
 

Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 1 

E-Mail: ignitedmoffice@gmail.com 

Importance of Memory Allocation and Disk 
Representation in Specific Based Regression 

 

Manoj Kumar1  Dr. Kalyankar N.V.2    

1
Research Scholar, CMJ University, Shillong, Meghalaya 

2
Research Scholar, CMJ University, Shillong, Meghalaya 

------------------------------------------♦------------------------------------- 

Memory allocation is required in all phases of design. It 
typically consists of only two operations: the allocation of a 
specified amount of unused memory and the freeing of an 
allocated block. Some systems reduce this to a single 
operation that allocates on demand and frees automatically 
when the object is no longer used. Special garbage-
collection operations find the unused memory by counting 
the number of references to each block [Deutsch and 
Bobrow].  

Not only are objects and their attributes allocated, but 
temporary search lists and many other variable-length 
fields are carved out of free memory. It is important to deal 
with the memory properly to make the system run 
efficiently. Nevertheless, many design systems foolishly 
ignore the problem and trust the operating system or 
language environment to provide this service correctly.  

One basic fact about memory allocation is that it takes time 
to do. Most programming environments perform memory 
allocation by invoking the operating system and some even 
end up doing disk I/O to complete the request. This means 
that a continuous stream of allocations and frees will slow 
the design system considerably. If, for example, memory is 
allocated to store a pointer to a marked object and then 
freed when the marker list is no longer needed, then every 
selection step will make heavy use of a general-purpose 
memory-allocation system. This approach is not very 
efficient. A better technique is to retain these allocated 
blocks in an internal list rather than freeing them when the 
analysis is done. Requests for new objects will consult this 
internal free list before resorting to actual memory 
allocation. Initially, the internal free list is empty, but over 
time the size of the list will grow to be as large as the 
largest number of these objects that is ever used.  

The reason for not freeing objects is that they can be 
reallocated much more quickly from an internal free list. 
The memory allocator in the operating system cannot 

organize freed blocks of memory by their object nature 
because it knows nothing about the design program. 
Therefore it will mix all freed blocks, search all of them 
when reallocation is done, and coalesce adjacent ones into 
larger blocks whether or not that is appropriate. All this 
wastes time. The design system's own free list is much 
more intelligent about keeping objects of a given class 
together and can respond appropriately. Thus the speed of 
the program is improved.  

Another time-saving technique is to allocate multiple 
objects at a time, in larger blocks of memory. For example, 
when the internal list of free marker objects is empty, the 
next request for a new object should grab a block of 
memory that can hold 20 such objects. This memory is 
then broken down into 49 free objects on the internal list 
and one that is to be used for the current request. This 
results in fewer calls to the operating system's memory 
allocator, especially for objects that are used heavily. In 
addition, some space will be saved since the operating 
system typically uses a few words per allocated block of 
memory as thesiskeeping. The drawback of this block-
allocation technique is that the program will typically have 
allocated memory that is unused, and this can be wasteful.  

The biggest problem with memory allocation is that the 
program will run out of memory. When it does on a virtual-
memory computer, the operating system will begin to page 
the design data onto disk. If the use of memory is too 
haphazard, the contents of an object will be fragmented 
throughout the virtual address space. Then the operating 
system will thrash as it needlessly swaps large amounts of 
memory to get small numbers of data. To solve this, it is 
advisable for design systems that run on virtual machines 
to pay special attention to the paging scheme. For 
example, all objects related to a particular cell should be 
kept near each other in memory. One way to achieve this 
is to allocate the objects at the same time. Unfortunately, 
as changes are made the design will still fragment. A better 



 

Journal of Advances in Science and Technology                     

Vol. II, Issue II, November-2011, ISSN 2230-9659 

 

Available online at www.ignited.in Page 2 

E-Mail: ignitedmoffice@gmail.com 

solution is to tag pages of memory with the cells that they 
contain. Memory used for a different cell will be allocated 
from a different memory page and all cell contents will stay 
together. By implementing virtual memory as "clusters" of 
swappable pages, the design activity will remain within a 
small number of dedicated pages at all times [Stamos].  

In addition to aggregating a design by cells, clusters of 
virtual memory can be used for other special-purpose 
information such as the attributes of a particular design 
environment, analysis, or synthesis tool. The resulting 
organization will provide small working sets of memory 
pages that swap in when needed, causing the design 
system to run faster. For example, if all timing-related 
attributes are placed together, then those memory pages 
will remain swapped out until needed and then will swap in 
cleanly without affecting other data.  

When the computer does not support a virtual address 
space, the design system must do its own swapping. This 
internal paging is typically done by having only one cell in 
memory at a time. The code becomes more complex 
because all references to other cells must explicitly request 
a context change to ensure that the referenced data are in 
memory. In virtual-memory systems, all data are assumed 
to be in memory and are implicitly made so. In an internally 
paged system, the data must be loaded explicitly. Many 
design operations span an entire hierarchy at once and will 
run more slowly if paged one cell at a time. For example, it 
will be harder to support hierarchical display, network 
tracing, and multiple windows onto different cells. Although 
the design system could implement its own form of virtual 
memory, that would add extra overhead to every database 
reference. It is better to have a virtual computer that 
implements this with special-purpose hardware. Also, 
letting the operating system do the disk I/O is always faster 
than doing it in the application program, because with the 
former there is less system overhead. Thus the best way to 
represent a design is to allocate it intelligently from a large, 
uniform memory arena.  

DISK REPRESENTATION 

If a design is going to be represented by placing it in virtual 
memory, then a very large design will consume much 
virtual memory. To modify such a design, the system will 
have to read the data from disk to memory, make changes 
to the memory, and then write the design back to disk. This 
is very time consuming when the design files are large and 
the virtual memory is actually on disk. Even nonvirtual-
memory systems will waste much time manipulating large 
design files. What is needed for better speed is an 
intelligent format for disk representation.  

By placing a "table of contents" at the beginning of the 
design file, the system can avoid the need to read the 
entire file. Individual parts can be directly accessed so the 
design can be read only as it is needed. This is fine for 
efficient perusal of a design but there will still have to be a 
total rewrite of the file when a change is made. If each cell 
is stored in a separate disk file, then the operating system's 
file manager will perform the table-of-contents function. 
This allows rapid change to single cells but opens up the 
problem of inconsistent disk files since they can be 
manipulated outside of the design system.  

An ideal disk format would replicate exactly what is in 
memory. When this is done on a virtual-memory machine 
with flexible paging facilities, it is not necessary to read or 
write the entire design file at once. Instead, the file is 
"attached" to virtual memory by designating the disk blocks 
of the file to be the paging space for the design program. 
Initially these memory pages are all "swapped out" but, as 
design activity references new data, the appropriate disk 
blocks are paged in. Changes to the design manipulate the 
disk file in only those places corresponding to the modified 
memory. Allocation of more memory for a larger design 
automatically extends the size of the disk file. Of course, 
writing the design simply involves updating the changed 
pages. This scheme requires the smallest amount of disk 
I/O since it accesses only what it needs and does not 
require a separate paging area on disk.  

The only problem with storing the precise contents of 
memory on disk is that object pointers do not adjust when 
written to disk and then read back into a different address 
in the computer. If relocation information is stored with the 
file, then each page must be scanned after reading and 
before writing to adjust the pointers. This requires extra 
time and space in addition to creating the problem of 
having to identify every pointer field in memory. Relocation 
could be done with special-purpose hardware that 
relocates and maintains pointer information in memory and 
on disk. Unfortunately, no such hardware exists. The only 
way to avoid these problems and still obtain a single 
representation for disk and memory is to stop using 
pointers and to use arrays and indices [Leinwand]. This 
makes I/O faster but slows down memory access during 
design.  


