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Abstract – In this paper we present about to show a structure theorem for multiplicative functions on the 
Gaussian integers which perform that each delimited multiplicative purpose on the Gaussian integers can be 
decayed addicted to a term which is about periodic and one more which has a small U 

3
 - Gowers uniformity 

norm.  
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INTRODUCTION: 

Structure theory in the finite setting - The structure theorem 
for functions on Z d is a significant tool in preservative 
combinatory. It has been deliberate broadly in [1-9]. 
Roughly speaking, the structure theorem says that every 
function f can be decomposed into one part with a good 
uniformity property, meaning it has a small Gowers norm, 
and another with a good structure, meaning it is a 
nilsequence with bounded complexity. A natural question 
to ask is: can we get a better decomposition for functions f 
satisfying special conditions? For example, Green, Tao 
and Ziegler [5-7] gave a refined decomposition result for 
the von Mangoldt function Λ. They showed that under 
some modification, one can take the structured part to be 
the constant 1. 

The Gaussian integers  

Z[i] and its norm - Real quadratic ring Z[ √ n] (meaning Z[ √ 

n] ⊆ R) may accustomed to resolve Pell’s equation x 2 − 
ny2 = 1 since, over Z[ √ n], x 

2
 − ny

2
 factors as x 

2
 − ny

2
 = 

(x + y √ n)(x − y √ n). Specially, we defined the conjugate 
of an element α = x + y √ n to be α = x − y √ n, and then the 
norm to bet N: Z [√ n] → Z by N (α) = αα = x 

2
 − ny

2
. So the 

solutions to Pell’s equation are exactly the elements of 
norm 1 in Z [√ n], which we showed form a group under 
multiplication that is generated by two rudiments € and −1. 
Correspondingly if one needs to study the equation x 

2
 + 

ny
2
 = k it makes sense to look at the fantasy quadratic ring 

Z [√ −n] (meaning Z [√ −n] ⊆ C and Z [√ −n] 6⊆ R). The 
fantasy quadratic rings can be treated in the same basic 
way as the real quadratic rings theoretically, however their 
flavor is quite different. For example x 

2
 + ny

2
 = 1 has only 

finitely many solutions, but x 
2
 − ny

2 
= 1 has infinitely many 

(for n nonsquare). For the time being, we will immediately 
treat the simplest case, the Gaussian integers, which were 
first studied in detail by Gauss. This ring is related to 
questions about Pythagorean triples, and more usually, 
which numbers are sums of two squares. 

Definition: 

The Gaussian integers are the ring 

 Z[i] = {a + bi: a, b £ Z}.  

For α = a + bi, the conjugate of α is α = a − bi, and the 
norm is N (α) = |α| 2 = αα = a 2 + b 2. Note that if we draw 
α as a vector in the complex plane, c = |α| denotes the 
length of this vector, so the norm of α is just the square of 
the length of the vector α, i.e., N (α) = c 2. Hence the 
formula for the norm is precisely the Pythagorean 
Theorem: αα = a 2 + b 2 = c 2 = N (α). 

The reason we want the norm to be the square of the 
length, instead of just the length is because c 2 is always 
an integer, but c rarely is, e.g., 1 2 + 12 = √ 2 2 . With this 
definition, the norm is a map from the ring Z[i] into the ring 
of integers Z, N : Z[i] → Z. 

Finite fields again  

We won’t find any examples of finite integral domains that 
aren’t fields because there aren’t any.  

Theorem: If R is a finite integral domain, then R is a field. 
Proof. Let x be a nonzero element of R. Consider the 
positive powers of x: x, x

2
, x

3
, ..., x

n
 . . . .  
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Since there are infinitely many powers, but only finitely 
many elements in R, therefore at least two distinct powers 
are equal. Let, then, x m = x n with m < n. Cancel x m from 
each side of the equation to conclude x n−m = 1. 
Therefore, the reciprocal of x is x n−m−1. Therefore, every 
nonzero element has an inverse.  

This theorem can be used to give a short proof that Zp is a 
field when p is a prime, since it’s easy to show that Zp is an 
integral domain. We’ll show it has no zero-divisors. 
Suppose that xy ≡ 0 (mod p). Then p|xy. But if a prime 
divides a product, it divides one of the factors, so either p| x 
or p| y, in other words, either x ≡ 0 (mod p) or y ≡ 0 (mod 
p). Thus, Zp is an integral domain, and hence, by the 
above theorem, it’s a field. Our earlier, more complicated 
proof used the extended Euclidean algorithm to find an 
inverse for x. That’s actually a much more efficient way to 
find the inverse than to look through the powers of x. 

CONCLUSION: 

In this paper we found that one important instance of an 
integral domain is that of the Gaussian integers Z[i]. Its 
elements are of the form x + yi where x, y b £ Z, so they 
can be viewed as a lattice of points in the complex plane. 
We can make sure that Z[i] is closed under addition, 
subtraction, multiplication, and includes 1, so it is a subring 
of the field C. Therefore, it’s an integral domain. 
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