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Abstract — In this paper we present about to show a structure theorem for multiplicative functions on the
Gaussian integers which perform that each delimited multiplicative purpose on the Gaussian integers can be
decayed addicted to a term which is about periodic and one more which has a small U ® . Gowers uniformity

norm.
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INTRODUCTION:

Structure theory in the finite setting - The structure theorem
for functions on Z d is a significant tool in preservative
combinatory. It has been deliberate broadly in [1-9].
Roughly speaking, the structure theorem says that every
function f can be decomposed into one part with a good
uniformity property, meaning it has a small Gowers norm,
and another with a good structure, meaning it is a
nilsequence with bounded complexity. A natural question
to ask is: can we get a better decomposition for functions f
satisfying special conditions? For example, Green, Tao
and Ziegler [5-7] gave a refined decomposition result for
the von Mangoldt function A. They showed that under
some modification, one can take the structured part to be
the constant 1.

The Gaussian integers

Z[i] and its norm - Real quadratic ring Z[ v n] (meaning Z[ ¥
n] € R) may accustomed to resolve Pell’'s equation x 2 -
ny2 = 1 since, over Z[ V n], x > = ny® factors as x * - ny* =
(x + y ¥ n)(x - y ¥V n). Specially, we defined the conjugate
of an elementa =x+y\ ntobe a=x-y~< n,and then the
norm to bet N: Z [V n] — Z by N (0()=cxcx=x2—ny2. So the
solutions to Pell’s equation are exactly the elements of
norm 1 in Z [\ n], which we showed form a group under
multiplication that is generated by two rudiments € and -1.
Correspondingly if one needs to study the equation x 2+
ny” = k it makes sense to look at the fantasy quadratic ring
Z [V -n] (meaning Z [\ -n] € C and Z [\ -n] 6€ R). The
fantasy quadratic rings can be treated in the same basic
way as the real quadratic rings theoretically, however their
flavor is quite different. For example x * + ny” = 1 has only

finitely many solutions, but x 2 - ny2 = 1 has infinitely many
(for n nonsquare). For the time being, we will immediately
treat the simplest case, the Gaussian integers, which were
first studied in detail by Gauss. This ring is related to
questions about Pythagorean triples, and more usually,
which numbers are sums of two squares.

Definition:
The Gaussian integers are the ring
Z[il={a+bi:a,b £z}

For a = a + bi, the conjugate of a is a = a — bi, and the
normis N (a) = |a| 2 = aa = a 2 + b 2. Note that if we draw
a as a vector in the complex plane, ¢ = |a| denotes the
length of this vector, so the norm of a is just the square of
the length of the vector a, i.e., N (a) = ¢ 2. Hence the
formula for the norm is precisely the Pythagorean
Theorem:oaa=a2+b2=c2=N (a).

The reason we want the norm to be the square of the
length, instead of just the length is because c 2 is always
an integer, but crarely is, e.g., 12 + 12 = \ 2 2 . With this
definition, the norm is a map from the ring Z[i] into the ring
of integers Z, N : Z[i] — Z.

Finite fields again

We won'’t find any examples of finite integral domains that
aren’t fields because there aren’t any.

Theorem: If R is a finite integral domain, then R is a field.

Proof. Let x be a nonzero element of R. Consider the
positive powers of x: X, X2, X
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Since there are infinitely many powers, but only finitely
many elements in R, therefore at least two distinct powers
are equal. Let, then, x m = x n with m < n. Cancel x m from
each side of the equation to conclude x n-m = 1.
Therefore, the reciprocal of x is x n—-m-1. Therefore, every
nonzero element has an inverse.

This theorem can be used to give a short proof that Zp is a
field when p is a prime, since it's easy to show that Zp is an
integral domain. We’ll show it has no zero-divisors.
Suppose that xy = 0 (mod p). Then p|xy. But if a prime
divides a product, it divides one of the factors, so either p| x
or p| y, in other words, either x = 0 (mod p) or y = 0 (mod
p). Thus, Zp is an integral domain, and hence, by the
above theorem, it's a field. Our earlier, more complicated
proof used the extended Euclidean algorithm to find an
inverse for x. That's actually a much more efficient way to
find the inverse than to look through the powers of x.

CONCLUSION:

In this paper we found that one important instance of an
integral domain is that of the Gaussian integers Z[i]. Its
elements are of the form x + yi where x, y b £ Z, so they
can be viewed as a lattice of points in the complex plane.
We can make sure that Z[i] is closed under addition,
subtraction, multiplication, and includes 1, so it is a subring
of the field C. Therefore, it's an integral domain.
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