [13], and the cryp-

tosystems based on the discrete logarithm problem, such

[5], generalized Mersenne numbers [14], and their ex-
tension [4] are other examples of numbers allowing fast

modular arithmetic.
as Diffie-Hellman key exchange [6], need fast arithmetic

modulo integers of size 1024 to roughly 15000 bits. For the In a recent paper [2], we have defined the so-called Mod-

same level of security, elliptic curves defined over prime ular Number Systems (MNS) and Adapted Modular Num-

fields, require operations modulo prime numbers whose ber Systems (AMNS) to speed up the arithmetic operations

size range approximately from 160 to 500 bits [8]. for moduli which do not belong to any of the previous

classes. In this paper, we propose a new representation,

Classic implementations use multiprecision arithmetic, and the corresponding arithmetic operations for the
where long integers are represented in a predefined high- 7 ) _ _
_ i i elements of “r'the ring of integers modulo p. (The integer
radix (usually a power of two depending on the word size ) . )
) ) i i p does not have to be a prime, although it is very likely to
of the targeted architecture). Arithmetic operations, namely ) ) ) o
_ o _ be prime for practical cryptographic applications.) We
modular reduction and multiplication, are performed using ] ]
- ) define the Polynomial Modular Number System (PMNS),
efficient algorithms, such as as Montgomery [12], or Barrett . ) .
) over which integers are represented as polynomials.
[3]. (For more details, see [10], chapter 14.) These general ) ) ]
) ) o Compared to the classical (binary) representation,
algorithms do not require the divisor, also called modulus, ) ) )
] o polynomial arithmetic offers the advantages of no carry
to be of special form. When this is the case, however, ) ) o )
propagation and easiest paral- lelization. The main
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contribution of this paper is the fundamental theorem of a

MNS, which provides a bound for the coefficients of the

polynomials used to represent the elements of Z-This
theorem is presented in Section 3. It uses results from
lattice reduction theory [9, 11]. The second half of the
paper focuses on the arithmetic operations; in Section 4,
we propose algorithms for the basic operations - addition,
multiplication, conversions - which all require a final step,
called coefficient reduction ,that we present in details in

Section 5. A numerical example is provided in Section 6.

2. Modular number systems

In classic positional number systems, every non-negative

integer, X, is uniquely represented in radix r as

F
x Z ayrt, wherea; € {0, 0 — 1} (1)

i Q

If x,.1 =0, X is said to be a n-digit radix-r number.

In most public-key cryptographic applications, compu-
tations have to be done over finite rings or fields. In prime
fields gf (p), we deal with representatives of equivalence
classes modulo p (for simplicity we generally use the set of
positive integers {0,1,...,p0 — 1}), and the arithmetic oper-
ations - addition and multiplication - are performed modulo
p. In order to represent the set of integers modulo p, we
define a Modular number system, by extending the Defini-
tion (1) of positional number systems.

Definition 1 (MNS) A Modular Number System, B, is a
quadruple {p.r.v. o) such that every positive integers,
V< a <P satisfy

n 1
x Z ayt mod p, with~y = 1 and ) < p. (2)

i 0
The vector (Xo,..., Xn.1)g denotes a representation of x in
B AMNS{pn.~L o

In the rest of the paper, we shall omit the subscript (.)g

when it is clear from the context. We shall represent the in-

teger, a, either as the vector, a, or the polynomial, A, with-
out distinction. We shall use a; to represent both for the ith
element of a, and the ith coefficient of A. (Note that we use
a left-to-right notation; i.e., ao, the left-most coefficient of A,
is the constant term.) Hence, depending on the context, we

shall use llal — [,

to refer to the norm of the vector, or
the corresponding polynomial. We shall also use the no-
tation ai to refer to the ith vector within a set of vectors or a
matrix.

Example 1 Let us consider a MNS defined with p =

17, — 3% — 7,p — 2 Over this system, we represent

the elements of ‘Z1t as polynomials in™-of degree at most
2, with coefficients in { — 1,0,1} (cf. table 1).

1 2 3 1
1 . S e Ry
5 G 7 &
A —1 1] ~ -~ 1] ~
9 10 11 12
—1 —~ - 1 — 7 - — "rlg
13 14 15 16
-~ " [ -1 +77 1 +47

Table 1. The elements of Z!~ in the MNS defined as B =
MNS (17, 3,7, 2)

In example 1, we remark that the number of polynomials of
degree 2, with coefficients in {—1,0,1} is equal to 3% = 27.
Since we only have to represent 17 values, the system is
redundant. For

clearly example, we

have b — 117 125 —— T 1vord— 1514 — 1% The
level of redundancy depends on the parameters of the
MNS. Note yet that, in this paper, we shall take advantage
of the

redundancy only by considering different

representations of zero.

In a MNS, every integer, ? £ # < Psjs thus represented

as a polynomial in"'But; what do we know about the
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coefficients of those polynomials? Are they bounded by
some value which depends on the parameters of the
MNS? In other words, given the integers p and n, are we
able we determine ”and construct a MNS? We answer
these questions in the next section. We prove the
fundamental theorem of a MNS, using results from lattice
and we

reduction theory, introduce the concept of

Polynomial Modular Number System (PMNS).
3. Polynomial Modular Number Systems

In this section, we consider special cases of modular
number systems, where " is a root (modulo p) of a given
polynomial E. In the following fundamental theorem of a
MNS, we prove that if”is greater than a certain bound,
then it is always possible to define a valid MNS. Roughly
speaking, Theorem 1 says that there exists a MNS,
B =MNS(p,n.7.01. where one can represent every
integer less than p, as a polynomial of degree at most n —
1, with coefficients all less than C x p””, where C is a small

constant.

Theorem 1 (Fundamental theorem of a MNS) Let us de-
fine p,n > 1, and a polynomial E{A} = X" | aX [ 5,
with @4 € Z such that £(7) =0 (mod p), and E irre

ducible in ZIX | i # 2 (el 13017, (3)

then, the parameters (p: 7. 7. ) define a modular number

B MNS(p,n, . .

system, Sketch of proof: (A

complete, detailed, proof can be found in [1].)

The proof is based on the theory of lattice reduction [9, 11].
A lattice £ is a discrete sub-group of R™, or equiv- alently

the set of all the integral combinations of d=n linearly

independent vectors over E:

L=L{A)=Za; | | Zay
—{A1a1++)\,zad/\,€Z}

The matrix A = (ay,..., ag) is called a basis of £-1t is known
that, every vector over B can be reduced, modulo the

lattice, within the fundamental domain of £,given by

o

o E @i ay, O = ay << 13},

=1

H {w e R™;

In order to prove Theorem 1, we first define the lattice,
£—L(A)overZ". of all the multiples of p in B; or

equivalently, the set of vector of Z” defined by

L LA — {(;;:[]1 e Tno1) ]
ooy 4,y =0 {rnod p)}. (4)

From Minkowski's theorem [9, 7], and because we have
|det A| = p, we prove that there exists a vector ¥ & L,
such that I#ll== < »""™. We then define a second lattice,

£ LB} C L, of dimension n, with B=(by,..., by),
such that
b3l < (el 1 131) (5)

To conclude the proof, we simply remark that every
integer, @ € N, can be first associated with the vector a =
(a, 0,..., 0), and reduced modulo £' t0 a vector - which
belongs to the fundamental domain 7’ of £. Since X’ can

Plfn

be overlapped by spheres of radius (ol 1131 »7", ang

centers the vertices of 7's and because all the points of a

lattice are equivalent, we conclude that
la"l~ = (ol + |3 p"m
Definition 2 (PMNS) A modular number

systemB — MNS(p,n.v.p) which satisfies the conditions

of Theorem 1 is called a Polynomial Modular Number
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System (PMNS). We shall denote

B=LPMNSpny.mE). practice, we shall define the

polynomial E with @ @d 3 a5 small as possible.

Example 2 We define the PMNS with
p=23n=3 =2 LX) X —X+1(a_ 1.9 1)
We easily check that ¥ = 13 is a root of E in 723, and E is

ireducible in ZlX| we represent the elements of Z23 as
polynomials of degree at most 2, with coefficients in { —
1,0,1}.

4. Conclusions

In this paper, we have proposed a new representation
for the elements of Z,, the ring of integers modulo p, called
Polynomial Modular Number Systems. In this system, inte-
gers are represented as polynomials in 7, of degree less

1/n

than n, with coefficients bounded by (|a| + |ft)p™, where a,

ft are very small integers. Since pl’n is a minimum value,

| Ii; ” 74,0 | 74,1 | T4,z | 74,7 I
Rz || 13976766 | —84549634 | —24162638 | —26089282
Ris || 14438766 | —24305666 | —20345166 | —32534274
Ttar || 14709678 | —9254914 [ 620878 | 17089478
Ttag || 4661438 | —2222082 705650 | — 1509151
Ra 1237182 — 2060802 1175730 —1774830
Bs 1237182 | —2060802 1175730 —1774850
B 323390 —804874 —54222 —275362
T 2ATRTO — 310274 —70670 — 305512
Ry 210110 —17474 — 78844 — 106082
By 103102 —12434 — 95454 —1035010
iz 46214 —4626 —24166 —5H5838
Iy 7058 — 6282 — 26850 —22402
m 7130 — 7624 — 10082 —1274
Ka 6093 —7a57 —3394 —3380

Table 2. The iterations performed by the CTCR

Algorithm 3

only a few extra bits are required for each coefficient. Com-
pared to the classic multiprecision representation, the poly-

nomial nature of PMNS allows for no-carry propagation,

and efficient polynomials arithmetic. The algorithms pre-
sented in this paper for the arithmetic operations must be
seen as a first step in doing the arithmetic over this new

representation. Many improvements are still to come...
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