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INTRODUCTION 

Nutrients from human activities tend to travel from land to 
either surface or ground water. Nitrogen in particular is 
removed through storm drains, sewage pipes, and other 
forms of surface runoff. Nutrient losses in runoff and 
leachate are often associated with agriculture. Modern 
agriculture often involves the application of nutrients onto 
fields in order to maximise production. However, farmers 
frequently apply more nutrients than are taken up by crop

 
 

or pastures. Regulations aimed at minimising nutrient 
exports from agriculture are typically far less stringent than 
those placed on sewage treatment plants and other point 
source polluters. It should be also noted that lakes within 
forested land are also under surface runoff influences. 
Runoff can wash out the mineral nitrogen and phosphorus 
from detritus and in consequence supply the water bodies 
leading to slow, natural eutrophication. 

MATERIAL AND METHOD 

ATMOSPHERIC DEPOSITION 

Nitrogen is released into the air because of ammonia 
volatilization and nitrous oxide production. The combustion 
of fossil fuels is a large human-initiated contributor to 
atmospheric nitrogen pollution. Atmospheric deposition 
(e.g., in the form of acid rain) can also affect nutrient 
concentration in water,

 
especially in highly industrialized 

regions. 

OTHER CAUSES 

Any factor that causes increased nutrient concentrations 
can potentially lead to eutrophication. In modeling 
eutrophication, the rate of water renewal plays a critical 
role; stagnant water is allowed to collect more nutrients 
than bodies with replenished water supplies. It has also 
been shown that the drying of wetlands causes an increase 

in nutrient concentration and subsequent eutrophication 
blooms. 

 PREVENTION AND REVERSAL 

Eutrophication poses a problem not only to ecosystems, 
but to humans as well. Reducing eutrophication should be 
a key concern when considering future policy, and a 
sustainable solution for everyone, including farmers and 
ranchers, seems feasible. While eutrophication does pose 
problems, humans should be aware that natural runoff 
(which causes algal blooms in the wild) is common in 
ecosystems and should thus not reverse nutrient 
concentrations beyond normal levels. 

EFFECTIVENESS 

Cleanup measures have been mostly, but not completely, 
successful. Finnish phosphorus removal measures started 
in the mid-1970s and have targeted lakess and lakes 
polluted by industrial and municipal discharges. These 
efforts have had a 90% removal efficiency.Still, some 
targeted point sources did not show a decrease in runoff 
despite reduction efforts. 

MINIMIZING NONPOINT POLLUTION: FUTURE 
WORK 

Nonpoint pollution is the most difficult source of nutrients to 
manage. The literature suggests, though, that when these 
sources are controlled, eutrophication decreases. The 
following steps are recommended to minimize the amount 
of pollution that can enter aquatic ecosystems from 
ambiguous sources. 

RIPARIAN BUFFER ZONES 

Studies show that intercepting non-point pollution between 
the source and the water is a successful means of 
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prevention. Riparian buffer zones are interfaces between a 
flowing body of water and land, and have been created 
near waterways in an attempt to filter pollutants; sediment 
and nutrients are deposited here instead of in water. 
Creating buffer zones near farms and roads is another 
possible way to prevent nutrients from traveling too far. 
Still, studies have shown

 
 that the effects of atmospheric 

nitrogen pollution can reach far past the buffer zone. This 
suggests that the most effective means of prevention is 
from the primary source. 

PREVENTION POLICY 

Laws regulating the discharge and treatment of sewage 
have led to dramatic nutrient reductions to surrounding 
ecosystems, but it is generally agreed that a policy 
regulating agricultural use of fertilizer and animal waste 
must be imposed. In Japan the amount of nitrogen 
produced by livestock is adequate to serve the fertilizer 
needs for the agriculture industry.Thus, it is not 
unreasonable to command livestock owners to clean up 
animal waste—which when left stagnant will leach into 
ground water. 

Policy concerning the prevention and reduction of 
eutrophication can be broken down into four sectors: 
Technologies, public participation, economic instruments, 
and cooperation. The term technology is used loosely, 
referring to a more widespread use of existing methods 
rather than an appropriation of new technologies. As 
mentioned before, nonpoint sources of pollution are the 
primary contributors to eutrophication, and their effects can 
be easily minimized through common agricultural practices. 
Reducing the amount of pollutants that reach a watershed 
can be achieved through the protection of its forest cover, 
reducing the amount of erosion leeching into a watershed. 
Also, through the efficient, controlled use of land using 
sustainable agricultural practices to minimize land 
degradation, the amount of soil runoff and nitrogen-based 
fertilizers reaching a watershed can be reduced. Waste 
disposal technology constitutes another factor in 
eutrophication prevention. Because a major contributor to 
the nonpoint source nutrient loading of water bodies is 
untreated domestic sewage, it is necessary to provide 
treatment facilities to highly urbanized areas, particularly 
those in underdeveloped nations, in which treatment of 
domestic waste water is a scarcity.The technology to safely 
and efficiently reuse waste water, both from domestic and 
industrial sources, should be a primary concern for policy 
regarding eutrophication. 

CONCLUSION 

The role of the public is a major factor for the effective 
prevention of eutrophication. In order for a policy to have 

any effect, the public must be aware of their contribution to 
the problem, and ways in which they can reduce their 
effects. Programs instituted to promote participation in the 
recycling and elimination of wastes, as well as education 
on the issue of rational water use are necessary to protect 
water quality within urbanized areas and adjacent water 
bodies. 

Economic instruments, “which include, among others, 
property rights, water markets, fiscal and financial 
instruments, charge systems and liability systems, are 
gradually becoming a substantive component of the 
management tool set used for pollution control and water 
allocation decisions.

 
Incentives for those who practice 

clean, renewable, water management technologies are an 
effective means of encouraging pollution prevention. By 
internalizing the costs associated with the negative effects 
on the environment, governments are able to encourage a 
cleaner water management. 

Because a body of water can have an effect on a range of 
people reaching far beyond that of the watershed, 
cooperation between different organizations is necessary 
to prevent the intrusion of contaminants that can lead to 
eutrophication. Agencies ranging from state governments 
to those of water resource management and non-
governmental organizations, going as low as the local 
population, are responsible for preventing eutrophication of 
water bodies. 
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