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Abstract: Modern storage systems are sophisticated. Simple direct attached storage devices are giving way to storage 

systems that are shared, flexible, virtualized and network-attached. Today, storage systems have their own administrators, 

who use specialized tools and expertise to configure and manage storage resources. Although the separation of storage 

management and database management has many advantages, it also introduces problems. Database physical design 

and storage configuration are closely related tasks, and the separation makes it more difficult to achieve a good end-toend 

design. In this paper, we attempt to close this gap by addressing the problem of predicting the storage workload that will 

be generated by a database management system. Specifically, we show how to translate a database workload description, 

together with a database physical design, into a characterization of the storage workload that will result. Such a 

characterization can be used by a storage administrator to guide storage configuration. The ultimate goal of this work is to 

enable effective end-to-end design and configuration spanning both the database and storage system tiers. We present an 

empirical assessment of the cost of workload prediction as well as the accuracy of the result.  

 

--------------------------♦-------------------------- 
 

1. INTRODUCTION 
 
The complexity of modern enterprise computing 
environments is prompting changes in the way that 
computing resources and the systems that depend on 
them are deployed and managed [6, 9, 12, 13, 19]. In the 
case of storage re-sources, simple, direct-attached 
storage devices are giving way to shared, flexible, 
virtualized, network-attached storage systems. 
Increasingly, storage resources are consolidated into a 
common pool, virtualized to accommodate individual 
application requirements, and shared by multiple 
enterprise applications, including database management 
systems (DBMS). Furthermore, storage resources are 
increasingly administered separately from the server 
infrastructure; storage administrators are expected to 
balance the requirements of multiple database systems 
and other storage clients. As a result, database 
administrators (DBAs) are no longer in direct control of the 
design and configuration of their database systems’ 
underlying storage resources. 
 
Managing the storage infrastructure is, like database 
administration, a complex task. A storage administrator 
(SA) has to configure storage arrays, create logical units 
at storage arrays, create logical volumes at servers, 
configure storage controllers and storage network 

switches with appropriate access credentials, and manage 
the ongoing usage of the storage devices to prevent 
bottlenecks or resource shortages. 
 
Configuration decisions made by the SA determine the 
performance, reliability, and capacity characteristics of the 
storage system as seen by the DBMS. To help SAs cope 
with the complexity of these tasks, researchers have 
developed storage management tools that can be used to 
automate storage design and configuration tasks [3, 4, 8, 
16]. Effective storage administration, whether manual or 
automatic, depends on knowledge of the storage system 
workload. However, accurate workload characterizations 
can be difficult to come by, particularly at initial 
configuration time. Often storage administrators must rely 
on rough workload “guesstimates”, perhaps informed by 
previous experience with other systems or general 
knowledge of the clients that the storage system is 
expected to support. Once the storage system is 
operational, workload characteristics can be observed. 
However, such observations are not a panacea: they may 
be expensive to obtain and use, they do not solve the 
initial configuration problems, and they are of no use in 
addressing “what if” questions. For example, a DBA may 
be considering a possible physical design change such as 
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the creation of an index. If created, this index would affect 
the I/O workload experienced by the underlying storage 
system. Direct observation of the current storage system 
workload does not by itself provide any guidance as to 
what the storage workload would look like if the index 
were added. 
 
In this paper, we attempt to close the information gap 
between the database tier and the storage tier by address-
ing the problem of predicting the storage workload that will 
be generated by a database management system. 
Specifically, we show how to translate a database 
workload description, together with a database physical 
design, into a characterization of the storage workload that 
will result. 

 
Figure 1: End-to-End Physical Design using Existing 
Design Advisers 
 
By estimating database systems’ storage workloads, we 
can provide storage administrators with information that 
they can use to make informed planning, design, and 
configuration decisions. In doing so, we enable end-to-end 
solutions to physical design and storage configuration 
problems. One example of this is shown in Figure 1, which 
illustrates how existing database physical design tools and 
storage configuration tools could be combined to 
determine both a database physical design and an 
appropriate storage configuration for a given database 
workload, while preserving the administrative autonomy of 
the database and storage tiers. With storage workload 
estimation, both the DBA and SA have sufficient 
information to address their part of the end-to-end design 
and configuration problem. 
 
2. PROBLEM FORMULATION 
In this section, we will define the problem of estimating 
storage workload characteristics given a specification of 
the database workload. To formulate this problem more 

precisely, we begin by defining what we mean by 
“database workload” and “storage workload”. 
 
2.1 Database Workload Model 
Existing relational database design tools typically expect 
the database workload to be defined as a set of SQL 
statements (queries and updates) along with some 
indication of the relative frequency of occurrence of each 
statement [2, 20]. We use a similar characterization of the 
database workload for our storage workload estimation 
problem, so that a single workload description can be used 
for both tasks. 
Specifically, we assume that the workload is characterized 
by a fixed set Q of SQL statements defined over a known 
database schema. We refer to each such statement as a 
query type. Each query type Qi has an associated weight fi 
which represents its prevalence in the workload. The 
proportion of queries of type Qi in the workload is given by  
 

 
 
This kind of database workload characterization describes 
the mix of queries and updates in the database workload. 
This is sufficient for tasks such as index selection, where 
the goal is to choose a set of indexes that will provide 
superior performance relative to the performance 
achievable using other sets of indexes. However, we 
would like our storage workload estimates to be useful for 
a variety of storage management tasks, including those 
that require information about absolute frequency of 
occurrence of the various queries. An example of such a 
task is capacity planning. To enable this, we also require 
that the database workload description include a 
specification of a target operating point for the database 
system. We use two parameters to characterize an 
operating point. The first is the total query throughput, 
denoted by _. The second is the query multiprogramming 
level, k, which describes the expected number of 
concurrently executing queries at any given time. 
 
Finally, since our storage workload estimator relies on the 
database system’s query optimizer, we require that 
optimizer be configured to behave as it would at the target 
operating point. In particular, database statistics should be 
available so that the query optimizer will choose 
appropriate query execution plans. Again, existing 
database administration tools have similar requirements 
for the availability of statistics, and some database 
systems support the definition of hypothetical database 
instances to support costbased “what if” analyses without 
the need to populate the hypothetical instance [5]. We 
assume that a database physical design has been 
selected, perhaps through the use of a physical design 
advisor [2, 20], and that the physical design is known to 
the query optimizer. We use D to represent the set of 
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physical database objects: tables, indexes, materialized 
views and so on. Figure 2 summarizes the database 
workload parameters. 
 
2.2  I/O Workload Model 
One way to characterize I/O workloads is to use a trace of 
I/O events, or a set of traces. Although traces are a very 
detailed and expressive way to describe storage 
workloads, they have some disadvantages. They are large 
and expensive to store and manipulate. Traces of 
database I/O workloads are also expensive to collect, as 
collection requires populat-ing the database and applying 
a realistic load. Trace-based workload descriptions cannot 
be used as input to analytical models of storage system 
behavior. 

 
Figure 2: Database Workload Model Parameters 
Finally, traces tend to be specific to a particular storage 
configuration, and difficult to generalize. It is prohibitively 
expensive to collect traces from multiple candidate 
storage configurations. Instead, we adopt a more abstract 
I/O workload model called the Rome model [18]. The 
Rome model is the unifying “glue” for a collection of 
storage management tools that support performance 
modeling, capacity planning, storage system design and 
configuration, and other tasks [3, 4, 16]. The Rome model 
is not specifically designed to model the I/O workloads 
generated by database management systems. It is a 
general purpose model intended to model storage 
workloads generated by any kind of storage client. Since 
shared, consolidated storage systems must accommodate 
workloads from a variety of clients, including databases, 
we believe that it is important to target a generic workload 
model. Doing so allows a storage administrator to 
aggregate workload descriptions from multiple storage 
applications. By targeting the Rome model in particular, 
we are also able to leverage existing Rome-based 
workload analysis and storage management tools. 
 
The Rome model views the storage system abstractly, as 
a set of stores. A store can be thought of as a virtual block 
storage device, disjoint from other stores, to which block 
read and write requests can be directed. The I/O workload 
directed to a store is represented by one or more 
concurrent streams. A stream consists of bursts of I/O 
request activity of duration ton interleaved with idle periods 

of duration  during which no requests occur. During 

each on-burst, read requests to the underlying store occur 

at rate  and write requests occur at rate . 
 
Each I/O request has a starting position (within the 
underlying store) and a size, or length, B. The starting 
position of each request is determined by a run length 
parameter L. Successive requests in a stream start where 
the previous request left off, until the total number of 
requests in the run reaches L. The next request then starts 
a new run, with a randomly chosen starting position. Thus, 
L = 1 models a random I/O request pattern, while larger 
values of L model sequentiality. Figure 3 summarizes the 
parameters associated with a Rome request stream. 
Together, these parameters describe the request stream 
properties that are important to the underlying storage 
modeling and management tools: request rates, read/write 
mix, burstiness, request size, and sequentiality. 
 
In addition to these per-stream properties, Rome also 
describes burst correlations, which model the amount of 
temporal overlap among the bursts of different streams. 
Given a set S of streams, Rome defines an |S|×|S| overlap 
matrix C. Entry C[i, j] in the overlap matrix describes the 
percentage of stream i’s burst period during which stream j 
is also active. 
 

 
 
Figure 3: I/O Request Stream Parameters in Rome 
 
Note that, as defined by the Rome model, the overlap 
matrix need not be symmetric. For example, consider two 
streams Si and Sj , with ton [i] = 100 and ton [j] = 10, for 
which Sj ’s bursts are completely contained within Si’s 
bursts. This will be described by C[i, j] = 10% and C[j, i] = 
100%. 
 
3. WORKLOAD ESTIMATION 
Figure 4 gives a high-level outline of our method of 
estimating a Rome I/O workload model. As described in 
Section 2.3, the output of this method is one set of Rome 
I/O model parameter values (as shown in Table 3) for 
each physical database object Dj 2 D. The model 
parameters for Dj describe the I/O workload that the 
DBMS is expected to apply to the stored representation of 
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that object. The method shown in Figure 4 consists of 
three phases. First, we generate an I/O request sequence 
corresponding to each query type in the database 
workload (Figure 4 lines 1-4). Second, we merge those 
individual sequences into a single I/O request trace, which 
we call the representative I/O trace for the given database 
workload and operating point (line 5). Finally, we project 
each physical object’s requests from the representative 
trace and fit the Rome stream parameters to the projected 
trace (lines 6-9). In the remainder of this section, we 
describe each of these phases in more detail. 
 
3.1 Estimating Query Request Sequences 
An I/O request sequence is an ordered list of records, 
each of which describes a single I/O operation. 
Specifically, each record consists of the following fields: 
physical object identifier, starting offset within the physical 
object, request length, and request type (read or write). 
Note that, in Figure 4, we have distinguished request 
sequences from request traces. A request trace differs 
from a request sequence in that the former includes timing 
information for each I/O operation, while the latter does 
not. 
The first phase of the storage workload estimation process 
is to predict a separate I/O request sequence for each 
type of query in the database workload. These request 
sequences describe the I/O behavior of a single query 
running in isolation. Figure 5 summarizes our approach. 
To obtain these sequences, we perform a data-free 
simulation of the control flow of each query’s execution 
plan. During the data-free simulation of a plan, the plan 
operators generate I/O records describing any I/O 
operations that they would have generated during a 
normal plan execution. 
 
However, they do not actually generate the I/O operations. 
These I/O records are concatenated to form the I/O 
request sequence for the query. 
 
When a query plan is actually executed by the database 
system, its control flow depends on the data that is flowing 
through the plan. During our data-free simulation, we 
neither retrieve the data nor flow the data through the 
plan. The simulation relies instead on the cardinality 
estimates produced by the query optimizer to approximate 
the control flow that would have occurred during an actual 
execution of the plan. For example, for a tuple-oriented 
nested loop join, we use the optimizer’s estimate of the 
cardinalities of the inner and outer relations and its 
estimate of the join selectivity to estimate the number of 
times that the join operator’s left and right children in the 

plan will be asked to produce 
 
data. The simulation also relies on some operator-specific 
optimizer assumptions. For example, a sort operation is 
assumed to create initial runs that are twice the size of the 
working memory available for the sort. 

 
Figure 5: Generating I/O Request Sequences 
By performing the data-free simulations, we hope to 
capture several important properties of the I/O workload 
that will be generated by queries of each type. First, the 
resulting I/O sequences will contain the correct numbers of 
I/O requests for each physical database object used by the 
query, up to the accuracy of the query optimizer’s 
cardinality estimates and our own simplifying assumptions 
in the simulation. 
Second, the I/O request sequences will distinguish 
sequential and random I/O, based on the type of operator 
that is generating the requests, as well as information from 
the database catalogue. For example, a table scan of a 
relation will generate sequential requests, while an index 
scan of the same relation using an uncorrelated secondary 
index will generate random requests. Finally, the 
sequence will capture the interleaving of requests for the 
various physical database objects used by the query plan. 
For example, the simulation understands that a hash join 
will first retrieve the entire build input and then retrieve the 
entire probe input, resulting to non-interleaved access to 
the physical objects that provide the build and probe 
inputs. Conversely, a nested loop join will result in 
interleaved accesses to the inner and outer inputs. 
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Figure 6: Data-Free Simulation of Postgres Plan 
Operators. In the diagram, operators are annotated with 
the names of state variables maintained by the simulation. 
Operator inputs and outputs are annotated with the names 
of Postgres optimizer statistics and configuration 
parameters that are used by the simulator. 
 
Our implementation of data-free simulation is embodied in 
a modified version of Postgres. In our version of Postgres, 
there are 18 different operators that may appear in 
execution plans. Our plan simulator handles most aspects 
of these operator types. One limitation of our current 
implementation is that certain kinds of SQL subqueries 
(those that result in query-valued qualifiers in plan nodes) 
are not handled. This is a restriction of our current 
prototype, not a fundamental restriction. We do not have 
space here to present the entire simulator. However, 
Figure 6 illustrates the simulation for three of the Postgres 
operators: sequential scan, index scan, and nested loop 
join. 
 
Note that data-free simulation of a query plan is generally 
much faster than the actual execution of the plan. This is 
because the simulation does not retrieve any stored data, 
does not flow these data through the plan operators, and 
does not generate any intermediate or final query results. 
More information about the cost of data-free simulation is 

given in Section 4.4. 
 
3.2 Generating the Representative Trace 
The I/O request sequences generated in the first phase 
capture the I/O workload characteristics of a single 
workload query running in isolation. In the second phase, 
we generate a representative I/O trace that describes the 
aggregate storage workload of the entire database 
workload. The generation of the representative I/O trace 
adds three kinds of information to the individual query 
request sequences. First, since representative I/O trace 
describes the aggregate storage workload generated by 
the database system, it reflects the mixture and frequency 
of the various types of queries that make up the database 
workload. Second, it accounts for the effect of the 
database system’s buffer cache on the aggregate I/O 
stream. Finally, unlike the perquery request sequences, 
the representative trace incorporates timing information in 
the form of an arrival timestamp for each I/O request. 
These timestamps reflect the I/O request throughput that 
will be required to support the database system at the 
specified operating point. 
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Figure 7: Generating the Representative I/O Trace 
 
Figure 7 summarizes the process of generating the 
representative I/O trace. We use a simple probabilistic 
operational model of the database system to generate a 
merged I/O sequence from the per-query I/O sequences 
obtained in the first phase. The database system is 
assumed to have a fixed query multiprogramming level k 
at the target operating point. k is specified as a workload 
parameter (see Figure 2). To generate a merged I/O 
sequence, k query types are selected at random, with 
query type i selected with probability proportional to fi. The 
I/O sequences for the selected query types are then 
round-robin merged to produce a single request 
sequence. When one of the per-query sequences is 
exhausted during the merger, another query type is 
selected and its I/O sequence replaces the exhausted 
one. This generative process continues until a specified 
number of per-query I/O sequences have been merged. 
 
As the merged request sequence is formed, we apply it to 
a DBMS-specific buffer cache model. To model the buffer 
cache, we are currently using a simulation of the 2Q 
cache replacement algorithm [7] that is used by Postgres. 
This simulation is parameterized by the buffer cache size. 
The effect of the simulation is to remove from the request 
sequence any I/O requests that hit the (simulated) buffer 
cache. Finally, we associate timing information with each 
remaining I/O request in the sequence to produce the 
representative I/O trace. To do this, we use the query 
throughput _ that is supplied as a parameter to the 
workload estimation process. We first translate query 
throughput to I/O throughput by multiplying query 
throughput by the expected number of I/O requests per 
query: 

 
where Ni is the cache-corrected length of I/O request 
sequence (from phase 1) for query type Qi. The jth request 
in the representative I/O trace is assigned an arrival time 
of j/_io. This reflects the requirement that the necessary 
query throughput at the target operating point be satisfied 
by a storage system capable of handling I/O requests at 
this rate. 
 
4. RELATED WORK 
In the database tier, a variety of tools are available to 
address various aspects of the database physical design 
problem, such as choosing indexes and materialized views 
[2, 20] and partitioning relations [2, 11]. These tools 
typically expect as input a database workload description 
similar to the one that is expected by our estimation 
technique. These tools are complementary to the workload 
estimation technique described in this paper. Agrawal, 
Chaudhuri, Das, and Narasayya addressed the problem of 
automating the layout of relational databases on a given 
set of storage devices [1]. Internally, their solution uses an 
access graph to characterize the I/O resulting from a given 
database workload. The graph describes estimated 
number of I/Os to each DB object and edge weights that 
characterize co-access (similar to our overlap matrix C in 
our Rome-based descriptions). This is a less expressive 
model than the one we have used. For example, it makes 
no distinction between sequential and random I/O to an 
object and no distinction between reads and writes. More 
significantly, that work views storage layout as a a 
database administration problem. In contrast, our goal is to 
generate accurate database workload characterization to 
enable storage administrators to make informed decisions 
about layout and other related problems. Wasserman, 
Martin, Skillcorn and Rizvi [17] describe a workload 
characterization approach for database systems. 
They characterize according to several resource-related 
attributes, such as CPU consumption and sequential and 
random I/O rates, as well as other properties such as join 
degree. Our workload characterizations are more detailed, 
and they do not contain DBMS-specific attributes, such as 
join degree, that are not meaningful to the storage tier. 
Narayanan, Thereska and Ailamaki describe a database 
resource advisor for predicting transaction response times 
and throughput based on end-to-end tracing [10]. Their 
technique relies on instrumentation and tracing of live 
database systems. Like the technique described here, 
their approach seeks to identify a configuration-
independent workload description with which to make 
model-based performance predictions. This allows the 
advisor to speculate about the impact of hypothetical 
changes in the underlying resources. However, because 
this approach relies on tracing a running database system, 
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it has no means of speculating about the effects on the 
resource workloads of hypothetical changes in the 
database system workload or physical design. Our 
approach does accommodate such analyses. There are 
several tools that address the automation of storage 
system design and management, though these are 
somewhat less mature than production database physical 
design advisors. Disk Array Designer [4] addresses the 
problem of storage system configuration: which arrays to 
define, how to configure each array, and how to lay out 
application data to the arrays. Hippodrome [3] uses these 
design tools to automate the management of a storage 
system as the workloads change, using a measure, 
analyze, reconfigure cycle. Similar design and automation 
tools also exists for designing storage area networks [16] 
(SANs) that connect storage devices to servers, and for 
designing data reliability solutions (e.g., backups, mirrors, 
snapshots, etc) and configurations [8]. All of these storage 
layer tools require storage workload characterizations, and 
can directly take advantage of our storage workload 
estimator. 
 
5. CONCLUSION 
We have presented a technique for estimating the storage 
system workloads that are generated by database 
management systems. Our technique generates storage 
workload models in a form that is easily used by storage 
administration tools, such as configuration advisors. We 
have demonstrated the feasibility of this approach by 
implementing it in Postgres. Our experimental results 
suggest that the workload estimations produced by our 
technique are sufficiently accurate to be useful for 
predicting the performance of alternative storage 
configurations. We expect the estimates to be of similar 
use for other related tasks, such as capacity planning. 
This is the first attempt that we are aware of to design 
tools intended to improve the flow of information from the 
database tier to the storage tier. 
, 
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