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Abstract – The first consideration is the choice of MEMS structural material. We use an insulator to provide high electrical and 
RF isolation between actuation and RF sections of the devices. To provide electrical contacts and electrodes for electrostatic 
actuation, conducting surfaces are formed on portions of this structural insulator. Thus our MEMS structures consist of 
sections that are composed simply of just an insulator and other sections where there is a tri-layer of 
conductor/insulator/conductor that is balanced to manage the stress.  

Key Words; Conductor, Insulator, Electrodes, Electrostatic. 

------------------------------------------♦------------------------------------- 

INTRODUCTION 

Many high-performance devices have been built using 
RF-MEMS including shunt and series switches (1, 2, 3), 
variable capacitors (4, 5), inductors (6, 7), and low-loss 
and variable transmission lines (8). However, these 
devices were developed in processes customized to build 
individual devices. RF-MEMS holds great promise for 
improving performance and increasing the integration of 
the RF front-end of wireless systems.  The resulting 
narrow range of applications will not generate the 
volumes needed to justify the required foundry capital 
investment nor that needed to stabilize the process itself. 
While some standard processes exist (9, 10), they are 
unsuited for RF applications due to their resistive 
materials.  

REVIEW OF LITERATURE 

High performance passives are usually needed in groups 
within a RF sub-system, such as in tunable filters or in 
phase shifters. A process suitable for integration must be 
able to build all of these in one chip where each of the 
devices maintains its high performance and where the 
various devices can be interconnected with low loss to 
maintain the high-performance of the overall circuit. 
Another obstacle has been high-temperature processing 
that limited monolithic integration with active circuitry. 
This paper presents a flexible manufacturing process 
flow that addresses these shortcomings and details high 
performance devices created in the process.  

MATERIAL AND METHOD 

RF-MEMS require high quality metals and insulators for 
state-of-the-art well-controlled RF characteristics. All of 
our materials needed to have the following properties:  

Low deposition temperature (300 C) to allow post-
processing on CMOS  

High etching selectivity  

Low stress and stress gradients  

Precise patterning techniques  

Low cost deposition of thick (> 3 µm) layers 

Available inter-layer adhesion layers  

The sacrificial material has been chosen to provide 
uniform smooth layers, good step coverage, fast 
complete removal from thin gaps, formation of stacked 
patterned layers for vertical topography and additional 
functionality when intentionally protected from release 
etch.  

There are three basic applications of metal in RFMEMS: 
buried conductors, exposed electrodes, and electrical 
contacts. Our choice of copper for the buried conductors 
was driven by:  

Highest bulk conductivity (> 4 * 10
7
 S/m)  

Corrosion resistance to processing steps 

Available CMP process  
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Since electrodes and electrical contacts are both 
exposed, we have chosen to use the same metal for 
both. Our choice of Au-based metal was driven by:  

Low contact resistance (< 0.5 ohms)  

Low contact force (< 200 uN)  

High melting temperature (> 800C)  

Low self-adhesion  

Low catalytic activity  

 

The choice of insulators was constrained by:  

Low loss tangent (< .003) and DC conductivity  

Low dielectric constant (< 5)  

High breakdown field  

High mechanical yield strength  

Insulators considered included alumina, high-resistivity 
silicon, silica, various polymers and GaAs. Alumina and 
silica both fulfill all of the necessary requirements. Silica 
was chosen due to immediate process availability within 
the candidate foundries.  

Another consideration is the choice of substrate. The 
process enables device designs that are relatively 
substrate independent. Thus we can fabricate high 
performance passives, switches and other MEMS directly 
on top of functional electronic circuits, both passive and 
active, even on a resistive substrate. The complete range 
of compatible substrates is limited by thermal expansion, 
although these are not severe due to the low 
temperatures. All initial work has used low-resistivity (< 
10 ohm-cm) silicon substrates.  

PROCESS FLOW  

The nominal process stack is shown in Figure 4.1. The 
overall flow is divided into three main sections: substrate 
connect, thick metal and thin metal. The substrate 
connect layer is used to make electrical connections to 
underlying circuitry and provide a planarized surface for 
further processing.  

The thick metal section, used primarily for passives and 
interconnects, is composed of copper embedded in silica. 
This is built up in 7 µm thick layers composed of a 
nominal 3.5 µm sheet conductor and a 3.5 µm stud 
interconnect. Each layer is planarized using CMP. The 

nominal process uses two of these layers, yielding 14 µm 
of copper and/or silica, although more or fewer layers can 
be used to provide optimal complexity/cost tradeoffs.  

 

Figure 1: Multi-Function MEMS Process Stack 

The thin metal section is composed of three layers of 
gold 0.5 µm thick that are used for electrodes and 
contacts, two layers of sacrificial copper that are 1.5 µm 
and 0.5 µm thick respectively and a 2 µm silica 
mechanical layer.  

CONCLUSION 

The process and the material properties determined from 
test structure extractions have been captured in 
CoventorWare™ for visualization and modeling of the 3D 
structure leading to straightforward electromechanical, 
damping and thermal simulations using CoventorWare™ 
and RF analyses using Ansoft’s HFSS

TM
.  
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