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Abstract — Information in the cortex is widely believed to be represented by the joint activity of neuronal
populations. Developing insights into the nature of these representations is a necessary first step in our
quest to understanding cortical computation. Our analyses confirm that spontaneous activity is highly
structured and statistically different from noise. Our analyses confirm that spontaneous activity is highly

structured and statistically different from noise.
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INTRODUCTION

Information in the cortex is thought to be represented
by the joint activity of neurons. A more principled
approach for analyzing the structure of population
activity was introduced in a theoretical study by
Goldberg et al (2004). These investigators studied the
possibility of using of a single real-valued statistic, the
correlation coefficients between one of the measured
states (the 'reference state') and the remaining ones,
to differentiate among the presence of a single
background state and the presence of a ring attractor.
The basic idea is that the shape of this distribution
conveys information about the encoding. To illustrate
this point they derived the distribution of correlation
coefficients in a case where multiple features are
mapped to a high-dimensional unit sphere (a scenario
they referred to as a 'combinatorial encoding’) and
when different variables map into separate manifolds
(a scenario they called 'unary encoding’). The
topological structure of activity patterns when the
cortex is spontaneously active is similar to those
evoked by natural image stimulation and consistent
with the topology of a two sphere.

ALGEBRAIC TOPOLOGY

Algebraic Topology is a sub branch of Topology. The
motivating insight behind topology is that some
geometric problems depend not on the exact shape of
the objects involved, but rather on the way they are put
together. For example, the square and the circle have
many properties in common: they are both one
dimensional object (from a topological point of view)
and both separate the plane into two parts, the part
inside and the part outside. Another way of putting it is
that topology attempts to understand the global
connectivity of an object by considering how the object

is connected locally. Objects are assigned classes
such that two objects in the same class exhibit the
same connectivity. For example, the square and the
circle are be in the same class, but the sphere and
the circle are not.

Algebraic Topology studies properties of objects (in
technical terms: topological spaces) and maps
between them, in particular, it identifies intrinsic
properties of objects by transforming them in certain
ways and observing which properties do not change.
We call these properties invariants of the space. The
kind of transformations that we will be interested in
are called homotopy equivalences. we are
representing graphical examples which attempt to
convey the idea behind the definition.

Informally, Algebraic Topology, because of its use of
homotopy equivalences, is sometimes referred to as
“rubber sheet geometry" in the sense that it is
oblivious to the fact that by stretching the same piece
of rubber one can obtain different looking objects, all
it cares about is that it was the same piece of rubber
that was deformed in certain ways to produce
differently looking objects. It therefore is concerned
with certain intrinsic properties of objects.

When two spaces X and Y are related by such a
transformation, we will say that X and Y are
(homotopy) equivalent and write X ~ Y . When no
such transformation exists between X and Y we write
X ~/ Y. Below diagram shows examples of spaces
that are and are not homotopy equivalent.

Description of topological analysis:

Consider a world where objects are made of elastic
rubber. Two objects are considered equivalent if they
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can be deformed into each other without tearing the
material. If such a transformation between X and Y
exists, we say they are topologically equivalent and
write X ~ Y; this notion of equivalence is illustrated in
the following diagram.
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This notion of counting holes of different dimensions is
formalized by the definition of Betti numbers. The Betti
numbers of an object X can be arranged in a
sequence, b(X) = (b0, b1, b2, 1), where b0 represents
the number of connected components, bl represents
the number of one dimensional holes, b2 the number
of two-dimensional holes, and so forth. An important
property of Betti sequences is that if two objects are
topologically equivalent they share the same Betti
sequence.
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(1,0,0,0,...)

(1,1,0,0,.. (1,2,1,0,..

(1,21,0,...)  (1,0,1,0,...)

Betti numbers provide a signature of the underlying
topology. lllustrated in the Igure are !ve simple objects
(topological spaces) together with their Betti number
signatures: (a) a point, (b) a circle, (c) a hollow torus,
(d) a Klein bottle, and (e) a hollow sphere. For the
case of the torus (c), the !gure shows three loops on
its surface. The red loops are “essential’ in that they
cannot be shrunk to a point, nor can they be deformed
one into the other without tearing the loop. The green
loop, on the other hand, can be deformed to a point
without any obstruction. For the torus, therefore, we
have bl = 2. For the case of the sphere, the loops
shown (and actually all loops on the sphere) can be
contracted to points, which is re"ected by the fact that
bl = 0. Both the sphere and the torus have b2 = 1, this
is due to the fact both surfaces enclose a part of space
(a void).

Topological perspective on graph theory

One of the most basic and important building blocks of
graph theory is the notion of “connectedness”. The
same word also has a very important meaning in the
field of general topology; indeed, arguably the latter
subject grew precisely out of the efforts of several
mathematicians to give the right formalization for
concepts like “continuity”, “convergence”, “dimension”
and, not least, connectedness. Although formally the
two concepts are very different, one depending on
finite paths and the other on open sets, the intuition
behind the two versions of connectedness is
essentially the same, and few will dispute that any link
between graph theory and topology should at least
reconcile them, if not be entirely dictated by this
objective. In fact the usual way of modeling a graph as
a topological object does achieve this, albeit in a way
which, we feel, is not entirely satisfactory.

Traditionally, a graph is modeled as a one-
dimensional cell-complex2, with open arms for edges
and points for vertices, the neighbourhoods of a
“vertex” being the sets containing the vertex itself and
a union of corresponding “tails” of every “edge” (arc)
incident with the vertex. If the graph is planar, this is
equivalent to taking the subspace topology inherited
from the Euclidean plane by an appropriate “drawing”
of the graph. If the graph is finite, one can always
place the vertices in three-dimensional Euclidean
space, and join up pairs of adjacent vertices by
pairwise disjoint open arcs (whose accumulation
points are the two adjacent vertices) so that the union
of the arcs together with the set of vertices inherits
the topology of a cell-complex with the above
restriction. Also, in the finite case, this concept
coincides with that of a graph in continuum theory
RELAXING THE
REQUIREMENT

COMPATIBILITY

A class of topological space retains some of the
properties of the classical topology of a simple graph.

Definition 1:

A topologized graph is a topological space X such
that

. every singleton is open or closed;
. vx € X, |9(x)] <

Note that, in any S1 space, the set E of points which
are not closed is open, and therefore its complement,
V, is closed. Thus the closure of any subset A of E, in
particular any singleton, is of the form E U B for some
BcV,ando(A)=B

Therefore a “topologized graph” has an underlying
combinatorial structure, as well as a topological one.
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CONCLUSION:

We have analyze that computational topology can help
address basic questions about the encoding of in
sequence by neuronal populations. The result of the
analysis is a topological characterization of the activity,
which provides qualitative information about its
structure, such as the number of clusters and loops in
the activity patterns. The paper contains about the
topological perspective on graph theory. A graph
consists of vertices and edges. We have mentioned
relaxing the compatibility requirement that we can
meaningfully apply to our spaces. An edge is an open
singleton whose boundary consists of the incident
vertices.
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