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Abstract: Modern storage systems are sophisticated. Simple direct attached storage devices are giving way to storage
systems that are shared, flexible, virtualized and network-attached. Today, storage systems have their own administrators,
who use specialized tools and expertise to configure and manage storage resources. Although the separation of storage
management and database management has many advantages, it also introduces problems. Database physical design
and storage configuration are closely related tasks, and the separation makes it more difficult to achieve a good end-toend
design. In this paper, we attempt to close this gap by addressing the problem of predicting the storage workload that will
be generated by a database management system. Specifically, we show how to translate a database workload description,
together with a database physical design, into a characterization of the storage workload that will result. Such a
characterization can be used by a storage administrator to guide storage configuration. The ultimate goal of this work is to
enable effective end-to-end design and configuration spanning both the database and storage system tiers. We present an
empirical assessment of the cost of workload prediction as well as the accuracy of the result.
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1. INTRODUCTION

The complexity of modern enterprise computing
environments is prompting changes in the way that
computing resources and the systems that depend on
them are deployed and managed [6, 9, 12, 13, 19]. In the
case of storage re-sources, simple, direct-attached
storage devices are giving way to shared, flexible,
virtualized, network-attached storage systems.
Increasingly, storage resources are consolidated into a
common pool, virtualized to accommodate individual
application requirements, and shared by multiple
enterprise applications, including database management
systems (DBMS). Furthermore, storage resources are
increasingly administered separately from the server
infrastructure; storage administrators are expected to
balance the requirements of multiple database systems
and other storage clients. As a result, database
administrators (DBASs) are no longer in direct control of the
design and configuration of their database systems’
underlying storage resources.

Managing the storage infrastructure is, like database
administration, a complex task. A storage administrator
(SA) has to configure storage arrays, create logical units
at storage arrays, create logical volumes at servers,
configure storage controllers and storage network
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switches with appropriate access credentials, and manage
the ongoing usage of the storage devices to prevent
bottlenecks or resource shortages.

Configuration decisions made by the SA determine the
performance, reliability, and capacity characteristics of the
storage system as seen by the DBMS. To help SAs cope
with the complexity of these tasks, researchers have
developed storage management tools that can be used to
automate storage design and configuration tasks [3, 4, 8,
16]. Effective storage administration, whether manual or
automatic, depends on knowledge of the storage system
workload. However, accurate workload characterizations
can be difficult to come by, particularly at initial
configuration time. Often storage administrators must rely
on rough workload “guesstimates”, perhaps informed by
previous experience with other systems or general
knowledge of the clients that the storage system is
expected to support. Once the storage system is
operational, workload characteristics can be observed.
However, such observations are not a panacea: they may
be expensive to obtain and use, they do not solve the
initial configuration problems, and they are of no use in
addressing “what if’ questions. For example, a DBA may
be considering a possible physical design change such as
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the creation of an index. If created, this index would affect
the 1/0 workload experienced by the underlying storage
system. Direct observation of the current storage system
workload does not by itself provide any guidance as to
what the storage workload would look like if the index
were added.

In this paper, we attempt to close the information gap
between the database tier and the storage tier by address-
ing the problem of predicting the storage workload that will
be generated by a database management system.
Specifically, we show how to translate a database
workload description, together with a database physical
design, into a characterization of the storage workload that
will result.
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Figure 1: End-to-End Physical Design using Existing
Design Advisers

By estimating database systems’ storage workloads, we
can provide storage administrators with information that
they can use to make informed planning, design, and
configuration decisions. In doing so, we enable end-to-end
solutions to physical design and storage configuration
problems. One example of this is shown in Figure 1, which
illustrates how existing database physical design tools and
storage configuration tools could be combined to
determine both a database physical design and an
appropriate storage configuration for a given database
workload, while preserving the administrative autonomy of
the database and storage tiers. With storage workload
estimation, both the DBA and SA have sufficient
information to address their part of the end-to-end design
and configuration problem.

2. PROBLEM FORMULATION

In this section, we will define the problem of estimating
storage workload characteristics given a specification of
the database workload. To formulate this problem more
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precisely, we begin by defining what we mean by
“database workload” and “storage workload”.

2.1 Database Workload Model

Existing relational database design tools typically expect
the database workload to be defined as a set of SQL
statements (queries and updates) along with some
indication of the relative frequency of occurrence of each
statement [2, 20]. We use a similar characterization of the
database workload for our storage workload estimation
problem, so that a single workload description can be used
for both tasks.

Specifically, we assume that the workload is characterized
by a fixed set Q of SQL statements defined over a known
database schema. We refer to each such statement as a
query type. Each query type Qi has an associated weight fi
which represents its prevalence in the workload. The
proportion of queries of type Qi in the workload is given by

fi

I ]
d 4

This kind of database workload characterization describes
the mix of queries and updates in the database workload.
This is sufficient for tasks such as index selection, where
the goal is to choose a set of indexes that will provide
superior performance relative to the performance
achievable using other sets of indexes. However, we
would like our storage workload estimates to be useful for
a variety of storage management tasks, including those
that require information about absolute frequency of
occurrence of the various queries. An example of such a
task is capacity planning. To enable this, we also require
that the database workload description include a
specification of a target operating point for the database
system. We use two parameters to characterize an
operating point. The first is the total query throughput,
denoted by _. The second is the query multiprogramming
level, k, which describes the expected number of
concurrently executing queries at any given time.

Finally, since our storage workload estimator relies on the
database system’s query optimizer, we require that
optimizer be configured to behave as it would at the target
operating point. In particular, database statistics should be
available so that the query optimizer will choose
appropriate query execution plans. Again, existing
database administration tools have similar requirements
for the availability of statistics, and some database
systems support the definition of hypothetical database
instances to support costbased “what if” analyses without
the need to populate the hypothetical instance [5]. We
assume that a database physical design has been
selected, perhaps through the use of a physical design
advisor [2, 20], and that the physical design is known to
the query optimizer. We use D to represent the set of
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physical database objects: tables, indexes, materialized
views and so on. Figure 2 summarizes the database
workload parameters.

2.2 1/0 Workload Model

One way to characterize 1/0 workloads is to use a trace of
I/O events, or a set of traces. Although traces are a very
detailed and expressive way to describe storage
workloads, they have some disadvantages. They are large
and expensive to store and manipulate. Traces of
database 1/0 workloads are also expensive to collect, as
collection requires populat-ing the database and applying
a realistic load. Trace-based workload descriptions cannot
be used as input to analytical models of storage system
behavior.

each on-burst, read requests to the underlying store occur
atrate Ar and write requests occur at rate Aw

Each 1/0 request has a starting position (within the
underlying store) and a size, or length, B. The starting
position of each request is determined by a run length
parameter L. Successive requests in a stream start where
the previous request left off, until the total number of
requests in the run reaches L. The next request then starts
a new run, with a randomly chosen starting position. Thus,
L = 1 models a random 1I/O request pattern, while larger
values of L model sequentiality. Figure 3 summarizes the
parameters associated with a Rome request stream.
Together, these parameters describe the request stream
properties that are important to the underlying storage

| Symbol | Description

modeting Jand management tools: request rates, read/write

mbeburstiness, request size, and sequentiality.

In additign to these per-stream properties, Rome also

describes| burst correlations, which model the amount of

temperal-overlap among the bursts of different streams.
Given a set S of streams, Rome defines an |S|x|S| overlap

o set of possible SQL statements (query tvpes)
fi relative frequency of queryv tvpe ¢

A query throughput

ke number of concurrent queries

D set of database physical objects

matrix C.|Entry CIi, j] in the overlap matrix describes the

Figure 2: Database Workload Model Parameters

Finally, traces tend to be specific to a particular storage
configuration, and difficult to generalize. It is prohibitively
expensive to collect traces from multiple candidate
storage configurations. Instead, we adopt a more abstract
I/0 workload model called the Rome model [18]. The
Rome model is the unifying “glue” for a collection of
storage management tools that support performance
modeling, capacity planning, storage system design and
configuration, and other tasks [3, 4, 16]. The Rome model
is not specifically designed to model the I/O workloads
generated by database management systems. It is a
general purpose model intended to model storage
workloads generated by any kind of storage client. Since
shared, consolidated storage systems must accommodate
workloads from a variety of clients, including databases,
we believe that it is important to target a generic workload
model. Doing so allows a storage administrator to
aggregate workload descriptions from multiple storage
applications. By targeting the Rome model in particular,
we are also able to leverage existing Rome-based
workload analysis and storage management tools.

The Rome model views the storage system abstractly, as
a set of stores. A store can be thought of as a virtual block
storage device, disjoint from other stores, to which block
read and write requests can be directed. The I/O workload
directed to a store is represented by one or more
concurrent streams. A stream consists of bursts of /O
request activity of duration ton interleaved with idle periods

of duration toff s during which no requests occur. During
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percentage of stream i’s burst period during which stream j
is also active.

| Svmbol | Description

ton burst duration

tof inter-burst gap

Ar read request rate during bursts

Aw write request rate during bursts

B size of each request

L total length of a sequential run

Cle, 7] burst overlap between streams z and j

Figure 3: 1/0 Request Stream Parameters in Rome

Note that, as defined by the Rome model, the overlap
matrix need not be symmetric. For example, consider two
streams S; and S; , with t,, [i] = 100 and ton [j] = 10, for
which S; ’s bursts are completely contained within Si's
bursts. This will be described by Cfi, j] = 10% and CJj, i] =
100%.

3. WORKLOAD ESTIMATION

Figure 4 gives a high-level outline of our method of
estimating a Rome 1/0O workload model. As described in
Section 2.3, the output of this method is one set of Rome
I/O model parameter values (as shown in Table 3) for
each physical database object Dj 2 D. The model
parameters for Dj describe the /O workload that the
DBMS is expected to apply to the stored representation of
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that object. The method shown in Figure 4 consists of
three phases. First, we generate an 1/O request sequence
corresponding to each query type in the database
workload (Figure 4 lines 1-4). Second, we merge those
individual sequences into a single 1/0 request trace, which
we call the representative 1/O trace for the given database
workload and operating point (line 5). Finally, we project
each physical object's requests from the representative
trace and fit the Rome stream parameters to the projected
trace (lines 6-9). In the remainder of this section, we
describe each of these phases in more detail.

3.1 Estimating Query Request Sequences

An 1/O request sequence is an ordered list of records,
each of which describes a single /O operation.
Specifically, each record consists of the following fields:
physical object identifier, starting offset within the physical
object, request length, and request type (read or write).
Note that, in Figure 4, we have distinguished request
sequences from request traces. A request trace differs
from a request sequence in that the former includes timing
information for each I/O operation, while the latter does
not.

The first phase of the storage workload estimation process
is to predict a separate I/O request sequence for each
type of query in the database workload. These request
sequences describe the 1/O behavior of a single query
running in isolation. Figure 5 summarizes our approach.
To obtain these sequences, we perform a data-free
simulation of the control flow of each query’s execution
plan. During the data-free simulation of a plan, the plan
operators generate 1/O records describing any /O
operations that they would have generated during a
normal plan execution.

However, they do not actually generate the I/O operations.
These /0 records are concatenated to form the 1/O
request sequence for the query.

When a query plan is actually executed by the database
system, its control flow depends on the data that is flowing
through the plan. During our data-free simulation, we
neither retrieve the data nor flow the data through the
plan. The simulation relies instead on the cardinality
estimates produced by the query optimizer to approximate
the control flow that would have occurred during an actual
execution of the plan. For example, for a tuple-oriented
nested loop join, we use the optimizer’'s estimate of the
cardinalities of the inner and outer relations and its
estimate of the join selectivity to estimate the number of
times that the join operator’s left and right children in the
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plan will be asked to produce

data. The simulation also relies on some operator-specific
optimizer assumptions. For example, a sort operation is
assumed to create initial runs that are twice the size of the
working memory available for the sort.
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Figure 5: Generating I/O Request Sequences

By performing the data-free simulations, we hope to
capture several important properties of the 1/0O workload
that will be generated by queries of each type. First, the
resulting I/0 sequences will contain the correct numbers of
I/O requests for each physical database object used by the
query, up to the accuracy of the query optimizer's
cardinality estimates and our own simplifying assumptions
in the simulation.

Second, the 1/0 request sequences will distinguish
sequential and random 1/O, based on the type of operator
that is generating the requests, as well as information from
the database catalogue. For example, a table scan of a
relation will generate sequential requests, while an index
scan of the same relation using an uncorrelated secondary
index will generate random requests. Finally, the
sequence will capture the interleaving of requests for the
various physical database objects used by the query plan.
For example, the simulation understands that a hash join
will first retrieve the entire build input and then retrieve the
entire probe input, resulting to non-interleaved access to
the physical objects that provide the build and probe
inputs. Conversely, a nested loop join will result in
interleaved accesses to the inner and outer inputs.
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Figure 6: Data-Free Simulation of Postgres Plan
Operators. In the diagram, operators are annotated with
the names of state variables maintained by the simulation.
Operator inputs and outputs are annotated with the names
of Postgres optimizer statistics and configuration
parameters that are used by the simulator.

Our implementation of data-free simulation is embodied in
a modified version of Postgres. In our version of Postgres,
there are 18 different operators that may appear in
execution plans. Our plan simulator handles most aspects
of these operator types. One limitation of our current
implementation is that certain kinds of SQL subqueries
(those that result in query-valued qualifiers in plan nodes)
are not handled. This is a restriction of our current
prototype, not a fundamental restriction. We do not have
space here to present the entire simulator. However,
Figure 6 illustrates the simulation for three of the Postgres
operators: sequential scan, index scan, and nested loop
join.

Note that data-free simulation of a query plan is generally
much faster than the actual execution of the plan. This is
because the simulation does not retrieve any stored data,
does not flow these data through the plan operators, and
does not generate any intermediate or final query results.
More information about the cost of data-free simulation is
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given in Section 4.4.

3.2 Generating the Representative Trace

The 1/0O request sequences generated in the first phase
capture the 1/0O workload characteristics of a single
workload query running in isolation. In the second phase,
we generate a representative 1/0 trace that describes the
aggregate storage workload of the entire database
workload. The generation of the representative 1/O trace
adds three kinds of information to the individual query
request sequences. First, since representative 1/O trace
describes the aggregate storage workload generated by
the database system, it reflects the mixture and frequency
of the various types of queries that make up the database
workload. Second, it accounts for the effect of the
database system’s buffer cache on the aggregate 1/O
stream. Finally, unlike the perquery request sequences,
the representative trace incorporates timing information in
the form of an arrival timestamp for each /O request.
These timestamps reflect the 1/0 request throughput that
will be required to support the database system at the
specified operating point.
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Figure 7: Generating the Representative I/O Trace

Figure 7 summarizes the process of generating the
representative I/O trace. We use a simple probabilistic
operational model of the database system to generate a
merged 1/O sequence from the per-query I/O sequences
obtained in the first phase. The database system is
assumed to have a fixed query multiprogramming level k
at the target operating point. k is specified as a workload
parameter (see Figure 2). To generate a merged /O
sequence, k query types are selected at random, with
query type i selected with probability proportional to fi. The
I/0 sequences for the selected query types are then
round-robin merged to produce a single request
sequence. When one of the per-query sequences is
exhausted during the merger, another query type is
selected and its /O sequence replaces the exhausted
one. This generative process continues until a specified
number of per-query 1/0 sequences have been merged.

As the merged request sequence is formed, we apply it to
a DBMS-specific buffer cache model. To model the buffer
cache, we are currently using a simulation of the 2Q
cache replacement algorithm [7] that is used by Postgres.
This simulation is parameterized by the buffer cache size.
The effect of the simulation is to remove from the request
sequence any I/O requests that hit the (simulated) buffer
cache. Finally, we associate timing information with each
remaining /O request in the sequence to produce the
representative /O trace. To do this, we use the query
throughput _ that is supplied as a parameter to the
workload estimation process. We first translate query
throughput to 1/O throughput by multiplying query
throughput by the expected number of I/O requests per

query:
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Aip = /\Lm
Zf‘, f'.:
where Ni is the cache-corrected length of 1/0 request
sequence (from phase 1) for query type Qi. The jth request
in the representative I/O trace is assigned an arrival time
of j/_io. This reflects the requirement that the necessary
query throughput at the target operating point be satisfied
by a storage system capable of handling I/O requests at
this rate.

4. RELATED WORK

In the database tier, a variety of tools are available to
address various aspects of the database physical design
problem, such as choosing indexes and materialized views
[2, 20] and partitioning relations [2, 11]. These tools
typically expect as input a database workload description
similar to the one that is expected by our estimation
technique. These tools are complementary to the workload
estimation technique described in this paper. Agrawal,
Chaudhuri, Das, and Narasayya addressed the problem of
automating the layout of relational databases on a given
set of storage devices [1]. Internally, their solution uses an
access graph to characterize the 1/O resulting from a given
database workload. The graph describes estimated
number of 1/0Os to each DB object and edge weights that
characterize co-access (similar to our overlap matrix C in
our Rome-based descriptions). This is a less expressive
model than the one we have used. For example, it makes
no distinction between sequential and random /O to an
object and no distinction between reads and writes. More
significantly, that work views storage layout as a a
database administration problem. In contrast, our goal is to
generate accurate database workload characterization to
enable storage administrators to make informed decisions
about layout and other related problems. Wasserman,
Martin, Skillcorn and Rizvi [17] describe a workload
characterization approach for database systems.

They characterize according to several resource-related
attributes, such as CPU consumption and sequential and
random I/O rates, as well as other properties such as join
degree. Our workload characterizations are more detailed,
and they do not contain DBMS-specific attributes, such as
join degree, that are not meaningful to the storage tier.
Narayanan, Thereska and Ailamaki describe a database
resource advisor for predicting transaction response times
and throughput based on end-to-end tracing [10]. Their
technique relies on instrumentation and tracing of live
database systems. Like the technique described here,
their approach seeks to identify a configuration-
independent workload description with which to make
model-based performance predictions. This allows the
advisor to speculate about the impact of hypothetical
changes in the underlying resources. However, because
this approach relies on tracing a running database system,
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it has no means of speculating about the effects on the
resource workloads of hypothetical changes in the
database system workload or physical design. Our
approach does accommodate such analyses. There are
several tools that address the automation of storage
system design and management, though these are
somewhat less mature than production database physical
design advisors. Disk Array Designer [4] addresses the
problem of storage system configuration: which arrays to
define, how to configure each array, and how to lay out
application data to the arrays. Hippodrome [3] uses these
design tools to automate the management of a storage
system as the workloads change, using a measure,
analyze, reconfigure cycle. Similar design and automation
tools also exists for designing storage area networks [16]
(SANSs) that connect storage devices to servers, and for
designing data reliability solutions (e.g., backups, mirrors,
snapshots, etc) and configurations [8]. All of these storage
layer tools require storage workload characterizations, and
can directly take advantage of our storage workload
estimator.

5. CONCLUSION

We have presented a technique for estimating the storage
system workloads that are generated by database
management systems. Our technique generates storage
workload models in a form that is easily used by storage
administration tools, such as configuration advisors. We
have demonstrated the feasibility of this approach by
implementing it in Postgres. Our experimental results
suggest that the workload estimations produced by our
technique are sufficiently accurate to be useful for
predicting the performance of alternative storage
configurations. We expect the estimates to be of similar
use for other related tasks, such as capacity planning.
This is the first attempt that we are aware of to design
tools intended to improve the flow of information from the
database tier to the storage tier.
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