Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

Study of Different Testing Techniques For
Oops Software

Harmanpreet Singh
Research Scholar, Manav Bharti University, H.P., INDIA

ABSTRACT: This paper deals with design and development of an automated testing tool for Object Oriented Software. By
an automated testing tool, we mean a tool that automates a part of the testing process. It can include one or more of the
following processes: test strategy generation, test case generation, test case execution, test data generation, reporting
and logging results. By object-oriented software we mean software designed using OO approach and implemented using
a OO language. Testing of OO software is different from testing software created using procedural languages. Several
new challenges are posed. In the past most of the methods for testing OO software was just a simple extension of existing
methods for conventional software. However, they have been shown to be not very appropriate.

Hence, new techniques have been developed. This thesis work has mainly focused on testing design specifications for
OO software. As described later, there is a lack of specification-based testing tools for OO software. An advantage of
testing software specifications as compared to program code is that specifications are generally correct whereas code is
flawed. Moreover, with software engineering principles firmly established in the industry, most of the software developed
nowadays follow all the steps of Software Development Life Cycle (SDLC). For this work, UML specifications created in
Rational Rose are taken. UML has become the de-facto standard for analysis and design of OO software.

Testing is conducted at 3 levels: Unit, Integration and System. At the system level there is no difference between the
testing techniques used for OO software and other software created using a procedural language, and hence,
conventional techniques can be used. This tool provides features for testing at Unit (Class) level as well as Integration
level. Further a maintenance-level component has also been incorporated. Results of applying this tool to sample Rational
Rose files have been incorporated, and have been found to be satisfactory.

Keywords:

Class, Object, SDLC, Object-oriented, Testing, Unit, Integration, System, UML, Control flow graph, State transition
diagram, Design, Testing, Analysis, Implementation, Black-Box, White-box.

_____ L - -

1. INTRODUCTION: reduction in the probability of a bug/error being uncovered later.
However application of these automated testing tools in software
Software testing is a phase of SDLC that entails much effort, testing has its own disadvantages, namely, learning the tool to
time and cost. Often, testing phase is the single largest yse it, adapting it to your purpose, and also the tool may not
contributor towards the whole development time. Testing can not provide specific functionality which you may desire.
only uncover bugs in the program, but also flaws in design of the
software. To make the testing phase quicker, easier and more Object-oriented testing essentially means testing software
efficient, automated testing tools are being used. These tools help ~ déveloped using object-oriented methodology.
in test case generation, reporting results and variance from .)
The target users for the testing tool are mainly software testers
expected ones (if any), bugs in code and other flaws. Usage of

) and maintainers. As the tools would provide valuable insight into
these tools speeds up the testing process and also ensures

Available online at www.ignited.in Page 1
E-Mail: ignitedmoffice@gmail.com

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

the program's structure and behavior plus automate the testing
process to a certain extent, it would be highly useful for testers.
Also the tool would be beneficial to maintainers who would like
to study change impact (here they will be aided by the program'’s
analysis done by the tool), and perform regression testing. The
objectives of developing the testing tool for software testers and

maintainers are:

(1) to help them understand the structures of, and relations

between, the components of an oo program

(2) to give them a systematic method and guidance to

perform oo testing and maintenance

3) to assist them to find better test strategies to reduce their
efforts

(@) to facilitate them to prepare test cases and test scenarios
,and

5) to generate test data and to aid them in setting up test

harnesses to test specific components.

2. OBJECTIVE:

The objective of this paper is: design and development of an
automated testing tool for object-oriented software. The aim of
this paper is to study various established as well as emerging
testing techniques, with special focus on those for object-oriented
software; and develop a tool which is based upon the techniques
which are most suitable due to their effective applicability to OO

programs.

3. METHODOLOGY ADOPTED:

For carrying out this paper, following methodology has been

adopted:

1. Literature Survey: This involves study of existing
testing techniques and strategies, with special emphasis

on object-oriented testing.

2. Analysis of Problem: This incorporates analyzing the
problem. Out of the literature survey emerged, the right
techniques and tactics for object-oriented software
testing. Also existing methods have been modified upon

where ever necessary.

3. Software tool development: Since the ultimate objective
of this paper is to develop an automated testing tool, all

the steps of software development have been followed.

(M Analysis

(i) Design

(iii) Implementation

(iv) Testing

(V) Iterative process
4, EXISTING TESTING TECHNIQUES
SURVEYED:
4.1 Black Box Testing
(M Random Testing
(i) Equivalence Partitioning
(iii) Boundary Value Analysis
(iv) State Transition-based Testing
4.2 White Box Testing
(i) Basis Path Testing

Page 2

Available online at www.ignited.in

E-Mail: ignitedmoffice@gmail.com

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

(i) Loop Testing
(iii) Mutation Testing
(iv) Data flow-based Testing

5. TESTING TECHNIQUES FOR OBJECT-
ORIENTED SOFTWARE:

Certain subset of the testing techniques covered in the study can
be favourably applied to object-oriented programs. At various
levels of testing of object oriented software, techniques which

can be applied are [Pressman, iv]:

1. Unit Testing

2. Method Testing

3. Class Testing

4. Integration Testing
5. System Testing

5.1 CHALLENGES TO TESTING OBJECT-ORIENTED
SYSTEMS:

A main problem with testing object-oriented systems is that

standard testing methodologies may not be useful.

Smith and Robson [7] say that current IEEE testing definitions
and guidelines cannot be applied blindly to OO testing, because
they follow the Von Neuman model of processing. This model
describes a passive store with an active processor acting upon the
store. It requires that there be an oracle to determine whether or
not the program has functioned as required, with comparison of
performance against a defined specification.” They also present
the following definition of the testing process: "The process of

exercising the routines provided by an object with the goal of

uncovering errors in the implementation of the routines or the

state of the object or both."

Smith and Robson say that the process of testing OO software is
more difficult than the traditional approach, since programs are
not executed in a sequential manner. OO components can be
combined in an arbitrary order; thus defining test cases becomes

a search for the order of routines that will cause an error.

Siepmann and Newton[8] agree that the state-based nature of OO
systems can have a negative effect on testing. Siepmann and
Newton state that the iterative nature of developing OO systems
requires regression testing between iterations. Smith and Robson
state that inheritance is problematic, since the only way to test a
subclass is to flatten it by collapsing the inheritance structure
until it appears to be a single class. When this is done, the testing
effort for the super class is not utilized; therefore, duplicated

testing takes place.

52 A SURVEY OF TESTING TECHNIQUES FOR
OBJECT-ORIENTED SYSTEMS:

Most research on object-oriented(OO) paradigms has been
focused on analysis, design, and programming fundamentals.
Testing the systems that are created with these paradigms has

been considered an afterthought.

Traditional testing techniques must be evaluated to determine if
they are still useful with respect to object oriented systems, and

new techniques must be developed.

5.3 LATEST RESEARCH:

The latest research in the field of object-oriented software
testing. Tonella [20] proposes a method for evolutionary testing
of classes. In this paper, a genetic algorithm is exploited to
automatically produce test cases for the unit testing of classes in

a generic usage scenario. As , object oriented programming

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 3

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

promotes reuse of classes in multiple contexts, the unit testing of
classes cannot make too strict assumptions on the actual method
invocation sequences, since these vary from application to

application.

Traore [21] discusses a test model for object-oriented programs,
based on formal specifications like UML, built from user

requirements.

Pezze & Young [22] have highlighted some important issues to
be considered while testing object oriented programs. Object
oriented software requires reconsidering and adapting approaches

to software test and analysis.

6. THE TEST
CAPABILITIES:

MODEL AND ITS

The tools for automated testing is based upon certain models of
software/programs and algorithms. This mathematically defined

test model, consists of following types of diagrams:

1. the class diagram (object relation diagram)
2. the control flow graph (of a method), and
3. the state transition diagram (of a class)

6.1 CLASS DIAGRAM:

A class diagram or an object relation diagram (ORD) represents
the relationships between the various classes and its type. Types
of relationships are mainly: inheritance, aggregation, and
association. In object oriented programs there are three different
relationships between classes They are inheritance, aggregation

and association.

6.2 CONTROL FLOW GRAPH:

A control flow graph represents the control structure of a
member function and its interface to other member functions so
that a tester will know which at a is used and/or updated and

which other functions are invoked by the member function.

6.3 STATE TRANSITION DIAGRAM:

A STD or an Object State Diagram (OSD) represents the state
behavior of an object class. Now the state of a class is embodied
in its member variables which are shared among its methods. The
OSD shows the various states of a class (various member
variable values), and transitions between them (method

invocations).

6.4 BASED ON SOFTWARE DESIGN/SPECIFICATION:

These diagrams are taken from the design models prepared as
part of Software Development process. UML (Unified Modeling
Language) has become the defacto standard for object-oriented
analysis and design (OOAD).

UML provides features for specifying all the above types of

diagrams. Rational Rose Suite is the most widely used.

7. COMPONENTS OF THE OO TESTING
TOOL:

The tool for automated testing of OO programs has the following

components/features:

1. GUI

2. Import File Feature

3. Change Impact Identifier for classes
4. Maintenance Tools

5. Logging results

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 4

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

6. Diagram Displayer

7. Class Diagram

8. State Transition Diagram
9. Control Flow Graph

10. Test Tools:

(i) Test Order generator for testing of classes at

integration level

(ii) Test Case generator for testing classes

11. Basis Path generator for member functions/methods

8. CONCLUSION:

This paper dealt with Design and Development of an Automated
Testing Tool for OO software. The tool mainly focuses on testing
design specifications for OO software. An advantage of testing
software specifications as compared to program code is that
specifications are generally correct whereas code is flawed.
Moreover, with software engineering principles firmly
established in the industry, nowadays, while developing software
all the steps of Software Development Life Cycle (SDLC) are
adhered to. For this work, UML specifications are considered.
UML has become the defacto standard for analysis and design of
OO0 software. UML designs created in Rational Rose are used by

the tool as input. The main components of this tool are:

1. Test Order Generator for classes
2. Test Case Generator for State-based class testing
3. Change Impact Identification for Classes

9. FUTURE WORK:

4, Metrics:

Future work would include extending the tool to incorporate
more functionality. Both testing and maintenance components

can be added. Some additions can be:

1. Incorporating a fully functional Method Basis Path

Generator module.

2. Providing both Test Case Generation as well as
Execution. The user would be able to provide test data;
and the test cases generated would be executed using

the test data as input.

3. Reporting Code Coverage achieved after Test Set has
been executed. Various test adequacy criteria like
statement coverage, branch coverage, and path coverage

can be reported upon.

Certain program metrics like Lines of
Code(LOC), function points, interfaces, etc. can be

reported upon.

REFERENCES

[1] Jorgensen, Erikson ”Object-oriented Integration
Testing” Communications of the ACM, Vol. 37,

No. 9, 1994

[2] Kung, Gao, Hsia ”Developing an OO Testing and
Maintenance Environment” Communications of the

ACM, Vol. 38, No. 10, 1995.

[3] Doong, Frankl ”ASTOOT approach to testing OO

Programs” ACM Transactions on Software

Engineering and Methodology, Vol. 3, No.2, 1994

[4] Doong, Frankl »Case Studies on testing

OOprograms” Communications of the ACM, Vol.
25, No. 5, 1991.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 5

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

[5]

(6]

[7]

(8]

[9]

M. Smith and D. Robson ”A Framework for
Testing Object-Oriented programs” Journal of
Object-Oriented Programming, June 1994, pp.45 -
53.

Frankl, Flaine Weyuker ”An applicable family of
data flow testing criteria” IEEE Transactions on

Software Engineering, Vol. 14, No. 10, 1988.

Mary Jean Harrold, Gregg Rothermel “Performing
data flow testing on classes” December 1994 ACM
SIGSOFT Software Engineering Notes
Proceedings of the 2nd ACM SIGSOFT
symposium on Foundations of software

engineering, Volume 19 Issue 5

Ugo Buy, Alessandro Orso, Mauro Pezze
“Automated Testing of Classes” August 2000 ACM
SIGSOFT Software Engineering Notes
Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and

analysis, Volume 25 Issue 5

Gao, J.Z.; Kung, D.; Hsia, P.; Toyoshima, Y.;
Chen, C. ”Object state testing for object-oriented
programs” Computer Software and Applications
Conference, 1995. COMPSAC 95. Proceedings.,
Nineteenth Annual International, 9-11 Aug. 1995
Pages:232 — 238

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 6

