Journal of Advances in Science and Technology
Vol. I, Issue II, November-2011, ISSN 2230-9659

Study of Algorithm Design Comparison between C,
C++, Java and C# Programming Languages.

GURJOT KAUR
Research Scholar, Manav Bharti University, H.P., India

Abstract: This document compares the performance of various algorithms across various programming languages,
namely, C, C++, Java and C# (C-Sharp). Using standard algorithms implemented in each language, we will compare the
performance of the resulting executables from each language. Because the C# language only compiles and runs on
Windows based operating systems, all performance tests will be run on a Windows Server 2003 based system.

L 4

1. INTRODUCTION

One of the first decisions that needs to be made when
embarking on a new software project is what programming
language to use for development. There are many choices.
C, C++, Java, C#, Pascal, Fortran, etc. There are many
criteria that a developer can use to narrow down the
choices somewhat. However, criteria that always seems to
be high on the list is application performance. Performance
is and should always be amongst the highest, if not the
absolute highest, of criteria used to determine what
language an application should be written in.

What that in mind, we will write a humber of algorithms in
various programming languages to see which language
offers the best performance. All source code was written in
house, and all performance tests were run on computers
here in our labs.

The source code that lies within is not intended for
commercialization nor for production environments. But is
simply to gather timing information when developing a
specific algorithm in different programming languages and
seeing what language can yield the fastest time. No more,
no less.

1.1  what Are We Testing?

What we're trying to test in each language is, at a very basic
level, how fast can each language execute the code for
various constructs such as:

. if statements

. while loops

. do loops

. for loops

. array accesses (reading and writing)

. mathematical statements (integer and floating point)
. Logical operations (and'ing, or'ing)

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

We'll test these basic constructs in a way that will give the
reader a way of coming to terms with what to expect,
performance wise, from each language. The way that we'll
do this is by implementing various well known algorithms
such that we can test all of the various performance
aspects of the languages that will be benchmarked whilst
accomplishing something useful.

1.2 How Are We Testing: Algorithms Utilized
The algorithms we will benchmark across the various
languages will be the following:

. Bubble Sort

. Insertion Sort

. Fletcher 32 bit CRC Checksum

. Run Length Encoding

. Prime Number Generation (Floating Point and
Integer Operations)

. Square Root

All we're looking for in these tests is how long does it take
for the respective languages to execute a particular
algorithm given a constant work load. The workload will be
the same regardless of what language the algorithm is
written in. Some of these algorithms are heavy on string
processing, array processing, or math processing. Other
areas that can be covered will be covered in future
algorithms that we add to the benchmark suite and
document.

These benchmarks are meant to give an indication as to
how long it takes each respective language toexecute the
given set of instructions. For instance, the Bubble Sort
algorithm does a lot of array processing. What you should

Page 1



Journal of Advances in Science and Technology
Vol. I, Issue II, November-2011, ISSN 2230-9659

get from this is not the fact that your application doesn't
make use of the Bubble Sort algorithm, but rather, if your
application does a lot of array processing, then that portion
of your code within your application may fair the same if
extracted and benchmarked against the same code written
in a different programming language. That's all.

For instance, when you look at the algorithm for the Bubble
Sort algorithm, for example, don't look at it and think that
your applications doesn't implement the Bubble Sort
algorithm, think of it as a function that does a for loop with
some compare statements, array reads and array writes.
The Bubble Sort algorithm is a great example of a piece of
code that does these operations. So using this algorithm to
measure the performance of these operations across
multiple languages is valid.

1.3  Timing Graphs

All graphs present the data in the amount of seconds it took
to execute the workload. Shorter times are better, except
where noted.

1.4 Testing Hardware and Software

Processor Intel Core Duo 2.4GHZ
Memory 4GB
Operating System | Windows Server 2003

1.5 Developer Tools and Optimizations Compilers and

Optimization Flags

Language Compiler ! Optimization Flags
c Microsoft 15.00.30729.01 /02
C++ Microsoft 15.00.30729.01 /02
Java Sun 1.6.0_18 Compiler flags: none
VM Flags:
$ Java {no options}
$ java -XX:+UseSerialGC
$ java -XX:+UseParallelGC
$ java -XX:+UseConcMarkSweepGC
CSharp Microsoft 3.5.30729.1 fo
Microsoft Visual C# 2008 91605-
270-6562916-60648
Microsoft Visual C# 2008

For the Java tests, we ran individual tests with all of the
listed optimizations and took the best times for the graphs.
Also, for Java, we 'warmed up' the algorithms by calling
them a number of times before timing started to give the JIT
compiler a chance to possibly optimize them.

1.6 Future Work

This document will be updated as frequently as time permits

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

with new algorithms, fixes and performance suggestions
from readers.

1.7 Source Code Package: Algorithmic.zip

The source code for all benchmarked algorithms is
available from the Cherrystone web site in the
Documentation and White Papers section. Feel free to
download and try them yourself. If you can get any of the
programs to run faster, please let us know and we'll make
the appropriate changes to our algorithm benchmark
package and document. Send any comments/changes to
feedback@cherrystonesoftware.com.

2 Bubble Sort Algorithm

The Bubble Sort algorithm is a sorting algorithm that
incrementally steps through an array comparing each
adjacent element and doing a swap if necessary. It is one
of the slowest known sorting algorithms, so it was a great
choice to use in this CPU intensive benchmark because
basically what we're timing then is a nested loop
comparing and swapping adjacent integer values from
within an array.

2.1 Workload

The workload that was given to each language to
complete was to sort a 300,000 element array of integers.
The initial array was setup such that every element would
need to be swapped, The values in the array were
initialized in descending order starting at 300000 and
decreased in value to 0, The array was then sorted in
ascending order. This would be considered a worst case
scenario. The function called to sort the array is called
exactly once.

2.2 Algorithm
void bubblesort( int *a, intn )
{
inti, j, t=0;

for(i=0;i<n;i++)
{
forfj = 15 < (n); j#+)
{
ifalj1]> ]
{
t=a[j1];
al]=all;
all=t
}
}
}
}

2.3 Performance Graph

Page 2


mailto:feedback@cherrystonesoftware.com

Journal of Advances in Science and Technology
Vol. I, Issue II, November-2011, ISSN 2230-9659

Bubble Sort Performance
Elapsed Time In Seconds

Java 1 5

!-

=
83
&
=
=

100 120 140 160 180 20

3 Insertion Sort

Insertion sort is a simple sorting algorithm, comparison sort
in which the sorted array (or list) is built one entry at a time.
It is much less efficient on large lists than more advanced
algorithms.

3.1 Algorithm

void
insertionsort(int *data, size t n)
{
int i, j, value, done=0;
for(i=1: i<n; it+)
{
value = datali];
j=i-1
done=0;
do

if{data[j] > value)
datalj + 1] = data[jl;

]
if(j <0)

done=1:

done=1;

}

while(done =0};

data[j + 1] = value;
}

3.2 Workload

The work load is much like our bubble sort algorithm in that
there is an initial array that is sorted in descending order and
the task is to sort it in ascending order. The array size is
300,000 integer elements. The function insertionsort() is
called twice to sort the array.

3.3 Performance Graph

Insertion Sort
Elapsed Time In Seconds

-
d _____w

0 50 100 150 200 250 300

4 Prime Number Generation

A prime number is defined as any number that can only be
divided evenly by 1 and itself. The number of prime
numbers is infinite. Therefore, writing a program to
calculate prime numbers should have an upper limit.
Here's a list of the first 20 primes:

235711131719232931374143475359616771 ...

There are several way to detect primality from within a
computer application.

14 Integer Math

1.5 Floating Point Math
With integer math, you can see a division statement yields
a remainder as follows:

if(dividend % divisor == 0)

if this yields TRUE, then the dividend is NOT a prime
number. Using Floating Point arithmetic, you can do the
following:

result = dividend / divisor; // result is declared as double

tmp = (long) result) /! this will truncate any decimal positions off of 'result' and place the whole number into tmp
result = result - tmp // This will subtract the whole portion of result leaving only the decimal positions.

iffresult == 0.0) // If this is TRUE, then dividend is a prime number

We will utilize both methods to compute primes in separate
performance test to show the speed difference between
the 2 methods.

4.1 Prime Numbers - Variables

Workload

Floating Point

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 3



Journal of Advances in Science and Technology
Vol. I, Issue II, November-2011, ISSN 2230-9659

This performance test will calculate the first 2,500,000 prime
numbers. The function that will generate the prime numbers
will be called once and all prime numbers will be returned in
an array.

Algorithm
long*
computeprimes(int n)
{
double divisor, result, squareroot;
long *primes=NULL, i, half, tmp;
int nprimes=0;

primes = malloc{sizeof{double) * n);
if(primes == NULL)
return NULL;
primes[nprimes++] = 2;
for(i=3; nprimes<n; i+=2)
{
int  prime;
squareroot = sqrt(i;
divisor = 3;
prime = 1;

while{prime && divisor <= squareroot)
{
result =i/ divisor;
tmp = (long) result;
result = tmp;
if{resuft == 0.00)
prime = 0;

divisor += 2.00;
}
if{prime)
primes[nprimes++] =1;
}

return primes;

Performance Graph

Prime Number Generation (Floating Point)
Elapsed Time In Seconds

o 290

g
8
g
&
g
g

700

4.2 Prime Numbers - Integer Variables Workload

Same work load as in the Floating Point Math performance
test

Algorithm

long*
computeprimes(int n)
{
long divisor, result, squareroot;
long  “primes=NULL, i, half, tmp;
int  nprimes=0;
primes = malloc(sizeof(double) * n);
if{primes == NULL)
retum NULL;
primes[nprimes++] = 2;
for(i=3; nprimes<n; i+=2)
{
int  prime;
squareroot = sqrt(i);

divisor=3;
prime = 1;
while(prime && divisor <= squareroot)
{
iffi % divisor == 0)
prime = 0;
divisor += 2.00;
}
if(prime)
primes[nprimes++] = ;
}

return primes;

Performance Graph

Prime Number Generation (Integer)
Elapsed Time in Seconds

-
- I /]
- I

0 50 100 150 200 250 300 350

5 Conclusions

Draw your own conclusions. We're just here to develop the
algorithms and present the performance data.

What we tried to show here is what language performs

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 4



Journal of Advances in Science and Technology
Vol. I, Issue II, November-2011, ISSN 2230-9659

best on a number of different algorithms that use different
language constructs such as arrays, strings, mathematical
operations (floating point and integer). Things that all

applications do, no matter the size.
Hopefully you found this document informative.

6. Bibliography

e "The Java Tutorials: Passing Information to a Method or a

Constructor”. Oracle. Retrieved 2010-12-07.

e Java and C++ Library a b Robert C. Martin (January
1997). "Java vs. C++: A Critical Comparison" (PDF).

e "Reference Types and Values". The Java Language
Specification, Third Edition. Retrieved 9 December 2010.

e Deitel, Paul; Deitel, Harvey (2009). Java
Programmers. Prentice Hall. p. 223. ISBN 978-0-13-
700129-3. "Unlike some other languages, Java does not
allow programmers to choose pass-by-value or pass-by-
reference—all arguments are passed by value. A method
call can pass two types of values to a method—copies of
primitive values (e.g., values of type int and double) and
copies of references to objects (including references to
arrays). Objects themselves cannot be passed to

methods."

e "Java Language Specification 4.3.1: Objects".

Microsystems. Retrieved 2010-12-09.

e "Java memory leaks -- Catch me if you can" by Satish
Chandra Gupta, Rajeev Palanki, IBM DeveloperWorks,

16 Aug 2005

e Boost type traits library Clark, Nathan; Amir Hormati,
Sami Yehia, Scott Mahlke (2007). "Liquid SIMD:
Abstracting SIMD hardware using lightweight dynamic

mapping". HPCA'07: 216-227.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 5



