
Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 1 

E-Mail: ignitedmoffice@gmail.com 

A Comparison study of Different type of 

Data Analysis 
 

 

Ravinder Singh 

Research Scholar, Manav Bharti University, H.P., INDIA 

 

ABSTRACT: There is currently considerable enthusiasm around the MapReduce (MR) paradigm for large-scale data 
analysis. Although the basic control flow of this framework has existed in parallel SQL database management systems 
(DBMS) for over 20 years, some have called MR a dramatically new computing model. In this paper, we describe and 
compare both paradigms. Furthermore, we evaluate both kinds of systems in terms of performance and development 
complexity. To this end, we define a benchmark consisting of a collection of tasks that we have run on an open source 
version of MR as well as on two parallel DBMSs. For each task, we measure each system’s performance for various 
degrees of parallelism on a cluster of 100 nodes. Our results reveal some interesting trade-offs. Although the process to 
load data into and tune the execution of parallel DBMSs took much longer than the MR system, the observed 
performance of these DBMSs was strikingly better. We speculate about the causes of the dramatic performance 
difference and consider implementation concepts that future systems should take from both kinds of architectures 

 

------------------------------------------♦------------------------------------- 
 

1. INTRODUCTION 

Recently the trade press has been filled with news of the 

revolution of “cluster computing”. This paradigm entails 

harnessing large numbers of (low-end) processors working 

in parallel to solve a computing problem. In effect, this 

suggests constructing a data center by lining up a large 

number of low-end servers instead of deploying a smaller 

set of high-end servers. With this rise of interest in clusters 

has come a proliferation of tools for programming them. 

One of the earliest and best known such tools in 

MapReduce (MR) [8]. MapReduce is attractive because it 

provides a simple model through which users can express 

relatively sophisticated distributed programs, leading to 

significant interest in the educational community. For 

example, IBM and Google have announced plans to make 

a 1000 processor MapReduce cluster available to teach 

students distributed programming. 

Given this interest in MapReduce, it is natural to ask “Why 

not use a parallel DBMS instead?” Parallel database 

systems (which all share a common architectural design) 

have been commercially available for nearly two decades, 

and there are now about a dozen in the marketplace, 

including Teradata, Aster Data, Netezza, DATAllegro (and 

therefore soon Microsoft SQL Server via Project Madison), 

Dataupia, Vertica, ParAccel, Neoview, Greenplum, DB2 

(via the Database Partitioning Feature), and Oracle (via 

Exadata). They are robust, high performance computing 

platforms. Like MapReduce, they provide a high-level 

programming environment and parallelize readily. Though 

it may seem thatMR and parallel databases target different 

audiences, it is in fact possible to write almost any parallel 

processing task as either a set of database queries 

(possibly using user defined functions and aggregates to 

filter and combine data) or a set ofMapReduce jobs. 

Inspired by this question, our goal is to understand the 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 2 

E-Mail: ignitedmoffice@gmail.com 

differences between the MapReduce approach to 

performing large-scale data analysis and the approach 

taken by parallel database systems. The two classes of 

systems make different choices in several key areas. For 

example, all DBMSs require that data conform to a well-

defined schema, whereas MR permits data to be in any 

arbitrary format. Other differences also include how each 

system provides indexing and compression optimizations, 

programming models, the way in which data is distributed, 

and query execution strategies. 

The purpose of this paper is to consider these choices, and 

the trade-offs that they entail. We begin in Section 2 with a 

brief review of the two alternative classes of systems, 

followed by a discussion in Section 3 of the architectural 

trade-offs. Then, in Section 4 we present our benchmark 

consisting of a variety of tasks, one taken from the MR 

paper [8], and the rest a collection of more demanding 

tasks. In addition, we present the results of running the 

benchmark on a 100-node cluster to execute each task. 

We tested the publicly available open-source version of 

MapReduce, Hadoop [1], against two parallel SQL DBMSs, 

Vertica [3] and a second system from a major relational 

vendor. We also present results on the time each system 

took to load the test data and report informally on the 

procedures needed to set up and tune the software for 

each task. 

In general, the SQL DBMSs were significantly faster and 

required less code to implement each task, but took longer 

to tune and load the data. Hence, we conclude with a 

discussion on the reasons for the differences between the 

approaches and provide suggestions on the best practices 

for any large-scale data analysis engine. 

Some readers may feel that experiments conducted using 

100 nodes are not interesting or representative of real 

world data processing systems. We disagree with this 

conjecture on two points. First, as we demonstrate in 

Section 4, at 100 nodes the two parallel DBMSs range 

from a factor of 3.1 to 6.5 faster than MapReduce on a 

variety of analytic tasks. While MR may indeed be capable 

of scaling up to 1000s of nodes, the superior efficiency of 

modern DBMSs alleviates the need to use such massive 

hardware on datasets in the range of 1–2PB (1000 nodes 

with 2TB of disk/node has a total disk capacity of 2PB). For 

example, eBay’s Teradata configuration uses just 72 nodes 

(two quad-core CPUs, 32GB RAM, 104 300GB disks per 

node) to manage approximately 2.4PB of relational data. 

As another example, Fox Interactive Media’s warehouse is 

implemented using a 40-node Greenplum DBMS. Each 

node is a Sun X4500 machine with two dual-core CPUs, 48 

500GB disks, and 16 GB RAM (1PB total disk space) [7]. 

Since few data sets in the world even approach a petabyte 

in size, it is not at all clear how many MR users really need 

1,000 nodes. 

2. TWO APPROACHES TO LARGE SCALE 

DATA ANALYSIS 

The two classes of systems we consider in this paper run 

on a “shared nothing” collection of computers [19]. That is, 

the system is deployed on a collection of independent 

machines, each with local disk and local main memory, 

connected together on a highspeed local area network. 

Both systems achieve parallelism by dividing any data set 

to be utilized into partitions, which are allocated to different 

nodes to facilitate parallel processing. In this section, we 

provide an overview of how both the MR model and 

traditional parallel DBMSs operate in this environment. 

2.1 MapReduce 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 3 

E-Mail: ignitedmoffice@gmail.com 

One of the attractive qualities about the MapReduce 

programming model is its simplicity: an MR program 

consists only of two functions, called Map and Reduce, that 

are written by a user to process key/value data pairs. The 

input data set is stored in a collection of partitions in a 

distributed file system deployed on each node in the 

cluster. The program is then injected into a distributed 

processing framework and executed in a manner to be 

described. 

The Map function reads a set of “records” from an input 

file, does any desired filtering and/or transformations, and 

then outputs a set of intermediate records in the form of 

new key/value pairs. As the Map function produces these 

output records, a “split” function partitions the records into 

R disjoint buckets by applying a function to the key of each 

output record. This split function is typically a hash 

function, though any deterministic function will suffice. 

Each map bucket is written to the processing node’s local 

disk. The Map function terminates having produced R 

output files, one for each bucket. In general, there are 

multiple instances of the Map function running on different 

nodes of a compute cluster. We use the term instance to 

mean a unique running invocation of either the Map or 

Reduce function. Each Map instance is assigned a distinct 

portion of the input file by the MR scheduler to process. If 

there are M such distinct portions of the input file, then 

there are R files on disk storage for each of the M Map 

tasks, for a total of M × R files; 

 The key observation is that 

all Map instances use the same hash function; thus, all 

output records with the same hash value are stored in the 

same output file. 

The second phase of a MR program executes R instances 

of the Reduce program, where R is typically the number of 

nodes. The input for each Reduce instance Rj consists of 

the files  These files are transferred over 

the network from the Map nodes’ local disks. Note that 

again all output records from the Map phase with the same 

hash value are consumed by the same Reduce instance, 

regardless of whichMap instance produced the data. Each 

Reduce processes or combines the records assigned to it 

in some way, and then writes records to an output file (in 

the distributed file system), which forms part of the 

computation’s final output. 

2.2 Parallel DBMSs 

Database systems capable of running on clusters of 

shared nothing nodes have existed since the late 1980s. 

These systems all support standard relational tables and 

SQL, and thus the fact that the data is stored on multiple 

machines is transparent to the end-user. 

Many of these systems build on the pioneering research 

from the Gamma [10] and Grace [11] parallel DBMS 

projects. The two key aspects that enable parallel 

execution are that (1) most (or even all) tables are 

partitioned over the nodes in a cluster and that (2) the 

system uses an optimizer that translates SQL commands 

into a query plan whose execution is divided amongst 

multiple nodes. Because programmers only need to specify 

their goal in a high level language, they are not burdened 

by the underlying storage details, such as indexing options 

and join strategies. 

Consider a SQL command to filter the records in a table T1 

based on a predicate, along with a join to a second table T2 

with an aggregate computed on the result of the join. A 

basic sketch of how this command is processed in a 

parallel DBMS consists of three phases. 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 4 

E-Mail: ignitedmoffice@gmail.com 

Since the database will have already stored T1 on some 

collection of the nodes partitioned on some attribute, the 

filter sub-query is first performed in parallel at these sites 

similar to the filtering performed in a Map function. 

Following this step, one of two common parallel join 

algorithms are employed based on the size of data tables. 

3. ARCHITECTURAL ELEMENTS 

In this section, we consider aspects of the two system 

architectures that are necessary for processing large 

amounts of data in a distributed environment. One theme 

in our discussion is that the nature of the MR model is well 

suited for development environments with a small number 

of programmers and a limited application domain. This lack 

of constraints, however, may not be appropriate for longer-

term and larger-sized projects. 

3.1 Schema Support 

Parallel DBMSs require data to fit into the relational 

paradigm of rows and columns. In contrast, the MR model 

does not require that data files adhere to a schema defined 

using the relational data model. That is, the MR 

programmer is free to structure their data in any manner or 

even to have no structure at all. 

One might think that the absence of a rigid schema 

automatically makes MR the preferable option. For 

example, SQL is often criticized for its requirement that the 

programmer must specify the “shape” of the data in a data 

definition facility. On the other hand, the MR programmer 

must often write a custom parser in order to derive the 

appropriate semantics for their input records, which is at 

least an equivalent amount of work. But there are also 

other potential problems with not using a schema for large 

data sets. 

Whatever structure exists in MR input files must be built 

into the Map and Reduce programs. Existing MR 

implementations provide built-in functionality to handle 

simple key/value pair formats, but the programmer must 

explicitly write support for more complex data structures, 

such as compound keys. This is possibly an acceptable 

approach if a MR data set is not accessed by multiple 

applications. If such data sharing exists, however, a 

second programmer must decipher the code written by the 

first programmer to decide how to process the input file. A 

better approach, followed by all SQL DBMSs, is to 

separate the schema from the application and store it in a 

set of system catalogs that can be queried. 

But even if the schema is separated from the application 

and made available to multiple MR programs through a 

description facility, the developers must also agree on a 

single schema. This obviously requires some commitment 

to a data model or models, and the input files must obey 

this commitment as it is cumbersome to modify data 

attributes once the files are created. 

3.2 Indexing 

All modern DBMSs use hash or B-tree indexes to 

accelerate access to data. If one is looking for a subset of 

records (e.g., employees with a salary greater than 

$100,000), then using a proper index reduces the scope of 

the search dramatically. Most database systems also 

support multiple indexes per table. Thus, the query 

optimizer can decide which index to use for each query or 

whether to simply perform a brute-force sequential search. 

3.3 Programming Model 

During the 1970s, the database research community 

engaged in a contentious debate between the relational 

advocates and the Codasyl advocates [18]. The salient 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 5 

E-Mail: ignitedmoffice@gmail.com 

issue of this discussion was whether a program to access 

data in a DBMS should be written either by:  

1. Stating what you want – rather than presenting an 

algorithm for how to get it (Relational) 

2. Presenting an algorithm for data access (Codasyl) 

4. DISCUSSION 

We now discuss broader issues about the benchmark 

results and comment on particular aspects of each system 

that the raw numbers may not convey. In the benchmark 

above, both DBMS-X and Vertica execute most of the 

tasks much faster than Hadoop at all scaling levels. The 

next subsections describe, in greater detail than the 

previous section, the reasons for this dramatic 

performance difference. 

4.1 System-level Aspects 

In this section, we describe how architectural decisions 

made at the system-level affect the relative performance of 

the two classes of data analysis systems. Since installation 

and configuration parameters can have a significant 

difference in the ultimate performance of the system, we 

begin with a discussion of the relative ease with which 

these parameters are set. Afterwards, we discuss some 

lower level implementation details. While some of these 

details affect performance in fundamental ways (e.g., the 

fact that MR does not transform data on loading precludes 

various I/O optimizations and necessitates runtime parsing 

which increases CPU costs), others are more 

implementation specific (e.g., the high start-up cost of MR). 

4.1.1 System Installation, Configuration, and Tuning 

We were able to get Hadoop installed and running jobs 

with little effort. Installing the system only requires setting 

up data directories on each node and deploying the system 

library and configuration files. Configuring the system for 

optimal performance was done through trial and error. We 

found that certain parameters, such as the size of the sort 

buffers or the number of replicas, had no affect on 

execution performance, whereas other parameters, such 

as using larger block sizes, improved performance 

significantly. 

The DBMS-X installation process was relatively 

straightforward. A GUI leads the user through the initial 

steps on one of the cluster nodes, and then prepares a file 

that can be fed to an installer utility in parallel on the other 

nodes to complete the installation. Despite this simple 

process, we found that DBMS-X was complicated to 

configure in order to start running queries. Initially, we were 

frustrated by the failure of anything but the most basic of 

operations. We eventually discovered each node’s kernel 

was configured to limit the total amount of allocated virtual 

address space. When this limit was hit, new processes 

could not be created and DBMS-X operations would fail. 

We mention this even though it was our own administrative 

error, as we were surprised that DBMS-X’s extensive 

system probing and self-adjusting configuration was not 

able to detect this limitation. 

4.1.2 Task Start-up 

We found that our MR programs took some time before all 

nodes were running at full capacity. On a cluster of 100 

nodes, it takes 10 seconds from the moment that a job is 

submitted to the JobTracker before the first Map task 

begins to execute and 25 seconds until all the nodes in the 

cluster are executing the job. This coincides with the 

results in [8], where the data processing rate does not 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 6 

E-Mail: ignitedmoffice@gmail.com 

reach its peak for nearly 60 seconds on a cluster of 1800 

nodes. The “cold start” nature is symptomatic to Hadoop’s 

(and apparently Google’s) implementation and not inherent 

to the actual MR model itself. For example, we also found 

that prior versions of Hadoop would create a new JVM 

process for each Map and Reduce instance on a node, 

which we found increased the overhead of running jobs on 

large data sets; enabling the JVM reuse feature in the 

latest version of Hadoop improved our results for MR by 

10–15%.  

4.1.3 Compression 

Almost every parallel DBMS (including DBMS-X and 

Vertica) allows for optional compression of stored data. It is 

not uncommon for compression to result in a factor of 6–10 

space savings. Vertica’s internal data representation is 

highly optimized for data compression and has an 

execution engine that operates directly on compressed 

data (i.e., it avoids decompressing the data during 

processing whenever possible). In general, since analysis 

tasks on large data sets are often I/O bound, trading CPU 

cycles (needed to decompress input data) for I/O 

bandwidth (compressed data means that there is less data 

to read) is a good strategy and translates to faster 

execution. In situations where the executor can operate 

directly on compressed data, there is often no trade-off at 

all and compression is an obvious win. 

Hadoop and its underlying distributed filesystem support 

both block-level and record-level compression on input 

data. We found, however, that neither technique improved 

Hadoop’s performance and in some cases actually slowed 

execution. It also required more effort on our part to either 

change code or prepare the input data. It should also be 

noted that compression was also not used in the original 

MR benchmark [8]. 

4.1.4 Loading and Data Layout 

Parallel DBMSs have the opportunity to reorganize the 

input data file at load time. This allows for certain 

optimizations, such as storing each attribute of a table 

separately (as done in column-stores such as Vertica). For 

read-only queries that only touch a subset of the attributes 

of a table, this optimization can improve performance by 

allowing the attributes that are not accessed by a particular 

query to be left on disk and never read. Similar to the 

compression optimization described above, this saves 

critical I/O bandwidth. MR systems by default do not 

transform the data when it is loaded into their distributed 

file system, and thus are unable to change the layout 

of input data, which precludes this class of optimization 

opportunities.  

4.1.5 Execution Strategies 

As noted earlier, the query planner in parallel DBMSs are 

careful to transfer data between nodes only if it is 

absolutely necessary. This allows the systems to optimize 

the join algorithm depending on the characteristics of the 

data and perform push-oriented messaging without writing 

intermediate data sets. Over time, MR advocates should 

study the techniques used in parallel DBMSs and 

incorporate the concepts that are germane to their model. 

In doing so, we believe that again the performance of MR 

frameworks will improve dramatically. 

4.1.6 Failure Model 

As discussed previously, while not providing support for 

transactions, MR is able to recover from faults in the 

middle of query execution in a way that most parallel 

database systems cannot. Since parallel DBMSs will be 

deployed on larger clusters over time, the probability of 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 7 

E-Mail: ignitedmoffice@gmail.com 

mid-query hardware failures will increase. Thus, for long 

running queries, it may be important to implement such a 

fault tolerance model. While improving the fault-tolerance 

of DBMSs is clearly a good idea, we are wary of devoting 

huge computational clusters and “brute force” approaches 

to computation when sophisticated software would could 

do the same processing with far less hardware and 

consume far less energy, or in less time, thereby obviating 

the need for a sophisticated fault tolerance model. A 

multithousand-node cluster of the sort Google, Microsoft, 

and Yahoo! run uses huge amounts of energy, and as our 

results show, for many data processing tasks a parallel 

DBMS can often achieve the same performance using far 

fewer nodes. As such, the desirable approach is to use 

high-performance algorithms with modest parallelism 

rather than brute force approaches on much larger 

clusters. 

4.2 User-level Aspects 

A data processing system’s performance is irrelevant to a 

user or an organization if the system is not usable. In this 

section, we discuss aspects of each system that we 

encountered from a userlevel perspective while conducting 

the benchmark study that may promote or inhibit 

application development and adoption. 

4.2.1 Ease of Use 

Once the system is on-line and the data has been loaded, 

the programmer then begins to write the query or the code 

needed to perform their task. Like other kinds of 

programming, this is often an 

iterative process: the programmer writes a little bit of code, 

tests it, and then writes some more. The programmer can 

easily determine whether his/her code is syntactically 

correct in both types of systems: the MR framework can 

check whether the user’s code compiles and the SQL 

engines can determine whether the queries parse 

correctly. Both systems also provide runtime support to 

assist users in debugging their programs. 

It is also worth considering the way in which the 

programmer writes the query. MR programs in Hadoop are 

primarily written in Java (though other language bindings 

exist). Most programmers are more familiar with object-

oriented, imperative programming than with other language 

technologies, such as SQL. That said, SQL is taught in 

many undergraduate programs and is fairly portable – we 

were able to share the SQL commands between DBMS-X 

and Vertica with only minor modifications. 

4.2.2 Additional Tools 

Hadoop comes with a rudimentary web interface that 

allows the user to browse the contents of the distributed 

filesystemand monitor the execution of jobs. Any additional 

tools would most likely at this time have to be developed in 

house. 

SQL databases, on the other hand, have tons of existing 

tools and applications for reporting and data analysis. 

Entire software industries have developed around 

providing DBMS users with third-party extensions. The 

types of software that many of these tools include (1) data 

visualization, (2) business intelligence, (3) data mining, (4) 

data replication, and (5) automatic database design. 

Because MR technologies are still nascent, the market for 

such software for MR is limited; however, as the user base 

grows, many of the existing SQL-based tools will likely 

support MR systems. 

5. CONCLUSION 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 8 

E-Mail: ignitedmoffice@gmail.com 

There are a number of interesting conclusions that can be 

drawn from the results presented in this paper. First, at the 

scale of the experiments we conducted, both parallel 

database systems displayed a significant performance 

advantage over Hadoop MR in executing a variety of data 

intensive analysis benchmarks. Averaged across all five 

tasks at 100 nodes, DBMS-X was 3.2 times faster than MR 

and Vertica was 2.3 times faster than DBMS-X.While we 

cannot verify this claim, we believe that the systems would 

have the same relative performance on 1,000 nodes (the 

largest Teradata configuration is less than 100 nodes 

managing over four petabytes of data). The dual of these 

numbers is that a parallel database system that provides 

the same response time with far fewer processors will 

certainly uses far less energy; theMapReduce model on 

multi-thousand node clusters is a brute force solution that 

wastes vast amounts of energy. While it is rumored that the 

Google version of MR is faster than the Hadoop version, 

we did not have access to this code and hence could not 

test it. We are doubtful again, however, that there would be 

a substantial difference in the performance of the two 

versions as MR is always forced to start a query with a 

scan of the entire input file. 

This performance advantage that the two database 

systems share is the result of a number of technologies 

developed over the past 25 years, including (1) B-tree 

indices to speed the execution of selection operations, (2) 

novel storage mechanisms (e.g., columnorientation), (3) 

aggressive compression techniques with ability to operate 

directly on compressed data, and (4) sophisticated parallel 

algorithms for querying large amounts of relational data. In 

the case of a column-store database like Vertica, only 

those columns that are needed to execute a query are 

actually read from disk. Furthermore, the column-wise 

storage of data results in better compression factors 

(approximately a factor of 2.0 for Vertica, versus a factor of 

1.8 for DBMS-X and 1.25 for Hadoop); this also further 

reduces the amount of disk I/O that is performed to 

execute a query. 

Extensibility was another area where we found the 

database systems we tested lacking. Extending a DBMS 

with user-defined types and functions is an idea that is now 

25 years old [16]. Neither of the parallel systems we tested 

did a good job on the UDF aggregation tasks, forcing us to 

find workarounds when we encountered limitations (e.g., 

Vertica) and bugs (e.g., DBMS-X). 

While all DB systems are tolerant of a wide variety of 

software failures, there is no question that MR does a 

superior job of minimizing the amount of work that is lost 

when a hardware failure occurs. This capability, however, 

comes with a potentially large performance penalty, due to 

the cost of materializing the intermediate files between the 

map and reduce phases. Left unanswered is how 

significant this performance penalty is. Unfortunately, to 

investigate this question properly requires implementing 

both the materialization and no-materialization strategies in 

a common framework, which is an effort beyond the scope 

of this paper. Despite a clear advantage in this domain, it is 

not completely clear how significant a factor Hadoop’s 

ability to tolerate failures during execution really is in 

practice. In addition, if a MR system needs 1,000 nodes to 

match the performance of a 100 node parallel database 

system, it is ten times more likely that a node will fail while 

a query is executing. 

 

Computing this in parallel requires producing a total order 

of all employees followed by a second phase in which each 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 9 

E-Mail: ignitedmoffice@gmail.com 

node adjusts the rank values of its records with the counts 

of the number of records on each node to its “left” (i.e., 

those nodes with salary values that are strictly smaller). 

Although aMR program could perform this sort in parallel, it 

is not easy to fit this query into the MR paradigm of group 

by aggregation. RANK is just one of the many powerful 

analytic functions provided by modern parallel database 

systems. For example, both Teradata and Oracle support a 

rich set of functions, such as functions over windows of 

ordered records. 

Two architectural differences are likely to remain in the 

long run. MR makes a commitment to a “schema later” or 

even “schema never” paradigm. But this lack of a schema 

has a number of important consequences. Foremost, it 

means that parsing records at run time is inevitable, in 

contrast to DBMSs, which perform parsing at load time. 

This difference makes compression less valuable in MR 

and causes a portion of the performance difference 

between the two classes of systems. Without a schema, 

each user must write a custom parser, complicating 

sharing data among multiple applications. Second, a 

schema is needed for maintaining information that is critical 

for optimizing declarative queries, including what indices 

exist, how tables are partitioned, table cardinalities, and 

histograms that capture the distribution of values within a 

column. 

In our opinion there is a lot to learn from both kinds of 

systems. Most importantly is that higher level interfaces, 

such as Pig [15], Hive [2], are being put on top of the MR 

foundation, and a number of tools similar in spirit but more 

expressive than MR are being developed, such as Dryad 

[13] and Scope [5]. This will make complex tasks easier to 

code in MR-style systems and remove one of the big 

advantages of SQL engines, namely that they take much 

less code on the tasks in our benchmark. For parallel 

databases, we believe that both commercial and open-

source systems will dramatically improve the parallelization 

of user-defined functions. Hence, the APIs of the two 

classes of systems are clearly moving toward each other. 

Early evidence of this is seen in the solutions for 

integrating SQL with MR offered by Greenplum and 

Asterdata. 

6. REFERENCES 

[1]  Hadoop. http://hadoop.apache.org/. 

[2]  Hive. http://hadoop.apache.org/hive/. 

[3]  Vertica. http://www.vertica.com/. 

[4]  Y. Amir and J. Stanton. The Spread Wide Area 

Group Communication System. Technical report, 

1998. 

[5]  R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, 

D. Shakib, S. Weaver, and J. Zhou. Scope: easy 

and efficient parallel processing of massive data 

sets. Proc. VLDB Endow., 1(2):1265–1276, 2008. 

[6]  Cisco Systems. Cisco Catalyst 3750-E Series 

Switches Data Sheet, June 2008. 

[7]  J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, 

and C. Welton. MAD Skills: New Analysis Practices 

for Big Data. Under Submission, March 2009. 

[8]  J. Dean and S. Ghemawat. MapReduce: Simplified 

Data Processing on Large Clusters. In OSDI ’04, 

pages 10–10, 2004. 

[9]  D. J. DeWitt and R. H. Gerber. Multiprocessor 

Hash-based Join Algorithms. In VLDB ’85, pages 

151–164, 1985. 



Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 10 

E-Mail: ignitedmoffice@gmail.com 

[10]  D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. 

Heytens, K. B. Kumar, and M. Muralikrishna. 

GAMMA - A High Performance Dataflow Database 

Machine. In VLDB ’86, pages 228–237, 1986. 

[11]  S. Fushimi, M. Kitsuregawa, and H. Tanaka. An 

Overview of The System Software of A Parallel 

Relational Database Machine. In VLDB ’86, pages 

209–219, 1986. 

[12]  S. Ghemawat, H. Gobioff, and S.-T. Leung. The 

Google File System. SIGOPS Oper. Syst. Rev., 

37(5):29–43, 2003. 

[13]  M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. 

Fetterly. Dryad: Distributed Data-parallel Programs 

from Sequential Building Blocks. In EuroSys ’07, 

pages 59–72, 2007. 

[14]  E. Meijer, B. Beckman, and G. Bierman. LINQ: 

reconciling object, relations and XML in the .NET 

framework. In SIGMOD ’06, pages 706–706, 2006. 

[15]  C. Olston, B. Reed, U. Srivastava, R. Kumar, and 

A. Tomkins. Pig Latin: A Not-So-Foreign Language 

for Data Processing. In SIGMOD ’08, pages 1099–

1110, 2008. 

[16]  J. Ong, D. Fogg, and M. Stonebraker. 

Implementation of data abstraction in the relational 

database system ingres. SIGMOD Rec., 14(1):1–

14, 1983. 

[17]  D. A. Patterson. Technical Perspective: The Data 

Center is the Computer. Commun. ACM, 

51(1):105–105, 2008. 

[18]  R. Rustin, editor. ACM-SIGMOD Workshop on 

Data Description, Access and Control, May 1974. 

[19]  M. Stonebraker. The Case for Shared Nothing. 

Database Engineering, 9:4–9, 1986. 

[20]  M. Stonebraker and J. Hellerstein. What Goes 

Around Comes Around. In Readings in Database 

Systems, pages 2–41. The MIT Press, 4th edition, 

2005. 

[21]  D. Thomas, D. Hansson, L. Breedt, M. Clark, J. D. 

Davidson, J. Gehtland, and A. Schwarz. Agile Web 

Development with Rails. Pragmatic Bookshelf, 

2006. 


