

Some Important Theorem on Balanced Fuzzy Set

Rahul Deo Awasthi¹ Dr. P.K. Mishra², Dr. K.K. Jain³, Dr. Yogesh Sharma⁴,

¹Research Scholar Jodhpur National University, Rajasthan, India

²Department of Mathematics Asst. Prof., Govt. Maharaja Collage Chhatarpur M.P. India

³Asst. Prof., PGV College, Gwalior, M.P. India

⁴Prof. & Head, Mathematics Dept., Jodhpur National University, Rajasthan, India

Abstract: In this paper we have obtained some important result on balanced fuzzy set and their properties.

Key words: Fuzzy set, convex fuzzy set and balanced fuzzy set.

INTRODUCTION – 1.1

Let X is a non-empty set called universal set. Then, by a fuzzy set on X is meant a function $A:X \rightarrow (0,1)$, 'A' is called a membership function, $A(x)$ is called the membership grade of X and we write

$$A = \{(x, A(x)) : x \in X\}$$

A fuzzy set A in a linear space E is set to be convex if for every $\lambda \in [0,1]$

$$\lambda A + (1-\lambda)A \subseteq A$$

A fuzzy set A in a vector space E is said to be balanced if $\lambda A \subseteq A$ for every scalar λ with $|\lambda| \leq 1$

THEOREM – 1.2

Let A and B are balanced fuzzy set in a vector space E over K then, $A+B$ is also a balanced fuzzy set in a vector space E .

PROOF

Let us assume that A and B are balanced fuzzy set in a vector space E over the field K , then we have $\lambda A \subseteq A$ for every scalar λ with $|\lambda| \leq 1$ and also $\lambda B \subseteq B$ for all scalar λ with $|\lambda| \leq 1$. Now we have

$$\lambda (A+B) = \lambda A + \lambda B$$

$$\subseteq A+B$$

This shows that $\lambda (A+B) \subseteq A+B$.

Hence $(A+B)$ is a balanced fuzzy set in E .

THEOREM – 1.3

Let us consider $\{A_i\}_{i \in I}$ is a family of balanced fuzzy set in a vector space E , then $A = \bigcap_{i \in I} A_i$ is a balanced fuzzy set in E .

PROOF

Let $\{A_i\}_{i \in I}$ be a family of balanced fuzzy set in a vector space E . Then, we have

$$\lambda A_i \subset A_i \text{ for every scalar } \lambda \text{ with } |\lambda| \leq 1$$

That is $A_i(\lambda x) \geq A_i(x)$ for every scalar $|\lambda| \leq 1$ (i)

$$\text{Again let } A = \bigcap_{i \in I} A_i$$

$$\text{thus } A(y) = \inf_{i \in I} A_i(y) \text{ for every } y \in E$$

$$\text{Hence } A(\lambda x) = \inf_{i \in I} A_i(\lambda x)$$

now from (i) we have

$$A(\lambda x) \geq \inf_{i \in I} A_i(x)$$

$$= A(x) \text{ for all scalar } \lambda \text{ with } |\lambda| \leq 1 \text{ and every } x \in E$$

Hence $A = \bigcap A_i$ is a balanced fuzzy set in E .

REFERENCES:

- (1) Ganesh, M.(2006) Introduction Of Fuzzy Sets And Fuzzy Logic, P.H.I. New Delhi.
- (2) Katsaras, A.K. And Liu, D.B. (1977), "Fuzzy Vector Spaces And Fuzzy Topological Vector Spaces", J.Math. Anal. Appl., 58, Pp. 135-146.
- (3) Nanda, S. Fuzzy Fields And Fuzzy Spaces, Fuzzy Sets And System 19(1986) 89-94.