Journal of Advances in Science and Technology
Vol. I, Issue No. I, November-2011, ISSN 2230-9659

An Analysis of Constraint Functional Logic
Programming for Resolving Combinatorial Issues:
Implementations and Application

Meenaxi R. Sangam® Dr. R. A. Khan?
'Research Scholar, CMJ University, Shillong, Meghalaya
*Professor of Mathematics, CMJ University, Shillong, Meghalaya

Abstract — Combinatorial problems appear in many areas in science, engineering, biomedicine, business, and
operations research. This article presents a new intelligent computing approach for solving combinatorial
problems, involving permutations and combinations, by incorporating logic programming. An overview of
applied combinatorial problems in various domains is given. Such computationally hard and popular
combinatorial problems as the traveling salesman problem are discussed to illustrate the usefulness of the logic
programming approach. Detailed discussions of implementation of combinatorial problems with time complexity
analyses are presented in Prolog, the standard language of logic programming. These programs can be easily
integrated into other systems to implement logic programming in combinatorics.

This paper presents a new intelligent computing approach for combinatorics problems by incorporating logic
programming. Permutations, one of the most common and basic topics in combinatorics, appear in many
problems in science, engineering, and business. Applications of permutations and other combinatorics problems
are briefly reviewed. Implementation of permutations is presented in Prolog, the standard language of logic
programming.

We present CFLP(FD), a constraint functional logic programming approach over finite domains (FD) for solving
typical combinatorial problems. Our approach adds to former approaches as Constraint Logic Programming
(CLP), and Functional Logic- Programming (FLP) both expressiveness and further efficiency by combining
combinatorial search with propagation. We integrate FD constraints into the functional logic language TOY. CFL
P(FD) programs consist of TOY rules with FD constraints declared as functions. CFLP (FD) seamlessly combines
the power of CLP over FD with the higher order characteristics of FLP.

INTRODUCTION

Combinatorics, or combinatorial theory, is a major
mathematics branch that has extensive applications in
many fields. They include engineering, computer science,
natural and social sciences, biomedicine, operations
research, and business [5]. Particular areas that have
extensive applications of combinatorics such as
permutations and combinations include: communication
networks, cryptography and network security; computer
architecture; electrical engineering; computational
molecular biology; languages both natural and computer;
pattern analysis; scientific discovery; databases and data
mining; scheduling problems in operations research; and

_____ Y — - -

simulation. Other areas of applications include: complexity
analysis, recursion, games, and statistical mechanics.

The most common scenario is that many real world
problems are mathematically intractable. In these cases,
combinatorics techniques are needed to count, enumerate,
or represent possible solutions in the process of solving
application problems. Generation of combinatorial
sequences has been studied extensively because of the
fundamental nature and the importance in practical
applications. Most combinatorics algorithms and programs,
however, have employed classical, non-intelligent
approaches. For advanced combinatorics problems,
intelligent computing becomes necessary, and this is the
major focus of this paper.

Available online at www.ignited.in
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

Page 1

Journal of Advances in Science and Technology
Vol. I, Issue No. I, November-2011, ISSN 2230-9659

Logic programming has been playing an important role in
intelligent computing. With much simplification, an
abstraction of the human intelligence process is logic, and
its computer realization is logic programming. Logic
programming has been applied widely to every domain of
intelligent computing, including knowledge-based systems,
machine learning, data mining, scientific discovery, natural
language processing, compiler writing, symbolic algebra,
circuit analysis, relational databases, image processing,
and molecular biology.

It is one of the best tools to work on any form of intelligent
computing, and this is why we integrate logic programming
with combinatorics problems. In the following, we discuss
how the basic generating problems in combinatorics can
be implemented in logic programming, especially in Prolog.
Real world hard combinatorics problems are discussed to
illustrate the usefulness of the logic programming
approach.

COMBINATORICS
PROGRAMMING

EXECUTION IN LOGIC

In the following, Prolog implementation for permutations is
presented that generates all possible elements
(permutations). If only partial elements are required, they
can be generated by placing the screening conditions
within or outside the programs. Previously, Prolog solutions
for only a special case of permutations of n items taken
from a pool of n (rather than more general r, where r < n)
items, has been reported. Other common combinatorics
problems can be implemented and analyzed in similar
ways. These problems include: permutations with item
repetitions; combinations; and combinations with item
repetitions. For practical applications, these programs can
readily be integrated into other Prolog programs. A reader
who is also interested in dealing with sets in Prolog may
refer to [6], [7].

The program described here generates permutations in
lexicographic order. For example, in lexicographic order,
permutations of (1, 2) will be (1, 2), (2, 1), rather than (2,
1), (1, 2). Usually lexicographic is the most convenient way
of organizing permutations or combinations.

Preliminaries :

Representation of items (elements) - Generally, items can
be represented in various ways such as [adams, brown,
carter], or simply [a, b, c] or [1, 2, 3]. The programs in this
article work for any form of item representation. We use the
letter representation of [a, b, ...] for illustration.

Utility procedures - The following two basic procedures will
be used.

% deletex(L, X, L1) deletes element X from L giving L1.
% e.g., deletex([a, b], b, [a]).

deletex([X | Lt], X, Lt).
deletex([X | Lt], Y, [X | Ls]) :- deletex(Lt, Y, Ls).

% addx(LL, X, LLa, LL1) first inserts element X at the beginning
% of every element list of LL then this resulting list is appended
% by LLa giving LL1. e.g., addx([[a, b], [c, d]], x,

% [le, £1, [9, h11, [[x, a, b1, [x, c, d], [e, £1, [g, h1D.

addx([], _, LLa, LLa).

addx([L | LLt], X, LLa, [[X | L] | LL1]) :- addx(LLt, X, LLa, LL1).

In the following, although standard definitions of nPr is the
number of permutations, we use this expression as an
"icon" to represent permutations themselves.

Permutations, R Items out of N Items :

The following program generates list LL of sublists, where
each sublist is a permutation of R items taken at a time
from a pool L of N items. We recall R < N. A special case
of nPr, where N = R, i.e., nPn is a common combinatorics
problem whose solutions are found in Prolog books [1], [4].
In the next section we will show that the complexity of
procedure nPr(L, R, LL) is O(n! /(n — R)!) = O(nPR). Hence,
the order of the complexity is optimal.

% nPr(L, R, LL) generates permutations of elements of L, taken R
% elements at a time giving LL.
% e.g., nPr([a, b], 2, [[a, b], [b, all).

nPr(_, 8, [[1D.
nPr(L, R, LL) :- R >= 1, permsub(L, L, R, LL).

% permsub(Ls, L, R, LL), where Ls is a subset of L, generates all

% permutations of R elements starting with an element in Ls followed
% by all permutations of length R - 1 consisting of the remaining

% elements in L, giving LL. e.g.,

% permsub([b, c], [a, b, <], 2, [[b, a], [b, <], [c, al], [c, b]]).

permsub([1, _, _, [D.
permsub([X | Lt], L, R, LL) :- R1 is R - 1, deletex(L, X, L1),
permsub(Lt, L, R, LL2), addx(LL1l, X, LL2, LL).

APPLICATION ASPECTS OF COMBINATORICS

Here we discuss past successful application domains that
involve combinatorics with future potentials for
incorporating logic programming. Since the field is
extremely broad, we will consider only selected examples.
Obviously, there are many other possibilities. This section
serves as a brief survey of combinatorics applications in
many fields.

Communication networks, cryptography and network
security - Permutations are frequently used in
communication networks and parallel and distributed

Available online at www.ignited.in
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

Page 2

Journal of Advances in Science and Technology
Vol. I, Issue No. I, November-2011, ISSN 2230-9659

systems (Massini, 2003; Yang and Wang, 2004). Routing
different permutations on a network for performance
evaluation is a common problem in these fields. Many
communication networks require secure transfer of
information, which drives development in cryptography and
network security (Kaufman, et al., 2003; Stallings, 2003).
This area has recently become particularly significant
because of the increased use of internet information
transfers. Associated problems include protecting the
privacy of transactions and other confidential data transfers
and preserving the network security from attacks by
viruses and hackers. Encryption process involves
manipulations of sequences of codes such as digits,
characters, and words. Hence, they are closely related to
combinatorics, possibly with intelligent encryption process
that can employ logic programming. For example, one
common type of encryption process is interchanging--i.e.,
permuting parts of a sequence (Nandi, et al., 1994).
Permutations of fast Fourier transforms are employed in
speech encryption (Borujeni, 2000).

Computer architecture - Design of computer chips involves
consideration of possible permutations of input to output
pins. Field-programmable interconnection chips provide
user programmable interconnection for a desired
permutation (Bhatia ~and Haralambides, 2000).
Arrangement of logic gates is a basic element for computer
architecture design (Tanenbaum, 1999).

Computational molecular biology - This field involves many
types of combinatorial and sequencing problems of items
such as atoms, molecules, DNAs, genes, and proteins
(Combinatorial Pattern Matching, 1992-2009; Doerge and
Churchill, 1996; Chiang and Eisen, 2001; Siepel, 2003).
One-dimensional sequencing problems are essentially
permutation problems under certain constraints. One of the
most successful domains of logic programming in terms of
practicality is said to be molecular biology. Some of these
practical applications include: formulating rules that
accurately predict the activity of untried drugs; predicting
the capacity of a chemical agent to cause permanent
alteration of the genetic material within a living cell; and
predicting the secondary structures of a protein given a
sequence of amino acid residues (Muggleton, 1999).

Languages - Both natural and computer languages are
closely related to combinatorics (Combinatorial Pattern
Matching, 1992-2009). This is because the components of
these languages, such as sentences, paragraphs,
programs, and blocks, are arrangements of smaller
elements, such as words, characters, and atoms. For
example, a string searching algorithm may rely on
combinatorics of words and characters. Direct applications
of this can include word processing and databases.
Another important application area is performance analysis

of these string searching algorithms. The study of
computability--what we can compute and how it is
accomplished--draws heavily on combinatorics. Logic
programming has played important roles in natural and
computer language processing, including parsing and
compiler writing. The major reason for its prominence is
because logic programming is a powerful tool for symbolic
string and list processing. Logic programming is also useful
for semantic analysis of languages. Hence, a combination
of logic programming and combinatorics is a natural
intersection, which can lead to many applications.

Pattern analysis - In a broad sense, all the above-
mentioned areas can be viewed as special cases of pattern
analysis. Molecular biology, for example, studies patterns
of atoms, molecules, and DNAs whereas languages treat
patterns of sentences, words, and strings. Patterns can
have many other forms; for example, visual images,
acoustic signals, and other physical quantities such as
electrical, pressure, temperature, etc. Patterns can also be
abstract without any associated physical meaning. These
patterns may be represented in various ways such as
digital, analog, and other units. Some of these types of
patterns can be associated with combinatorics. There has
been extensive research on combinatorial pattern matching
(Combinatorial Pattern Matching, 1992-2009). Computer
music can be a specialized application domain of
combinatorics of acoustic signals. Logic programming is a
useful tool for pattern matching and analysis, including
combinatorial ones.

Operations research - Many optimization problems in
operations research (OR) involve combinatorics. The job
scheduling problem is essentially a sequencing problem to
determine the order of jobs to be processed in an effort to
minimize the total time, cost, etc. Here, jobs can be in a
computer system, network, or processing plant. Many
problems involving graphs or networks also deal with the
order of vertices and edges. The traveling salesperson
problem is to determine the order of cities to be visited to
minimize the total distance (Matsumoto and Yashiki, 1999).
The shortest path problem of a graph is to determine a
sequence of edges, the total length of which is minimum.
Oftentimes, these problems are computationally difficult--
e.g., NP-complete or NP-hard--and, therefore, require
extensive research. It is quite conceivable that intelligent
computing involving logic programming can make
significant contributions in this field. For example, a hybrid
system may integrate traditional OR and logic
programming techniques. The latter can include
knowledge-based and database systems, machine
learning, natural language interface, symbolic algebra,
network analysis, and pattern analysis. These techniques
may help intelligent manipulation of the target data. For
example, from a set of solution sequences, underlying

Available online at www.ignited.in
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

Page 3

Journal of Advances in Science and Technology
Vol. I, Issue No. I, November-2011, ISSN 2230-9659

rules may be derived and utilized for more efficient future
computation. Deriving underlying rules from a set of
patterns is quite common in logic programming (Bratko,
2001; Muggleton, 1999).

COMPUTATIONAL MODELS

Constraint logic programming (briefly, CLP) [19] is a
programming paradigm that is particularly well suited for
encoding combinatorial optimization problems. CLP
naturally merges two declarative paradigms: constraint
solving and logic programming.

)3

Let~be a

:)
signature

logic

(F,V,TUTIG)

language

, where

. *Fis a finite set of function and constant symbols
. V is a denumerable collection of variables

. ITUIlcis a finite set of predicate symbols,

I1

where**and I—[C'are disjoint sets.
A constraint is a first-order formula over(F.V.Ilc),
Typically, constraints are con junctions of literals,

eg, 0 <X, X <3, X+Y #4 polowing the traditional
logic programming notation, a comma indicates a
conjunction, capital letters denote variables, and the

symbol :— denotes the implication—. CLP lets a
programmer use different classes of constraints and
domains to encode problems. For combinatorial problems,
it is common to use finite domain constraints. namely
arithmetic constraints between arithmetic expressions,
where each variable is associated to a finite domain of
possible values. In this case the interpretation of variables,

expressions, and constraints is over Z

A CLP program over Zis a finite set of rules of the form
gy 5 8 Jo— O L 55) GollET®, s Sl
]
where C is a constraint.”% and J are(%> 1/)-terms,
78I 0 7 .
ang? 91 Im qre predicate symbols of H.

Observe that a CLP program without constraints is in fact a
Prolog program.

In contrast to classic generate-and-test approach of logic
programming, CLP usually uses a constraw-and-generate
technique in which an initial deterministic phase imposes a
number of constraints, then a non-deterministic phase

generates/explores the solution space. In the constraint
phase, in particular, a finite domain of values is assigned to
each of the variables. For instance, the constraint domain (
[A, B, C] ,1,5) assigns the set of admissible values
{1,2,3,4,5} to the variables A. B. and C. The built-in
predicate labeling implements the solution search process.
Each time a variable is assigned a value, a deterministic
propagation stage is executed, pruning the set of values to
be attempted for the other variables. Various options
(affecting, for instance. the variable selection criteria, the
ordering of the attempted values, etc.) can be used to
guide the search. The main structure of a program using
this programming style is the following:

solve problem(X1l,...,Xn) :-
constrainti(Xl ;... ;Xn).;
labeling([options], X1,...,Xn).

A CLP(FD) system executes program according to goals
provided by the user, where a goal is a conjunction of
literals. Given a program P and a goala'1 yree (1,;;, the
program will determine the instantiations @ of the variables
. Y

in the goal such that /((11 """ CI.A.)O
consequence of P.

is a logical

EXPERIMENTAL SYSTEM

The experimental studies reported in this paper have been
mainly conducted using two CLP(FD) implementations and
two ASP solvers. The CLP(FD) programs have been
designed for execution by SICStus Prolog 3.11.2 (using the
library clpfd) and GNU-Prolog 1.2.16—though the code is
general enough to be used on other platforms, such as B-
Prolog and ECLiPSe, with minimal syntactic adjustments
[37]. The ASP programs have been designed to be
processed by Iparse, the grounding preprocessor adopted
by both the SMODELS (version 2.28) and the CMODELS
(version 3.03) systems [36]. The CMODELS system makes
use of a SAT solver to compute answer sets—in our
experiments we used both the default SAT solver, mChaff
[28], and Simo [17].

Some experiments have been performed using the SAT
solvers zChaff and RelSat. We do not report here results
concerning them—the interested reader is referred to [9]
for such results. SAT-based ASP solvers, such as
CMODELS, take advantage of the tightness of the ASP
programs [20]. In presence of non-tight programs,
CMODELS is forced to repeatedly call the SAT solver in
order to reach a solution. This is done to discard those
models of the program that are not answer sets, trying to
avoid the introduction of a potentially exponential number
of loop formulae [23].

Available online at www.ignited.in
AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

Page 4

Journal of Advances in Science and Technology
Vol. I, Issue No. I, November-2011, ISSN 2230-9659

We focused on well-known computationally-hard problems.
Among them: Graph k-coloring, Hamiltonian circuit, Schur
numbers, protein structure prediction in a 2D lattice [3],
planning in a block world, generalized Knapsack, and code
design. While some of the programs have been drawn from
the best proposals appeared in the literature, others are
novel solutions, developed by the authors for this project—
e.g., this is the case for the ASP implementation of the
protein structure prediction problem and the planning
implementation in CLP(FD).

CONCLUSION

The complexities of the programs for the four basic types
of permutations and combinations presented are the same
or close to their basic mathematical requirements (for
example, to generate all permutations of R items taken
from a pool of n items, it requires n! / (n — R)!
computations). Hence, the programs should be optimal or
near optimal in terms of the order of their complexities.
These programs can readily be employed for intelligent
approaches for advanced combinatorics problems,
involving processes such as inference and the use of
background knowledge.

In this paper, we described an experimental study aimed at
comparing the performance of CLP(FD) and ASP on
various classes of combinatorial problems. The aim of the
study is to provide a better understanding of what makes
one paradigm more suitable than the other in solving
combinatorial problems.

Combinatorics problems, such as permutations and
combinations, have extensive applications and have mostly
been studied by classical methods. This article suggests
intelligent computing approaches for advanced
combinatorics problems by employing logic programming.
The approaches may involve processes such as inference
and the use of background knowledge. Future studies

REFERENCES

) Dovier, A. Formisano, and E. Pontelli. A
comparison of CLP(FD) and

. ASP in tackling hard combinatorial problems.

. Bratko 1., 2001, Prolog Programming for Atrtificial
Intelligence, 3rd, Ed., Addison-Wesley, Waokingham,
England.

. Combinatorial Pattern Matching;In: Proceedings of

Annual Symposiums. Lecture Notes in Computer Science.
(1992-2000). Springer, Berlin.

. D. Diaz and P. Codognet. Design and
Implementation of the GNU-Prolog System. J. of
Functional and Logic Programming, 2001(6), 2001.

o J. Jaffar and M. J. Maher. Constraint Logic
Programming: A Survey. J. of Logic Programming,
19/20:503-581, 1994.

. Kapralski, Adam. (1993). New methods for
generation of permutations, combinations, and other
combinatorial objects in parallel, Journal of Parallel and
Distributed Computing 17(4): 315-326.

. Liu, Chung Laung. (1968). Introduction to
Combinatorial Mathematics, Computer Science Series,
New York, McGraw-Hill, Chapter 1.

. M. Dincbas, Il. Simonis, and P. Van Hentenryck.
Solving Large Combinatorial Problems in Logic
Programming. Journal of Logic Programming, 8(I-2):75—
93,1990.

o M. Gelfond and V. Lifschitz. The Stable Model
Semantics for Logic Programming. In Proc. of ICLP88, pp.

include actual implementations and comprehensive 1070-1080,MIT Press, 1988.
experiments of these new systems.

) Munakata T., 1998, Fundamentals of the New
We have presented CFLP(FD), a functional logic Artificial Intelligence: Beyond Traditional Paradigms,
programming approach to FD constraint solving, which we Springer-Verlag, New York.
think may be pro_tably applied to solve typical problems in
the arti_cial intelligence area. We have shown how FD ® P. Van Hentenryck. Constraint Satisfaction in Logic
constraints can be de ned as functions and therefore ~ Programming. The MIT Press, 1989.
integrated naturally on FLP languages. Due to its functional]) _
component, CFLP(FD) provides better tools, when *° Roberts, Fred S. (1984). Applied Combinatorics,
compared to CLP(FD), for a productive declarative Englewood Cliffs, New Jersey, Prentice-Hall.
programming. Due to the use of constraints, the
expressivity and capabilities of our approach are clearly
superior to both those of the functional and purely
constraint program-ming approaches.
Available online at www.ignited.in Page 5

AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

