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ABSTRACT This dissertation characterizes the space of trust metrics, under both the scalar assumption where each 
assertion is evaluated independently, and the group assumption where a group of assertions are evaluated in tandem. We 
present a quantitative framework for evaluating the attack resistance of trust metrics, and give examples of trust metrics 
that are within a small factor of optimum compared to theoretical upper bounds. We discuss experiences with a real world 
deployment of a group trust metric, the Advogato website. Finally, we explore possible applications of attack resistant trust 
metrics, including using it as to build a distributed name server, verifying metadata in peer-to-peer networks such as 
music sharing systems, and a proposal for highly spam resistant e-mail delivery. 

------------------------------------------♦------------------------------------- 

 

1. INTRODUCTION 

In today’s world of open, decentralized networks, the 
question of trust is becoming increasingly relevant. Most 
existing Internet protocols implement a naive policy of 
providing a relatively limited set of services, but trusting all 
users with them. Given that a significant fraction of Internet 
users are not trustworthy, the inevitable result is spam, 
denial of service attacks, cracking, and a host of other ills 
far too familiar to legitimate Internet users.  

A number of approaches have been developed and 
deployed over the years, with varying degrees of success. 
The most basic is the model of password-protected 
accounts. This mechanism is almost universally deployed, 
but suffers from serious limitations, including the need for 
servers to manage the accounts, the need for users to 
keep track of a large number of passwords, and the 
relative lack of security provided by this model. Thus, there 
has been a sustained interest in more sophisticated 
models. 

One such approach is the Public Key Infrastructure, or PKI 
[6]. Briefly, a PKI consists of various Certification 
Authorities (or CA’s) that issue certificates asserting a 
binding between a name and a public key. PKI’s suffer 
from two fundamental problems: the lack of useful meaning 
in the PKI’s underlying namespace, and the question of 
which CA to trust. Actual implementations of CA’s have 
proved themselves not worthy of absolute trust. Further, as 
the number of CA’s deployed scales up, the risk of any one 
of them being compromised scales accordingly. In part 
because of these two problems, PKI’s have met with 
limited success at best. 

Spurred on by these limitations, much recent attention has 
been focussed on the explicit encoding and evaluation of 
trust relationships. A pioneering work in this area is the 
Policy Maker framework of Matt Blaze[5]. A particularly 
interesting branch of this work is the concept of trust 
metrics, which are the primary focus of this thesis. 

Trust metrics are based on the principle of local encoding 
of trust relationships, but granting trust on a global scale. 
These assumptions closely parallel the philosophy of peer 
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to peer networks [26]. While the literature is rich with 
design proposals for trust metrics, there has been relatively 
little analysis of how well they work in practice. In Chapter 
2, we show that, under assumptions similar to the Internet, 
the entire category of “scalar” trust metrics fails to resist 
easily-mounted attacks. Attacks against these poor trust 
metrics dot the literature [31], and have been used to argue 
(incorrectly) that a centralized identity service is 
needed[13]. 

While the outlook for scalar trust metrics is indeed bleak, 
we propose a new class, which we call group trust metrics, 
so called both because the trust metric is very well suited 
to evaluating membership in a group, and because this 
evaluation is done over the entire group of nodes, rather 
than individually for each node. While the group trust 
metric cannot prevent individual hostile nodes from being 
accepted as group members, it can place strict bounds on 
the number of hostile nodes so accepted. 

I built a community website for free software developers, 
called Advogato, that uses this group trust metric to 
determine who belongs to the community. Acceptance by 
the trust metric confers privileges to post articles and 
comments, and to edit project information. At the time of 
this writing, the site has been in operation for about 18 
months, and has built a trust graph of over 1000 active 
nodes. Advogato is notable for the extremely low level of 
trolls, spam, and other forms of abuse common to bulletin 
board type systems, thus providing strong anecdotal 
evidence that the trust metric is effective. Advogato is 
described in more detail in Chapter 4. 

One interesting application of trust metrics is secure 
registration and lookup of public keys bound to names, 
essentially the same problem addressed by Public Key 
Infrastructures (PKI). The attack resistant properties of the 
trust metric avoid the single point of vulnerability common 
to most PKI designs. We present a detailed design for such 
an attack-resistant name service in Chapter 5. The desire 
to build a “better PKI” was the original motivation behind 
the work of this thesis. 

Because the group trust metric is effective in resisting 
attack, it has many other interesting applications. One such 
is an attack-resistant system for distributing metadata, for 
example opinions about songs. Attack resistance can be 
useful for ensuring high quality of the metadata, but 
becomes particularly important when there are financial 
implications to the metadata system, for example to identify 
recipients of voluntary donations to artists who post their 
music to the Net. We propose a design for an attack 
resistant metadata system in Chapter 6. This design 
combines ideas from both the Advogato group trust metric 
and the PageRank algorithm used in Google.  

Another intriguing application for group trust metrics is to 
provide a spam resistant infrastructure for e-mail. Spam is 
a huge problem, causing lots of wasted time for many, and 
most e-mail users feel hopeless in the face of it. We 
present a partial design for a communications 
infrastructure resistant to spam, yet highly permeable to 
legitimate email. This design uses a capacity constrained 
flow network where “stamps” are the commodity of flow. 
Rather than explicitly computing a flow in the network, the 
flow results from local activity. When capacity is exhausted, 
e-mail is no longer deliverable. This design has many 
appealing properties, but several aspects remain as open 
problems, particularly scaling. Chapter 8 presents this 
design and discusses some open issues. 

2. TRUST METRICS 

In this chapter, we review the literature of trust metrics, 
present a quantitative framework for analyzing the attack 
resistance of trust metrics. Finally, we prove tight upper 
and lower bounds on the attack resistance of trust metrics 
given the usual scalar assumptions. 

The simplest trust metric - In this section, we present the 
simplest possible trust metric, which forms the basis of 
other trust metrics in the literature. 

There are three inputs to this trust metric: a directed graph, 
a designated “seed” node indicating the root of trust, and a 
“target” node. We wish to determine whether the target 
node is trustworthy. 

Each edge from s to t in the graph indicates that s believes 
that t is trustworthy. The simplest possible trust metric 
evaluates whether t is reachable from s. If not, there is no 
reason to believe that t is trustworthy, given the data 
available.  

In a cryptographic implementation, each node corresponds 
to a public key, and each edge from s to t corresponds to a 
digitally signed certificate. In the usual terminology, s is the 
issuer, t is the subject. The certificate itself is some string 
identifying t, along with a digital signature of this string 
generated by s. The simplest trust metric is also the 
weakest with respect to attacks. If an attacker is able to 
generate an edge from any node reachable from the seed 
to a node under his control, then he can cause arbitrary 
nodes to be accepted. 

As the size of the reachable sub-graph increases, the risk 
of any such attack increases as well. Thus, the primary 
focus in the literature is to present stronger trust metrics 
that (hopefully) resist attacks better, while still accepting 
most nodes that deserve trust. 
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Section 2.2, discusses a sampling of trust metrics 
previously published. Section 2.3, presents a quantitative 
notion of “attack resistance.” 

Survey of the literature - All trust metrics include the 
three inputs described above: the trust graph, the seed 
node, or trust root, and the target. Some trust metrics add 
more detail to these inputs. Trust edges may contain some 
conditions or restrictions, for example that t is himself 
trustworthy, but cannot be trusted to vouch for other nodes. 
In addition, the target may be a richer assertion than 
merely whether a certain node is trustworthy. For example, 
edges may additionally identify a maximum dollar value, 
and the target may be an assertion that the target node 
can be trusted with a transaction of some dollar value. 

Finally, there may be additional policies to be enforced by 
the trust metric, or parameters supplied. Often, these 
parameters control the overall strictness or tolerance of the 
trust metric. The most general form of “trust management” 
system is represented by PolicyMaker[5], as certificates 
and policies can represent arbitrary computations in 
Turing-complete language. Applications of PolicyMaker 
tend to focus on the language of assertions rather than 
trust computations over the graph, but the fully general 
nature of the system allows the the latter to be 
implemented. 

Most trust metrics in the literature assume monotonicity. 
More precisely, if a monotonic trust metric accepts a node t 
as trustworthy when given a graph G, it will also accept 
node t when given a graph G0 that contains all trust edges 
in G. A primary motivation for this assumption is scaling. In 
particular, it allows for highly efficient overall distributed 
architectures in which all participants need only access a 
small, local subset of the global trust graph. Further, under 
such an assumption, there is no special vulnerability to 
denial of service attacks. With the monotonicity 
assumption, if an attacker can withold trust edges (i.e. 
cause the verifier to evaluate a subset of the global trust 
graph), then it cannot cause nodes to be accepted other 
than those which would be accepted given the entire trust 
graph. 

The simplest trust metric is clearly monotonic. Adding 
edges to the trust graph can only cause more nodes to be 
reachable. Another relatively simple trust metric is similar 
to the simplest one, with the additional constraint that path 
lengths are bounded by some parameter k. Thus, all nodes 
within a distance of k edges from the seed are accepted. 

A variation of this trust metric is used in X.509 systems. 
Perhaps the earliest published system resembling a 
modern trust metric is the Beth, Borcherding, and Klein[3]. 
This system contains a set of elaborate inference rules for 

deriving a “trustworthiness” value between 0 and 1, using 
both “direct trust” and “recommendation trust” relationships 
encoded on edges. However, further work by Reiter and 
Stubblebine [31] showed this trust metric to be no more 
secure than the simple reachability criterion described 
above. Note that the BBK trust metric is not monotonic. 

A still earlier system is described by Tarah and 
Huitema[34], who suggest evaluating both certificates and 
“certificate paths.” They suggest several possible simple 
trust metrics, including the length of the certification path 
and the minimum of involved trust values along the path. 
However, because it evaluates only paths, rather than 
general graphs, this system does not quite meet the 
definition of “trust metric”. 

Reiter and Stubblebine[30] presented the first trust metric 
with the ability to resist nontrivial attacks. Briefly, this trust 
metric counts the number of node-independent paths of 
bounded length from the seed to the target. Thus, both the 
path length and the threshold for the minimum number of 
such paths are tunable parameters of the metric.  

A simple characterization of its attack resistance follows 
easily: an attacker must add “bad” edges to nodes under 
his own control to at least as many nodes as the threshold 
for the number of independent paths. Even though 
evaluation of this trust metric is an NP-complete problem, 
the experimental PathServer implementation seems to 
perform reasonably well in practice. 

Maurer presented an intriguing trust metric based on 
randomized experiments [21]. Very briefly, each edge in 
the network has an associated probability. The result of the 
trust metric is the probability that the target is reachable 
from the seed in a subgraph of the original graph where 
each node is present with the probability given in the 
original graph. 

Both implementation and analysis of the Maurer trust 
metric are challenging. In addition, we present an analysis 
below (Section 2.6) suggesting that the Maurer metric is 
vulnerable to an easily-mounted attack. To do so, we will 
first need to prepare a framework for quantitatively 
evaluating the attack resistance of a trust metric. 

Framework for analysis - What does it mean for a trust 
metric to be attack resistant? In this section, we present a 
quantitative framework for this question. In any given 
attack, we assume that the attacker can add or delete 
edges from the legitimate part of the trust graph, pointing to 
arbitrary nodes. These edges may point directly to nodes 
under the attacker’s control, or perhaps to other good 
nodes, in order to fool the trust metric. 
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We assign a cost to each such attack. A typical cost metric 
is to count the number of edges added. Assuming an 
attack of a given cost, what is the highest number of bad 
assertions the attacker can force to be accepted? If this 
number is limited, the trust metric is attack resistant. If it 
can grow to the same order as the number of good 
assertions even for a fairly low cost attack, then the trust 
metric suffers from catastrophic failure and is not attack 
resistant. 

Cost metrics: node vs edge attacks - We consider two cost 
metrics. The simplest is to count the number of edges 
added. Another useful metric is to count the number of 
“attacked ” nodes with added outedges, and to assume 
that any such node may have an arbitrary number of edges 
added. As we will see later, the attack-resistance 
properties of different trust metrics behave differently under 
these two cost assumptions. Note that, for any given 
attack, the number of nodes counted is no greater than the 
number of edges counted.  

An edge attack corresponds to fooling a victim into 
generating an edge. In many cases, mounting such an 
attack is straightforward. For example, the attacker may 
send a forged email pretending to be a friend of the victim, 
asking for a cert. Many such electronic means of 
transmitting key material suffer from lack of authentication. 

Similarly, a node attack corresponds to taking over the 
victim’s ability to create certificates. Such an attack is 
generally harder than an edge attack, but still feasible. For 
example, anyone with physical access to the victim’s 
machine can recover the private key used to sign 
certificates, for example by using a keyboard sniffer to 
recover the encryption key used to protect the private key. 

Edge attack: number of certs. Corresponds to fooling the 
victim once. Protection against node attack is a stronger 
property than protection against edge attack. Attack of a 
single node can correspond to an arbitrary number of 
edges. 

Another factor in trust metric: how many certs are needed? 
At simplest, in degree of target node. We analyze two 
classes of attacks: one in which the attacker is able to 
choose the victims, and another in which the victims are 
chosen randomly. The former class of attack is at least as 
effective as the latter, and, not surprisingly, we find that it in 
most cases it is considerably more so. This result parallels 
the literature in scale-free networks, in which removing the 
“hubs” in a scale-free network with hub-and-spoke topology 
is far more effective in fragmenting the network than simply 
removing random nodes. 

Analysis: upper bounds - Strict upper bounds on 
effectiveness of trust metric. For node attack, if n nodes 
are attacked, entire system falls, where n is minimum 
indegree of target node. Proof: attacker chooses target that 
is accepted (with minimum indegree), and chooses its 
predecessors as victims. Since indegree is n, attack is n 
nodes. Removing the original target, the graph is identical 
to the one in which the original target is accepted, so the 
trust metric can’t distinguish. For edge attack, if n2 nodes 
are attacked, entire system fails. Choose target as above, 
then spoof inedges of predecessors of target. 

3. GROUP TRUST METRICS  

This chapter presents the concept of group trust metrics, 
which have significantly better attack resistance properties 
than trust metrics under the scalar assumption. The key 
feature of a group trust metric is that it calculates a trust 
value for all the nodes in the graph at once, rather than 
calculating independently the trust value independently for 
each node. Thus, a successful attack causing one bad 
node to be trusted need not necessarily result in 
catastrophic compromise of the trust metric. Indeed, in this 
chapter we will present a simple trust metric, also based on 
max-flow over the trust graph, which has significantly better 
attack resistance than the theoretical best-case for scalar 
trust metrics. 

To achieve attack-resistance, a group trust metric must 
sacrifice the monotonicity property - if the algorithm 
accepts a set of nodes S for graph G, then for a graph 
consisting of G plus additional edges, the set of nodes 
accepted may not be a superset of S. Otherwise, the attack 
mentioned in Section?? would be feasible. 

However, for the trust metric presented below, a weaker 
monotonicity property does hold. As edges are added to 
the graph, the number of nodes accepted increases 
monotonically. As we will show in Section ??, this weaker 
monotonicity property fits some applications well, 
particularly those based on finding a majority or other 
consensus from the nodes accepted by the trust metric. 

The Advogato network-flow trust metric - Capacity 
constrained flow network. Capacities of nodes are set as a 
function of distance from seed.  
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Comparison with Flake’s Self-Organization work - The 
Advogato trust metric is quite similar to the Exact-Flow-
Commnuity algorithm designed to discover communities 
existing on the Web[15]. Similarities include infinite flow to 
the seeds, finite, bounded capacities for the intermediate 
graph, unit capacity edges from all nodes to a supersink, 
and reaping of flow through these edges after a max-flow 
computation to determine membership in a community. 
The differences are worth noting: 

•  Exact-Flow-Community makes all edges 
bidirectional. 

•  Advogato places capacity constraints on nodes, 
while Exact-Flow-Community places capacity 
constraints on edges. 

•  Advogato uses distance from the seed to assign 
capacities, while Exact-Flow-Community uses a 
single constant capacity k for all intermediate graph 
edges. 

The goals of Exact-Flow-Community and Advogato are 
somewhat different. The former is intended primarily to 
identify existing communities, based on patterns in Web 
links. Advogato also defines a community, but with the 
specific goal of attack resistance, in other words ensuring 
that an attacker cannot add an arbitrary number of false 
nodes to the true community. 

For this goal, preserving the directionality of edges is 
crucial. Edges from bad nodes to good may be under the 
attacker’s control, but edges from good nodes to bad are 
assumed not to be. Failure to distinguish between the two 
clearly leads to a loss of attack resistance.  

Similarly, as described in Section 2.3, constraining node 
capacities yields better attack resistance than constraining 
edge capacities. 

The relative significance of the two capacity assignment 
strategies is harder to determine. Advogato uses capacities 
dependent on the distance from the seed to accept a large 
number of nodes, even when the number of seed nodes 
(and their total outdegree) is small. The Exact-Flow-
Community algorithm does not have this property. Thus, 
the authors propose an Approximate-Flow-Community 
algorithm that heuristically adds more seeds, then 
computes Exact-Flow-Community over this augmented 
seed set. It is quite plausible the results are similar to 
Advogato’s, but we have not tested this hypothesis. 

4. AN ATTACK-RESISTANT NAME SERVICE 

Related work - There are many designs and 
implementations of systems to bind keys to names. The 
most popular is the X.509 family of standards, loosely 
synonymouse with the Public Key Infrastructure (PKI). In 
this framework, authority for the namespace is assigned to 
one or more certification authorities (CA’s), generally 
composed of root CA’s that delegate authority over some 
or all of the namespace to various subsidiary CA’s. A 
consequence of this design decision is the root 
vulnerability—the compromise of any of the root CA’s leads 
to catastrophic security failure. 

Root vulnerability is a serious concern. Even though 
individual CA’s may be well managed (with private keys 
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reasonably well protected), modern applications depending 
on PKI such as Web browsers ship with dozens of root CA 
keys enabled. Further, the grouwing popularity of CA 
software for off-the-shelf platforms (such as Entrust/PKI 
and Entegrity’s Notary) implies that CA’s will be deployed 
in contexts where it is difficult or impossible to protect the 
CA with a high degree of assurance. 

Often, the CA given root authority is implementing a fairly 
simple and well defined policy. For example, VeriSign’s 
Class 1 certificates are issued on a first-come, first-served 
basis. Domain name registrars issue second level domains 
on an effectively first-come, first-served basis, with the 
possibility of revoking the name (and issuing it to someone 
else) for non-payment of the bill, or as the result of a 
dispute. Actual implementation of these policies is at the 
whim of whoever holds the CA’s private key. An attacker 
who succeeds in compromising the CA key can reassign 
names completely at will, with no regard to any policy. 

It is possible to implement well defined policies and avoid 
root compromise. The naming service presented in this 
chapter factors the name service problem into to sub-
problems: a policy language for expressing policies 
formally, and a distributed trusted third party for 
implementing the policies. In cases where the complex 
blend of factors controlling ownership of names can be 
distilled into a formal policy, our naming service can 
provide much higher assurance with lower certification cost 
than existing PKI’s. 

A design factored in this way can only be successful if two 
goals are met: the policy language should be rich enough 
to express a range of policies useful in the real world, and 
the distributed trusted third party should be trustworthy. 
Section 5.2 presents such a policy language, and Section 
?? presents a distributed network based on an attack-
resistant trust metric. 

The policy language introduces the concept of asymmetry 
between initial registration of a name and updates to that 
name. In traditional PKI designs, the authority granted to 
the CA is total, so the CA has equal power to register and 
update name/key bindings. However, there are many 
interesting asymmetrical policies where the power to 
update is more restricted than the power to register. The 
first-come, first-served policy is an extreme example. 

Authority to register new names is trivially granted, but 
authority to update existing names is never granted.  

Implementation of naming service - In order to avoid a 
single point of failure, we choose a peer-to-peer network 
architecture for the implementation of the naming service. 
For simplicitly, we choose a two-level architecture, with a 

relatively small number of “server” nodes, and most clients 
contacting the server nodes to retrieve names and 
certificates. 

All servers have knowledge of all other servers. Thus, 
notification of server joins and leaves are broadcast 
operations. When the number of servers is on the order of 
the square root of the total number of peers, network traffic 
is optimized. This square-root behavior is neither as bad as 
flat broadcast networks, such as the original Gnutella 
protocol, nor as good as the logarithmic performance of 
systems such as Chord[33]. 

Not all nodes store records for all names registered in the 
system. Rather, there is a “responsible server” relation, 
generally based on a hash function so that the set of 
responsible servers for a given name is effectively random. 
An average of 10 to 20 servers should be responsible for 
each name. This average is a tunable parameter. As it 
increases, security improves, but overall network traffic 
also increases. 

There are essentially two different authorization decisions 
in the system. The first, evaluated by nodes when 
processing registration and update requests, is whether the 
request is valid. The second, evaluated by clients when 
performing queries, is whether the node responding to the 
query is trustworthy to provide the correct answer. Our 
design mirrors the fundamental asymmetry of these two 
decisions. Essentially, for mutation requests, clients send 
the request to all responsible nodes for the name, 
regardless of whether such nodes are to be considered 
trustworthy. 

However, for query requests, clients only consider 
responses from nodes which are both responsible for the 
name and considered trustworthy. 

Our design mixes up this clear separation a bit, because 
nodes processing mutation requests also function in the 
client role when they retrieve the policy and policy 
constraint associated with the parent name. 

5. MESSAGE FLOW NETWORKS 

The network flow-based trust metrics presented in previous 
chapters measure the flow of an abstract quantity through 
a trust graph, and use the presence of sufficient flow to a 
target node to decide whether that node should be 
accepted. In this chapter, we consider flow networks in 
which messages themselves are the unit of flow. Such 
networks are especially useful for spam-resistant 
messaging. Indeed, using a trust metric for access control 
is vulnerable to attacks involving huge volumes of spam 
messages. The goal of a message flow network is to tightly 
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bound the volume of spam messages which may be 
succesfully delivered by bad nodes. 

The basic message flow design –  

Assumptions - We assume a trust network with similar 
properties as in previous chapters. Each node in the 
network represents a participant in the overall system. 
Each user manually enters trust edges into the graph. 
Each edge is annotated with a message volume 
associated with the peer. 

If a user s wants to receive no more than k messages per 
time unit from peer t, then s enters a trust edge pointing 
from t to s, annotated with k units of flow. Note that the 
direction of this trust edge is reversed with respect to the 
trust metric presented in Chapter 3. We also assume a 
central server which knows the entire trust graph, and also 
keeps track of dynamic information based on the actual 
flow of messages sent through the system. 

Message flow - In particular, the server maintains a 
residual capacity for each trust edge in the network, named 
in analogy to the standard algorithm for computing 
maximum network flows. However, instead of attempting to 
saturate the graph with the maximal number of augmenting 
paths, residual capacity is consumed only when messages 
are actually sent. 

In more detail, when a node x wishes to send a message 
to node s, the server attempts to find a path from x to s 
through the residual capacity graph. If no such path exists 
(in other words, if there exists a partition of the graph with x 
on one side and s on the other in which all trust edges 
have zero residual capacity), then the message is blocked. 
Otherwise, the message is sent, and the residual capacity 
for each edge along the path is decremented by one. 

As usual in computing augmenting paths, it’s a good idea 
to use the heuristic of choosing a shortest path through the 
residual graph, thereby minimizing total capacity consumed 
for an individual message.  

Repleneshing the flow - Edge capacity is measured in 
units of number of messages per unit of time. In addition to 
consuming capacity when messages are sent, there must 
also be a mechanism for replenishing this capacity, so that 
the network is roughly in equilibrium when there is a steady 
stream of messages. 

There are a number of approaches to this repleneshing. 
Perhaps the simplest is to replenish all residual capacities 
to match the maximum capacity specified in the trust 
graph, once every time unit. However, this approach has a 
number of disadvantages, including an uneven probability 

of rejecting messages over time, depending on the 
fractional time since the last increment of the time unit. 

It would also be desirable to accommodate bursty traffic 
patterns. If a user specifies seven messages per week 
from another peer, it would be unusual to expect messages 
sent at intervals of exactly 24 hours. Rather, it’s more likely 
that several days would pass without a message, 
interspersed with bursts of several messages in quick 
succession. 

Thus, we propose a computationally simple and efficient 
method modelling a process by which flow is replenished 
with exponential decay. In addition to storing a scalar for 
each edge representing the residual capacity, the server 
also stores a timestamp representing the last moment that 
the capacity was updated. 

Then, each time the capacity is queried or modified, it is 
updated according to the following simple algorithm: 

 

It should be clear that, over a period of one time unit, the 
total flow across such an edge will never exceed the 
maximum specified. At the same time, burstiness is 
penalized, but only somewhat. For example, if messages 
are sent in bursts once every time unit, interspersed by 

inactivity, then the total flow is  of the 
maximum specified. 

Security Analysis - Outline: partition network into good & 

bad. 

Total message flow across partition is bounded by total 
capacity of edges across the partition. Consider two cases 
of partition: 

1.  There is one bad node. Then he can’t send more 
spam than the total cap of edges from good nodes 
linking in. 

2.  There is one good node. Then you can’t receive 
more spam than the total cap of edges to you. Have 
a heuristic that favors short paths when multiple 
messages are competing for scarce flow. Then, 
hopefully all the good mail from nearby neighbors 
gets through, and at worst the spammer blocks only 
mail from good peers farther away. 
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Pragmatics - The design of this chapter is unimplemented 
as of this writing. However, it should be straightforward to 
implement as a centralized web service. 

Obviously, having a centralized server is limits both scaling 
and security (all users are vulnerable to an attack on the 
central server). A completely decentralized peer-to-peer 
network implementing the core concepts of the message 
flow network presented above is the topic of the next 
chapter. 

Application Notes - Outline: email is killer app for this. A 
similar app is posting comments and backlinks in blogs. 
Since # nodes is so much smaller, a centralized server 
may be appropriate. Don’t need to actually send messages 
through net. Don’t need to replace SMTP. You can just 
send tokens authorizing the sending of a message. Then, 
the sending email client can query the server for such a 
token, and insert it into the headers of the mail. The 
recepient email client extracts the token from the headers, 
and verifies it. 

6. CONCLUSION  

Several conclusions follow from the analysis presented in 
preceding sections. First, the scalar trust metrics place a 
very low upper bound on the attack resistance possible to 
achieve. Second, we demonstrate that simple trust metrics 
based on maximum network flow meet these upper 
bounds. Thus, within these assumptions, there is little if 
any room to design improved trust metrics. 

In particular, analysis of Maurer’s trust metric shows its 
attack resistance to be both disappointing and equivalent 
to much simpler metrics. 

A reasonable conclusion, then, is that it is the monotonicity 
assumption itself which is flawed, and that it is not possible 
to achieve good attack resistance by verifying a small, local 
subset of the trust edges comprising the global trust metric. 
Indeed, in the next chapter, we show that by relaxing the 
monotonicity assumption, a reasonably simple trust metric 
also based on maximum network flows can acheive 
dramatically better attack resistance. 
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