Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

Critical Analysis of Artificial Intelligence In
Reference To Artificial Neural Network

Jyotsana Goyal* Dr. Anuj Kumar?
'Research Scholar, CMJ University, Shillong, Megalaya

*Professor in Mathematics, Department AIMT Greater Noida, U.P.

Abstract — An ideal disk format would replicate exactly what is in memory. When this is done on a virtual-memory machine
with flexible paging facilities, it is not necessary to read or write the entire design file at once. Instead, the file is "attached" to
virtual memory by designating the disk blocks of the file to be the paging space for the design program. Initially these
memory pages are all "swapped out" but, as design activity references new data, the appropriate disk blocks are paged in.
Changes to the design manipulate the disk file in only those places corresponding to the modified memory. Allocation of
more memory for a larger design automatically extends the size of the disk file. Of course, writing the design simply involves
updating the changed pages. This scheme requires the smallest amount of disk 1/O since it accesses only what it needs and

does not require a separate paging area on disk.

Key Words; Replicate, Appropriate, Automatically, Modified Memory.

INTRODUCTION

Memory allocation is required in all phases of design. It
typically consists of only two operations: the allocation of a
specified amount of unused memory and the freeing of an
allocated block. Some systems reduce this to a single
operation that allocates on demand and frees automatically
when the object is no longer used. Special garbage-
collection operations find the unused memory by counting
the number of references to each block [Deutsch and
Bobrow].

Not only are objects and their attributes allocated, but
temporary search lists and many other variable-length
fields are carved out of free memory. It is important to deal
with the memory properly to make the system run
efficiently. Nevertheless, many design systems foolishly
ignore the problem and trust the operating system or
language environment to provide this service correctly.

One basic fact about memory allocation is that it takes time
to do. Most programming environments perform memory
allocation by invoking the operating system and some even
end up doing disk 1/0 to complete the request. This means
that a continuous stream of allocations and frees will slow
the design system considerably. If, for example, memory is
allocated to store a pointer to a marked object and then
freed when the marker list is no longer needed, then every
selection step will make heavy use of a general-purpose

memory-allocation system. This approach is not very
efficient. A better technique is to retain these allocated
blocks in an internal list rather than freeing them when the
analysis is done. Requests for new objects will consult this
internal free list before resorting to actual memory
allocation. Initially, the internal free list is empty, but over
time the size of the list will grow to be as large as the
largest number of these objects that is ever used.

REVIEW OF LITERATURE

The reason for not freeing objects is that they can be
reallocated much more quickly from an internal free list.
The memory allocator in the operating system cannot
organize freed blocks of memory by their object nature
because it knows nothing about the design program.
Therefore it will mix all freed blocks, search all of them
when reallocation is done, and coalesce adjacent ones into
larger blocks whether or not that is appropriate. All this
wastes time. The design system's own free list is much
more intelligent about keeping objects of a given class
together and can respond appropriately. Thus the speed of
the program is improved.

Another time-saving technique is to allocate multiple
objects at a time, in larger blocks of memory. For example,
when the internal list of free marker objects is empty, the
next request for a new object should grab a block of
memory that can hold 20 such objects. This memory is

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 1



Journal of Advances in Science and Technology
Vol. II, Issue II, November-2011, ISSN 2230-9659

then broken down into 49 free objects on the internal list
and one that is to be used for the current request. This
results in fewer calls to the operating system's memory
allocator, especially for objects that are used heavily. In
addition, some space will be saved since the operating
system typically uses a few words per allocated block of
memory as thesiskeeping. The drawback of this block-
allocation technique is that the program will typically have
allocated memory that is unused, and this can be wasteful.

The biggest problem with memory allocation is that the
program will run out of memory. When it does on a virtual-
memory computer, the operating system will begin to page
the design data onto disk. If the use of memory is too
haphazard, the contents of an object will be fragmented
throughout the virtual address space. Then the operating
system will thrash as it needlessly swaps large amounts of
memory to get small numbers of data. To solve this, it is
advisable for design systems that run on virtual machines
to pay special attention to the paging scheme. For
example, all objects related to a particular cell should be
kept near each other in memory. One way to achieve this
is to allocate the objects at the same time. Unfortunately,
as changes are made the design will still fragment. A better
solution is to tag pages of memory with the cells that they
contain. Memory used for a different cell will be allocated
from a different memory page and all cell contents will stay
together. By implementing virtual memory as "clusters" of
swappable pages, the design activity will remain within a
small number of dedicated pages at all times [Stamos].

MATERIAL AND METHOD

In addition to aggregating a design by cells, clusters of
virtual memory can be used for other special-purpose
information such as the attributes of a particular design
environment, analysis, or synthesis tool. The resulting
organization will provide small working sets of memory
pages that swap in when needed, causing the design
system to run faster. For example, if all timing-related
attributes are placed together, then those memory pages
will remain swapped out until needed and then will swap in
cleanly without affecting other data.

When the computer does not support a virtual address
space, the design system must do its own swapping. This
internal paging is typically done by having only one cell in
memory at a time. The code becomes more complex
because all references to other cells must explicitly request
a context change to ensure that the referenced data are in
memory. In virtual-memory systems, all data are assumed
to be in memory and are implicitly made so. In an internally
paged system, the data must be loaded explicitly. Many
design operations span an entire hierarchy at once and will
run more slowly if paged one cell at a time. For example, it

will be harder to support hierarchical display, network
tracing, and multiple windows onto different cells. Although
the design system could implement its own form of virtual
memory, that would add extra overhead to every database
reference. It is better to have a virtual computer that
implements this with special-purpose hardware. Also,
letting the operating system do the disk I/O is always faster
than doing it in the application program, because with the
former there is less system overhead. Thus the best way to
represent a design is to allocate it intelligently from a large,
uniform memory arena.

If a design is going to be represented by placing it in virtual
memory, then a very large design will consume much
virtual memory. To modify such a design, the system will
have to read the data from disk to memory, make changes
to the memory, and then write the design back to disk. This
is very time consuming when the design files are large and
the virtual memory is actually on disk. Even nonvirtual-
memory systems will waste much time manipulating large
design files. What is needed for better speed is an
intelligent format for disk representation.

By placing a "table of contents" at the beginning of the
design file, the system can avoid the need to read the
entire file. Individual parts can be directly accessed so the
design can be read only as it is needed. This is fine for
efficient perusal of a design but there will still have to be a
total rewrite of the file when a change is made. If each cell
is stored in a separate disk file, then the operating system's
file manager will perform the table-of-contents function.
This allows rapid change to single cells but opens up the
problem of inconsistent disk files since they can be
manipulated outside of the design system.

CONCLUSION

The only problem with storing the precise contents of
memory on disk is that object pointers do not adjust when
written to disk and then read back into a different address
in the computer. If relocation information is stored with the
file, then each page must be scanned after reading and
before writing to adjust the pointers. This requires extra
time and space in addition to creating the problem of
having to identify every pointer field in memory. Relocation
could be done with special-purpose hardware that
relocates and maintains pointer information in memory and
on disk. Unfortunately, no such hardware exists. The only
way to avoid these problems and still obtain a single
representation for disk and memory is to stop using
pointers and to use arrays and indices [Leinwand]. This
makes /O faster but slows down memory access during
design.

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 2



