Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

A Comparison study of Different type of
Data Analysis

Ravinder Singh
Research Scholar, Manav Bharti University, H.P., INDIA

ABSTRACT: There is currently considerable enthusiasm around the MapReduce (MR) paradigm for large-scale data
analysis. Although the basic control flow of this framework has existed in parallel SQL database management systems
(DBMS) for over 20 years, some have called MR a dramatically new computing model. In this paper, we describe and
compare both paradigms. Furthermore, we evaluate both kinds of systems in terms of performance and development
complexity. To this end, we define a benchmark consisting of a collection of tasks that we have run on an open source
version of MR as well as on two parallel DBMSs. For each task, we measure each system’s performance for various
degrees of parallelism on a cluster of 100 nodes. Our results reveal some interesting trade-offs. Although the process to
load data into and tune the execution of parallel DBMSs took much longer than the MR system, the observed
performance of these DBMSs was strikingly better. We speculate about the causes of the dramatic performance
difference and consider implementation concepts that future systems should take from both kinds of architectures

- - -

1. INTRODUCTION

Recently the trade press has been filled with news of the
revolution of “cluster computing”. This paradigm entails
harnessing large numbers of (low-end) processors working
in parallel to solve a computing problem. In effect, this
suggests constructing a data center by lining up a large
number of low-end servers instead of deploying a smaller
set of high-end servers. With this rise of interest in clusters
has come a proliferation of tools for programming them.
One of the earliest and best known such tools in
MapReduce (MR) [8]. MapReduce is attractive because it
provides a simple model through which users can express
relatively sophisticated distributed programs, leading to
significant interest in the educational community. For
example, IBM and Google have announced plans to make
a 1000 processor MapReduce cluster available to teach

students distributed programming.

Given this interest in MapReduce, it is natural to ask “Why
not use a parallel DBMS instead?” Parallel database
systems (which all share a common architectural design)
have been commercially available for nearly two decades,
and there are now about a dozen in the marketplace,
including Teradata, Aster Data, Netezza, DATAllegro (and
therefore soon Microsoft SQL Server via Project Madison),
Dataupia, Vertica, ParAccel, Neoview, Greenplum, DB2
(via the Database Partitioning Feature), and Oracle (via
Exadata). They are robust, high performance computing
platforms. Like MapReduce, they provide a high-level
programming environment and parallelize readily. Though
it may seem thatMR and parallel databases target different
audiences, it is in fact possible to write almost any parallel
processing task as either a set of database queries
(possibly using user defined functions and aggregates to
fiter and combine data) or a set ofMapReduce jobs.

Inspired by this question, our goal is to understand the

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 1

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

differences between the MapReduce approach to
performing large-scale data analysis and the approach
taken by parallel database systems. The two classes of
systems make different choices in several key areas. For
example, all DBMSs require that data conform to a well-
defined schema, whereas MR permits data to be in any
arbitrary format. Other differences also include how each
system provides indexing and compression optimizations,
programming models, the way in which data is distributed,

and query execution strategies.

The purpose of this paper is to consider these choices, and
the trade-offs that they entail. We begin in Section 2 with a
brief review of the two alternative classes of systems,
followed by a discussion in Section 3 of the architectural
trade-offs. Then, in Section 4 we present our benchmark
consisting of a variety of tasks, one taken from the MR
paper [8], and the rest a collection of more demanding
tasks. In addition, we present the results of running the
benchmark on a 100-node cluster to execute each task.
We tested the publicly available open-source version of
MapReduce, Hadoop [1], against two parallel SQL DBMSs,
Vertica [3] and a second system from a major relational
vendor. We also present results on the time each system
took to load the test data and report informally on the
procedures needed to set up and tune the software for

each task.

In general, the SQL DBMSs were significantly faster and
required less code to implement each task, but took longer
to tune and load the data. Hence, we conclude with a
discussion on the reasons for the differences between the
approaches and provide suggestions on the best practices

for any large-scale data analysis engine.

Some readers may feel that experiments conducted using

100 nodes are not interesting or representative of real

world data processing systems. We disagree with this
conjecture on two points. First, as we demonstrate in
Section 4, at 100 nodes the two parallel DBMSs range
from a factor of 3.1 to 6.5 faster than MapReduce on a
variety of analytic tasks. While MR may indeed be capable
of scaling up to 1000s of nodes, the superior efficiency of
modern DBMSs alleviates the need to use such massive
hardware on datasets in the range of 1-2PB (1000 nodes
with 2TB of disk/node has a total disk capacity of 2PB). For
example, eBay’s Teradata configuration uses just 72 nodes
(two quad-core CPUs, 32GB RAM, 104 300GB disks per
node) to manage approximately 2.4PB of relational data.
As another example, Fox Interactive Media’s warehouse is
implemented using a 40-node Greenplum DBMS. Each
node is a Sun X4500 machine with two dual-core CPUs, 48
500GB disks, and 16 GB RAM (1PB total disk space) [7].
Since few data sets in the world even approach a petabyte
in size, it is not at all clear how many MR users really need
1,000 nodes.

2. TWO APPROACHES TO LARGE SCALE
DATA ANALYSIS

The two classes of systems we consider in this paper run
on a “shared nothing” collection of computers [19]. That is,
the system is deployed on a collection of independent
machines, each with local disk and local main memory,
connected together on a highspeed local area network.
Both systems achieve parallelism by dividing any data set
to be utilized into partitions, which are allocated to different
nodes to facilitate parallel processing. In this section, we
provide an overview of how both the MR model and

traditional parallel DBMSs operate in this environment.

2.1 MapReduce

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 2

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

One of the attractive qualities about the MapReduce
programming model is its simplicity: an MR program
consists only of two functions, called Map and Reduce, that
are written by a user to process key/value data pairs. The
input data set is stored in a collection of partitions in a
distributed file system deployed on each node in the
cluster. The program is then injected into a distributed
processing framework and executed in a manner to be

described.

The Map function reads a set of “records” from an input
file, does any desired filtering and/or transformations, and
then outputs a set of intermediate records in the form of
new key/value pairs. As the Map function produces these
output records, a “split” function partitions the records into
R disjoint buckets by applying a function to the key of each
output record. This split function is typically a hash
function, though any deterministic function will suffice.
Each map bucket is written to the processing node’s local
disk. The Map function terminates having produced R
output files, one for each bucket. In general, there are
multiple instances of the Map function running on different
nodes of a compute cluster. We use the term instance to
mean a unique running invocation of either the Map or
Reduce function. Each Map instance is assigned a distinct
portion of the input file by the MR scheduler to process. If
there are M such distinct portions of the input file, then
there are R files on disk storage for each of the M Map
tasks, for a total of M x R files;
Fij,1=:= M1 =5 = R The key observation is that
all Map instances use the same hash function; thus, all
output records with the same hash value are stored in the

same output file.

The second phase of a MR program executes R instances
of the Reduce program, where R is typically the number of

nodes. The input for each Reduce instance R; consists of

the files ¥i,1 = @ = M. These files are transferred over
the network from the Map nodes’ local disks. Note that
again all output records from the Map phase with the same
hash value are consumed by the same Reduce instance,
regardless of whichMap instance produced the data. Each
Reduce processes or combines the records assigned to it
in some way, and then writes records to an output file (in
the distributed file system), which forms part of the

computation’s final output.
2.2 Parallel DBMSs

Database systems capable of running on clusters of
shared nothing nodes have existed since the late 1980s.
These systems all support standard relational tables and
SQL, and thus the fact that the data is stored on multiple

machines is transparent to the end-user.

Many of these systems build on the pioneering research
from the Gamma [10] and Grace [11] parallel DBMS
projects. The two key aspects that enable parallel
execution are that (1) most (or even all) tables are
partitioned over the nodes in a cluster and that (2) the
system uses an optimizer that translates SQL commands
into a query plan whose execution is divided amongst
multiple nodes. Because programmers only need to specify
their goal in a high level language, they are not burdened
by the underlying storage details, such as indexing options

and join strategies.

Consider a SQL command to filter the records in a table T,
based on a predicate, along with a join to a second table T,
with an aggregate computed on the result of the join. A
basic sketch of how this command is processed in a

parallel DBMS consists of three phases.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 3

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

Since the database will have already stored T, on some
collection of the nodes partitioned on some attribute, the
filter sub-query is first performed in parallel at these sites
similar to the filtering performed in a Map function.
Following this step, one of two common parallel join

algorithms are employed based on the size of data tables.

3. ARCHITECTURAL ELEMENTS

In this section, we consider aspects of the two system
architectures that are necessary for processing large
amounts of data in a distributed environment. One theme
in our discussion is that the nature of the MR model is well
suited for development environments with a small humber
of programmers and a limited application domain. This lack
of constraints, however, may not be appropriate for longer-
term and larger-sized projects.

3.1 Schema Support

Parallel DBMSs require data to fit into the relational
paradigm of rows and columns. In contrast, the MR model
does not require that data files adhere to a schema defined
That is, the MR

programmer is free to structure their data in any manner or

using the relational data model.

even to have no structure at all.

One might think that the absence of a rigid schema
automatically makes MR the preferable option. For
example, SQL is often criticized for its requirement that the
programmer must specify the “shape” of the data in a data
definition facility. On the other hand, the MR programmer
must often write a custom parser in order to derive the
appropriate semantics for their input records, which is at
least an equivalent amount of work. But there are also
other potential problems with not using a schema for large

data sets.

Whatever structure exists in MR input files must be built
Existing MR

implementations provide built-in functionality to handle

into the Map and Reduce programs.

simple key/value pair formats, but the programmer must
explicitly write support for more complex data structures,
such as compound keys. This is possibly an acceptable
approach if a MR data set is not accessed by multiple
applications. If such data sharing exists, however, a
second programmer must decipher the code written by the
first programmer to decide how to process the input file. A
better approach, followed by all SQL DBMSs, is to
separate the schema from the application and store it in a

set of system catalogs that can be queried.

But even if the schema is separated from the application
and made available to multiple MR programs through a
description facility, the developers must also agree on a
single schema. This obviously requires some commitment
to a data model or models, and the input files must obey
this commitment as it is cumbersome to modify data

attributes once the files are created.

3.2 Indexing

All modern DBMSs use hash or B-tree indexes to
accelerate access to data. If one is looking for a subset of
records (e.g., employees with a salary greater than
$100,000), then using a proper index reduces the scope of
the search dramatically. Most database systems also
support multiple indexes per table. Thus, the query
optimizer can decide which index to use for each query or

whether to simply perform a brute-force sequential search.

3.3 Programming Model

During the 1970s, the database research community
engaged in a contentious debate between the relational

advocates and the Codasyl advocates [18]. The salient

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 4

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

issue of this discussion was whether a program to access
data in a DBMS should be written either by:

1. Stating what you want — rather than presenting an

algorithm for how to get it (Relational)

2. Presenting an algorithm for data access (Codasyl)

4. DISCUSSION

We now discuss broader issues about the benchmark
results and comment on particular aspects of each system
that the raw numbers may not convey. In the benchmark
above, both DBMS-X and Vertica execute most of the
tasks much faster than Hadoop at all scaling levels. The
next subsections describe, in greater detail than the
reasons for this dramatic

previous section, the

performance difference.

4.1 System-level Aspects

In this section, we describe how architectural decisions
made at the system-level affect the relative performance of
the two classes of data analysis systems. Since installation
and configuration parameters can have a significant
difference in the ultimate performance of the system, we
begin with a discussion of the relative ease with which
these parameters are set. Afterwards, we discuss some
lower level implementation details. While some of these
details affect performance in fundamental ways (e.g., the
fact that MR does not transform data on loading precludes
various I/O optimizations and necessitates runtime parsing
CPU

implementation specific (e.g., the high start-up cost of MR).

which increases costs), others are more

4.1.1 System Installation, Configuration, and Tuning

We were able to get Hadoop installed and running jobs
with little effort. Installing the system only requires setting
up data directories on each node and deploying the system
library and configuration files. Configuring the system for
optimal performance was done through trial and error. We
found that certain parameters, such as the size of the sort
buffers or the number of replicas, had no affect on

execution performance, whereas other parameters, such

as using larger block sizes, improved performance
significantly.
The DBMS-X installation process was relatively

straightforward. A GUI leads the user through the initial
steps on one of the cluster nodes, and then prepares a file
that can be fed to an installer utility in parallel on the other
nodes to complete the installation. Despite this simple
process, we found that DBMS-X was complicated to
configure in order to start running queries. Initially, we were
frustrated by the failure of anything but the most basic of
operations. We eventually discovered each node’s kernel
was configured to limit the total amount of allocated virtual
address space. When this limit was hit, new processes
could not be created and DBMS-X operations would fail.
We mention this even though it was our own administrative
error, as we were surprised that DBMS-X’s extensive
system probing and self-adjusting configuration was not

able to detect this limitation.

4.1.2 Task Start-up

We found that our MR programs took some time before all
nodes were running at full capacity. On a cluster of 100
nodes, it takes 10 seconds from the moment that a job is
submitted to the JobTracker before the first Map task
begins to execute and 25 seconds until all the nodes in the
cluster are executing the job. This coincides with the

results in [8], where the data processing rate does not

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 5

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

reach its peak for nearly 60 seconds on a cluster of 1800
nodes. The “cold start” nature is symptomatic to Hadoop’s
(and apparently Google’s) implementation and not inherent
to the actual MR model itself. For example, we also found
that prior versions of Hadoop would create a new JVM
process for each Map and Reduce instance on a node,
which we found increased the overhead of running jobs on
large data sets; enabling the JVM reuse feature in the
latest version of Hadoop improved our results for MR by
10-15%.

4.1.3 Compression

Almost every parallel DBMS (including DBMS-X and
Vertica) allows for optional compression of stored data. It is
not uncommon for compression to result in a factor of 6-10
space savings. Vertica’s internal data representation is
highly optimized for data compression and has an
execution engine that operates directly on compressed
data (i.e., it avoids decompressing the data during
processing whenever possible). In general, since analysis
tasks on large data sets are often 1/O bound, trading CPU
cycles (needed to decompress input data) for /O
bandwidth (compressed data means that there is less data
to read) is a good strategy and translates to faster
execution. In situations where the executor can operate
directly on compressed data, there is often no trade-off at

all and compression is an obvious win.

Hadoop and its underlying distributed filesystem support
both block-level and record-level compression on input
data. We found, however, that neither technique improved
Hadoop’s performance and in some cases actually slowed
execution. It also required more effort on our part to either
change code or prepare the input data. It should also be
noted that compression was also not used in the original
MR benchmark [8].

4.1.4 Loading and Data Layout

Parallel DBMSs have the opportunity to reorganize the
input data file at load time. This allows for certain
optimizations, such as storing each attribute of a table
separately (as done in column-stores such as Vertica). For
read-only queries that only touch a subset of the attributes
of a table, this optimization can improve performance by
allowing the attributes that are not accessed by a particular
query to be left on disk and never read. Similar to the
compression optimization described above, this saves
critical I/O bandwidth. MR systems by default do not
transform the data when it is loaded into their distributed

file system, and thus are unable to change the layout

of input data, which precludes this class of optimization

opportunities.

4.1.5 Execution Strategies

As noted earlier, the query planner in parallel DBMSs are
careful to transfer data between nodes only if it is
absolutely necessary. This allows the systems to optimize
the join algorithm depending on the characteristics of the
data and perform push-oriented messaging without writing
intermediate data sets. Over time, MR advocates should
DBMSs and

incorporate the concepts that are germane to their model.

study the techniques used in parallel
In doing so, we believe that again the performance of MR

frameworks will improve dramatically.

4.1.6 Failure Model

As discussed previously, while not providing support for
transactions, MR is able to recover from faults in the
middle of query execution in a way that most parallel
database systems cannot. Since parallel DBMSs will be

deployed on larger clusters over time, the probability of

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 6

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

mid-query hardware failures will increase. Thus, for long
running queries, it may be important to implement such a
fault tolerance model. While improving the fault-tolerance
of DBMSs is clearly a good idea, we are wary of devoting
huge computational clusters and “brute force” approaches
to computation when sophisticated software would could
do the same processing with far less hardware and
consume far less energy, or in less time, thereby obviating
the need for a sophisticated fault tolerance model. A
multithousand-node cluster of the sort Google, Microsoft,
and Yahoo! run uses huge amounts of energy, and as our
results show, for many data processing tasks a parallel
DBMS can often achieve the same performance using far
fewer nodes. As such, the desirable approach is to use
high-performance algorithms with modest parallelism
rather than brute force approaches on much larger

clusters.

4.2 User-level Aspects

A data processing system’s performance is irrelevant to a
user or an organization if the system is not usable. In this
section, we discuss aspects of each system that we
encountered from a userlevel perspective while conducting
the benchmark study that may promote or inhibit

application development and adoption.

4.2.1 Ease of Use

Once the system is on-line and the data has been loaded,
the programmer then begins to write the query or the code
needed to perform their task. Like other kinds of

programming, this is often an

iterative process: the programmer writes a little bit of code,
tests it, and then writes some more. The programmer can
easily determine whether his/her code is syntactically

correct in both types of systems: the MR framework can

check whether the user’s code compiles and the SQL
engines can determine whether the queries parse
correctly. Both systems also provide runtime support to

assist users in debugging their programs.

It is also worth considering the way in which the
programmer writes the query. MR programs in Hadoop are
primarily written in Java (though other language bindings
exist). Most programmers are more familiar with object-
oriented, imperative programming than with other language
technologies, such as SQL. That said, SQL is taught in
many undergraduate programs and is fairly portable — we
were able to share the SQL commands between DBMS-X

and Vertica with only minor modifications.

4.2.2 Additional Tools

Hadoop comes with a rudimentary web interface that
allows the user to browse the contents of the distributed
filesystemand monitor the execution of jobs. Any additional
tools would most likely at this time have to be developed in
house.

SQL databases, on the other hand, have tons of existing
tools and applications for reporting and data analysis.
Entire software industries have developed around
providing DBMS users with third-party extensions. The
types of software that many of these tools include (1) data
visualization, (2) business intelligence, (3) data mining, (4)
data replication, and (5) automatic database design.
Because MR technologies are still nascent, the market for
such software for MR is limited; however, as the user base
grows, many of the existing SQL-based tools will likely

support MR systems.

5. CONCLUSION

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 7

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

There are a number of interesting conclusions that can be
drawn from the results presented in this paper. First, at the
scale of the experiments we conducted, both parallel
database systems displayed a significant performance
advantage over Hadoop MR in executing a variety of data
intensive analysis benchmarks. Averaged across all five
tasks at 100 nodes, DBMS-X was 3.2 times faster than MR
and Vertica was 2.3 times faster than DBMS-X.While we
cannot verify this claim, we believe that the systems would
have the same relative performance on 1,000 nodes (the
largest Teradata configuration is less than 100 nodes
managing over four petabytes of data). The dual of these
numbers is that a parallel database system that provides
the same response time with far fewer processors will
certainly uses far less energy; theMapReduce model on
multi-thousand node clusters is a brute force solution that
wastes vast amounts of energy. While it is rumored that the
Google version of MR is faster than the Hadoop version,
we did not have access to this code and hence could not
test it. We are doubtful again, however, that there would be
a substantial difference in the performance of the two
versions as MR is always forced to start a query with a

scan of the entire input file.

This performance advantage that the two database
systems share is the result of a number of technologies
developed over the past 25 years, including (1) B-tree
indices to speed the execution of selection operations, (2)
novel storage mechanisms (e.g., columnorientation), (3)
aggressive compression techniques with ability to operate
directly on compressed data, and (4) sophisticated parallel
algorithms for querying large amounts of relational data. In
the case of a column-store database like Vertica, only
those columns that are needed to execute a query are
actually read from disk. Furthermore, the column-wise

storage of data results in better compression factors

(approximately a factor of 2.0 for Vertica, versus a factor of
1.8 for DBMS-X and 1.25 for Hadoop); this also further
reduces the amount of disk I/O that is performed to

execute a query.

Extensibility was another area where we found the
database systems we tested lacking. Extending a DBMS
with user-defined types and functions is an idea that is now
25 years old [16]. Neither of the parallel systems we tested
did a good job on the UDF aggregation tasks, forcing us to
find workarounds when we encountered limitations (e.g.,
Vertica) and bugs (e.g., DBMS-X).

While all DB systems are tolerant of a wide variety of
software failures, there is no question that MR does a
superior job of minimizing the amount of work that is lost
when a hardware failure occurs. This capability, however,
comes with a potentially large performance penalty, due to
the cost of materializing the intermediate files between the
Left

significant this performance penalty is. Unfortunately, to

map and reduce phases. unanswered is how
investigate this question properly requires implementing
both the materialization and no-materialization strategies in
a common framework, which is an effort beyond the scope
of this paper. Despite a clear advantage in this domain, it is
not completely clear how significant a factor Hadoop’s
ability to tolerate failures during execution really is in
practice. In addition, if a MR system needs 1,000 nodes to
match the performance of a 100 node parallel database
system, it is ten times more likely that a node will fail while

a query is executing.

EELECT Emp.name, Emp.salary,
FEME () COVER (JRLDER BY Emp.=zalary)
FRCM Employessz AS Emp

Computing this in parallel requires producing a total order

of all employees followed by a second phase in which each

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 8

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

node adjusts the rank values of its records with the counts
of the number of records on each node to its “left” (i.e.,
those nodes with salary values that are strictly smaller).
Although aMR program could perform this sort in parallel, it
is not easy to fit this query into the MR paradigm of group
by aggregation. RANK is just one of the many powerful
analytic functions provided by modern parallel database
systems. For example, both Teradata and Oracle support a
rich set of functions, such as functions over windows of

ordered records.

Two architectural differences are likely to remain in the
long run. MR makes a commitment to a “schema later” or
even “schema never” paradigm. But this lack of a schema
has a number of important consequences. Foremost, it
means that parsing records at run time is inevitable, in
contrast to DBMSs, which perform parsing at load time.
This difference makes compression less valuable in MR
and causes a portion of the performance difference
between the two classes of systems. Without a schema,
each user must write a custom parser, complicating
sharing data among multiple applications. Second, a
schema is needed for maintaining information that is critical
for optimizing declarative queries, including what indices
exist, how tables are partitioned, table cardinalities, and
histograms that capture the distribution of values within a

column.

In our opinion there is a lot to learn from both kinds of
systems. Most importantly is that higher level interfaces,
such as Pig [15], Hive [2], are being put on top of the MR
foundation, and a number of tools similar in spirit but more
expressive than MR are being developed, such as Dryad
[13] and Scope [5]. This will make complex tasks easier to
code in MR-style systems and remove one of the big
advantages of SQL engines, namely that they take much

less code on the tasks in our benchmark. For parallel

databases, we believe that both commercial and open-
source systems will dramatically improve the parallelization
of user-defined functions. Hence, the APIs of the two
classes of systems are clearly moving toward each other.
Early evidence of this is seen in the solutions for
integrating SQL with MR offered by Greenplum and

Asterdata.

6. REFERENCES

[1] Hadoop. http://hadoop.apache.org/.

[2] Hive. http://hadoop.apache.org/hive/.

[3] Vertica. http://www.vertica.com/.

[4] Y. Amir and J. Stanton. The Spread Wide Area
Group Communication System. Technical report,
1998.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy
and efficient parallel processing of massive data
sets. Proc. VLDB Endow., 1(2):1265-1276, 2008.

[6] Cisco Systems. Cisco Catalyst 3750-E Series
Switches Data Sheet, June 2008.

[7] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein,
and C. Welton. MAD Skills: New Analysis Practices
for Big Data. Under Submission, March 2009.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSD/ 04,
pages 10-10, 2004.

[9] D. J. DeWitt and R. H. Gerber. Multiprocessor
Hash-based Join Algorithms. In VLDB ‘85, pages
151-164, 1985.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 9

Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L.
Heytens, K. B. Kumar, and M. Muralikrishna.
GAMMA - A High Performance Dataflow Database
Machine. In VLDB ’86, pages 228—-237, 1986.

S. Fushimi, M. Kitsuregawa, and H. Tanaka. An
Overview of The System Software of A Parallel
Relational Database Machine. In VLDB ‘86, pages
209-219, 1986.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. SIGOPS Oper. Syst. Rev.,
37(5):29-43, 2003.

M. lIsard, M. Budiu, Y. Yu, A. Birrell, and D.
Fetterly. Dryad: Distributed Data-parallel Programs
from Sequential Building Blocks. In EuroSys 07,
pages 59-72, 2007.

E. Meijer, B. Beckman, and G. Bierman. LINQ:
reconciling object, relations and XML in the .NET
framework. In SIGMOD 06, pages 706—706, 2006.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language
for Data Processing. In SIGMOD 08, pages 1099—
1110, 2008.

J. Ong, D. Fogg, and M. Stonebraker.
Implementation of data abstraction in the relational
database system ingres. SIGMOD Rec., 14(1):1-

14, 1983.

D. A. Patterson. Technical Perspective: The Data

Center is the Commun. ACM,

51(1):105-105, 2008.

Computer.

R. Rustin, editor. ACM-SIGMOD Workshop on
Data Description, Access and Control, May 1974.

[19]

(20]

(21]

M. Stonebraker. The Case for Shared Nothing.
Database Engineering, 9:4-9, 1986.

M. Stonebraker and J. Hellerstein. What Goes
Around Comes Around. In Readings in Database
Systems, pages 2—-41. The MIT Press, 4th edition,
2005.

D. Thomas, D. Hansson, L. Breedt, M. Clark, J. D.
Davidson, J. Gehtland, and A. Schwarz. Agile Web
Development with Rails. Pragmatic Bookshelf,

2006.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 10

