

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Data Mining Application: Attack Resistant
Trust Metrics

Mrs. Aparna Atul Junnarkar1, Dr. Udai singh Sutar2, Mr. Amol Rajmane3

1
Sr. Lecturer (Computer Engineering)-- Modern College of Engineering , Shivajinagar, Pune, India

2
Professor (Electronics Engg Dept) S.K.N. College of Engineering, Vadagaon Bk. , Pune, India

3
Asso. Professor (Computer Engineering) -- JJ MAGDUM College of Engineering , Jaysingpur, Dist.-- Kolhapur , India

ABSTRACT This dissertation characterizes the space of trust metrics, under both the scalar assumption where each
assertion is evaluated independently, and the group assumption where a group of assertions are evaluated in tandem. We
present a quantitative framework for evaluating the attack resistance of trust metrics, and give examples of trust metrics
that are within a small factor of optimum compared to theoretical upper bounds. We discuss experiences with a real world
deployment of a group trust metric, the Advogato website. Finally, we explore possible applications of attack resistant trust
metrics, including using it as to build a distributed name server, verifying metadata in peer-to-peer networks such as
music sharing systems, and a proposal for highly spam resistant e-mail delivery.

--♦-------------------------------------

1. INTRODUCTION

In today’s world of open, decentralized networks, the
question of trust is becoming increasingly relevant. Most
existing Internet protocols implement a naive policy of
providing a relatively limited set of services, but trusting all
users with them. Given that a significant fraction of Internet
users are not trustworthy, the inevitable result is spam,
denial of service attacks, cracking, and a host of other ills
far too familiar to legitimate Internet users.

A number of approaches have been developed and
deployed over the years, with varying degrees of success.
The most basic is the model of password-protected
accounts. This mechanism is almost universally deployed,
but suffers from serious limitations, including the need for
servers to manage the accounts, the need for users to
keep track of a large number of passwords, and the
relative lack of security provided by this model. Thus, there
has been a sustained interest in more sophisticated
models.

One such approach is the Public Key Infrastructure, or PKI
[6]. Briefly, a PKI consists of various Certification
Authorities (or CA’s) that issue certificates asserting a
binding between a name and a public key. PKI’s suffer
from two fundamental problems: the lack of useful meaning
in the PKI’s underlying namespace, and the question of
which CA to trust. Actual implementations of CA’s have
proved themselves not worthy of absolute trust. Further, as
the number of CA’s deployed scales up, the risk of any one
of them being compromised scales accordingly. In part
because of these two problems, PKI’s have met with
limited success at best.

Spurred on by these limitations, much recent attention has
been focussed on the explicit encoding and evaluation of
trust relationships. A pioneering work in this area is the
Policy Maker framework of Matt Blaze[5]. A particularly
interesting branch of this work is the concept of trust
metrics, which are the primary focus of this thesis.

Trust metrics are based on the principle of local encoding
of trust relationships, but granting trust on a global scale.
These assumptions closely parallel the philosophy of peer

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

to peer networks [26]. While the literature is rich with
design proposals for trust metrics, there has been relatively
little analysis of how well they work in practice. In Chapter
2, we show that, under assumptions similar to the Internet,
the entire category of “scalar” trust metrics fails to resist
easily-mounted attacks. Attacks against these poor trust
metrics dot the literature [31], and have been used to argue
(incorrectly) that a centralized identity service is
needed[13].

While the outlook for scalar trust metrics is indeed bleak,
we propose a new class, which we call group trust metrics,
so called both because the trust metric is very well suited
to evaluating membership in a group, and because this
evaluation is done over the entire group of nodes, rather
than individually for each node. While the group trust
metric cannot prevent individual hostile nodes from being
accepted as group members, it can place strict bounds on
the number of hostile nodes so accepted.

I built a community website for free software developers,
called Advogato, that uses this group trust metric to
determine who belongs to the community. Acceptance by
the trust metric confers privileges to post articles and
comments, and to edit project information. At the time of
this writing, the site has been in operation for about 18
months, and has built a trust graph of over 1000 active
nodes. Advogato is notable for the extremely low level of
trolls, spam, and other forms of abuse common to bulletin
board type systems, thus providing strong anecdotal
evidence that the trust metric is effective. Advogato is
described in more detail in Chapter 4.

One interesting application of trust metrics is secure
registration and lookup of public keys bound to names,
essentially the same problem addressed by Public Key
Infrastructures (PKI). The attack resistant properties of the
trust metric avoid the single point of vulnerability common
to most PKI designs. We present a detailed design for such
an attack-resistant name service in Chapter 5. The desire
to build a “better PKI” was the original motivation behind
the work of this thesis.

Because the group trust metric is effective in resisting
attack, it has many other interesting applications. One such
is an attack-resistant system for distributing metadata, for
example opinions about songs. Attack resistance can be
useful for ensuring high quality of the metadata, but
becomes particularly important when there are financial
implications to the metadata system, for example to identify
recipients of voluntary donations to artists who post their
music to the Net. We propose a design for an attack
resistant metadata system in Chapter 6. This design
combines ideas from both the Advogato group trust metric
and the PageRank algorithm used in Google.

Another intriguing application for group trust metrics is to
provide a spam resistant infrastructure for e-mail. Spam is
a huge problem, causing lots of wasted time for many, and
most e-mail users feel hopeless in the face of it. We
present a partial design for a communications
infrastructure resistant to spam, yet highly permeable to
legitimate email. This design uses a capacity constrained
flow network where “stamps” are the commodity of flow.
Rather than explicitly computing a flow in the network, the
flow results from local activity. When capacity is exhausted,
e-mail is no longer deliverable. This design has many
appealing properties, but several aspects remain as open
problems, particularly scaling. Chapter 8 presents this
design and discusses some open issues.

2. TRUST METRICS

In this chapter, we review the literature of trust metrics,
present a quantitative framework for analyzing the attack
resistance of trust metrics. Finally, we prove tight upper
and lower bounds on the attack resistance of trust metrics
given the usual scalar assumptions.

The simplest trust metric - In this section, we present the
simplest possible trust metric, which forms the basis of
other trust metrics in the literature.

There are three inputs to this trust metric: a directed graph,
a designated “seed” node indicating the root of trust, and a
“target” node. We wish to determine whether the target
node is trustworthy.

Each edge from s to t in the graph indicates that s believes
that t is trustworthy. The simplest possible trust metric
evaluates whether t is reachable from s. If not, there is no
reason to believe that t is trustworthy, given the data
available.

In a cryptographic implementation, each node corresponds
to a public key, and each edge from s to t corresponds to a
digitally signed certificate. In the usual terminology, s is the
issuer, t is the subject. The certificate itself is some string
identifying t, along with a digital signature of this string
generated by s. The simplest trust metric is also the
weakest with respect to attacks. If an attacker is able to
generate an edge from any node reachable from the seed
to a node under his control, then he can cause arbitrary
nodes to be accepted.

As the size of the reachable sub-graph increases, the risk
of any such attack increases as well. Thus, the primary
focus in the literature is to present stronger trust metrics
that (hopefully) resist attacks better, while still accepting
most nodes that deserve trust.

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

Section 2.2, discusses a sampling of trust metrics
previously published. Section 2.3, presents a quantitative
notion of “attack resistance.”

Survey of the literature - All trust metrics include the
three inputs described above: the trust graph, the seed
node, or trust root, and the target. Some trust metrics add
more detail to these inputs. Trust edges may contain some
conditions or restrictions, for example that t is himself
trustworthy, but cannot be trusted to vouch for other nodes.
In addition, the target may be a richer assertion than
merely whether a certain node is trustworthy. For example,
edges may additionally identify a maximum dollar value,
and the target may be an assertion that the target node
can be trusted with a transaction of some dollar value.

Finally, there may be additional policies to be enforced by
the trust metric, or parameters supplied. Often, these
parameters control the overall strictness or tolerance of the
trust metric. The most general form of “trust management”
system is represented by PolicyMaker[5], as certificates
and policies can represent arbitrary computations in
Turing-complete language. Applications of PolicyMaker
tend to focus on the language of assertions rather than
trust computations over the graph, but the fully general
nature of the system allows the the latter to be
implemented.

Most trust metrics in the literature assume monotonicity.
More precisely, if a monotonic trust metric accepts a node t
as trustworthy when given a graph G, it will also accept
node t when given a graph G0 that contains all trust edges
in G. A primary motivation for this assumption is scaling. In
particular, it allows for highly efficient overall distributed
architectures in which all participants need only access a
small, local subset of the global trust graph. Further, under
such an assumption, there is no special vulnerability to
denial of service attacks. With the monotonicity
assumption, if an attacker can withold trust edges (i.e.
cause the verifier to evaluate a subset of the global trust
graph), then it cannot cause nodes to be accepted other
than those which would be accepted given the entire trust
graph.

The simplest trust metric is clearly monotonic. Adding
edges to the trust graph can only cause more nodes to be
reachable. Another relatively simple trust metric is similar
to the simplest one, with the additional constraint that path
lengths are bounded by some parameter k. Thus, all nodes
within a distance of k edges from the seed are accepted.

A variation of this trust metric is used in X.509 systems.
Perhaps the earliest published system resembling a
modern trust metric is the Beth, Borcherding, and Klein[3].
This system contains a set of elaborate inference rules for

deriving a “trustworthiness” value between 0 and 1, using
both “direct trust” and “recommendation trust” relationships
encoded on edges. However, further work by Reiter and
Stubblebine [31] showed this trust metric to be no more
secure than the simple reachability criterion described
above. Note that the BBK trust metric is not monotonic.

A still earlier system is described by Tarah and
Huitema[34], who suggest evaluating both certificates and
“certificate paths.” They suggest several possible simple
trust metrics, including the length of the certification path
and the minimum of involved trust values along the path.
However, because it evaluates only paths, rather than
general graphs, this system does not quite meet the
definition of “trust metric”.

Reiter and Stubblebine[30] presented the first trust metric
with the ability to resist nontrivial attacks. Briefly, this trust
metric counts the number of node-independent paths of
bounded length from the seed to the target. Thus, both the
path length and the threshold for the minimum number of
such paths are tunable parameters of the metric.

A simple characterization of its attack resistance follows
easily: an attacker must add “bad” edges to nodes under
his own control to at least as many nodes as the threshold
for the number of independent paths. Even though
evaluation of this trust metric is an NP-complete problem,
the experimental PathServer implementation seems to
perform reasonably well in practice.

Maurer presented an intriguing trust metric based on
randomized experiments [21]. Very briefly, each edge in
the network has an associated probability. The result of the
trust metric is the probability that the target is reachable
from the seed in a subgraph of the original graph where
each node is present with the probability given in the
original graph.

Both implementation and analysis of the Maurer trust
metric are challenging. In addition, we present an analysis
below (Section 2.6) suggesting that the Maurer metric is
vulnerable to an easily-mounted attack. To do so, we will
first need to prepare a framework for quantitatively
evaluating the attack resistance of a trust metric.

Framework for analysis - What does it mean for a trust
metric to be attack resistant? In this section, we present a
quantitative framework for this question. In any given
attack, we assume that the attacker can add or delete
edges from the legitimate part of the trust graph, pointing to
arbitrary nodes. These edges may point directly to nodes
under the attacker’s control, or perhaps to other good
nodes, in order to fool the trust metric.

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

We assign a cost to each such attack. A typical cost metric
is to count the number of edges added. Assuming an
attack of a given cost, what is the highest number of bad
assertions the attacker can force to be accepted? If this
number is limited, the trust metric is attack resistant. If it
can grow to the same order as the number of good
assertions even for a fairly low cost attack, then the trust
metric suffers from catastrophic failure and is not attack
resistant.

Cost metrics: node vs edge attacks - We consider two cost
metrics. The simplest is to count the number of edges
added. Another useful metric is to count the number of
“attacked ” nodes with added outedges, and to assume
that any such node may have an arbitrary number of edges
added. As we will see later, the attack-resistance
properties of different trust metrics behave differently under
these two cost assumptions. Note that, for any given
attack, the number of nodes counted is no greater than the
number of edges counted.

An edge attack corresponds to fooling a victim into
generating an edge. In many cases, mounting such an
attack is straightforward. For example, the attacker may
send a forged email pretending to be a friend of the victim,
asking for a cert. Many such electronic means of
transmitting key material suffer from lack of authentication.

Similarly, a node attack corresponds to taking over the
victim’s ability to create certificates. Such an attack is
generally harder than an edge attack, but still feasible. For
example, anyone with physical access to the victim’s
machine can recover the private key used to sign
certificates, for example by using a keyboard sniffer to
recover the encryption key used to protect the private key.

Edge attack: number of certs. Corresponds to fooling the
victim once. Protection against node attack is a stronger
property than protection against edge attack. Attack of a
single node can correspond to an arbitrary number of
edges.

Another factor in trust metric: how many certs are needed?
At simplest, in degree of target node. We analyze two
classes of attacks: one in which the attacker is able to
choose the victims, and another in which the victims are
chosen randomly. The former class of attack is at least as
effective as the latter, and, not surprisingly, we find that it in
most cases it is considerably more so. This result parallels
the literature in scale-free networks, in which removing the
“hubs” in a scale-free network with hub-and-spoke topology
is far more effective in fragmenting the network than simply
removing random nodes.

Analysis: upper bounds - Strict upper bounds on
effectiveness of trust metric. For node attack, if n nodes
are attacked, entire system falls, where n is minimum
indegree of target node. Proof: attacker chooses target that
is accepted (with minimum indegree), and chooses its
predecessors as victims. Since indegree is n, attack is n
nodes. Removing the original target, the graph is identical
to the one in which the original target is accepted, so the
trust metric can’t distinguish. For edge attack, if n2 nodes
are attacked, entire system fails. Choose target as above,
then spoof inedges of predecessors of target.

3. GROUP TRUST METRICS

This chapter presents the concept of group trust metrics,
which have significantly better attack resistance properties
than trust metrics under the scalar assumption. The key
feature of a group trust metric is that it calculates a trust
value for all the nodes in the graph at once, rather than
calculating independently the trust value independently for
each node. Thus, a successful attack causing one bad
node to be trusted need not necessarily result in
catastrophic compromise of the trust metric. Indeed, in this
chapter we will present a simple trust metric, also based on
max-flow over the trust graph, which has significantly better
attack resistance than the theoretical best-case for scalar
trust metrics.

To achieve attack-resistance, a group trust metric must
sacrifice the monotonicity property - if the algorithm
accepts a set of nodes S for graph G, then for a graph
consisting of G plus additional edges, the set of nodes
accepted may not be a superset of S. Otherwise, the attack
mentioned in Section?? would be feasible.

However, for the trust metric presented below, a weaker
monotonicity property does hold. As edges are added to
the graph, the number of nodes accepted increases
monotonically. As we will show in Section ??, this weaker
monotonicity property fits some applications well,
particularly those based on finding a majority or other
consensus from the nodes accepted by the trust metric.

The Advogato network-flow trust metric - Capacity
constrained flow network. Capacities of nodes are set as a
function of distance from seed.

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

Comparison with Flake’s Self-Organization work - The
Advogato trust metric is quite similar to the Exact-Flow-
Commnuity algorithm designed to discover communities
existing on the Web[15]. Similarities include infinite flow to
the seeds, finite, bounded capacities for the intermediate
graph, unit capacity edges from all nodes to a supersink,
and reaping of flow through these edges after a max-flow
computation to determine membership in a community.
The differences are worth noting:

• Exact-Flow-Community makes all edges
bidirectional.

• Advogato places capacity constraints on nodes,
while Exact-Flow-Community places capacity
constraints on edges.

• Advogato uses distance from the seed to assign
capacities, while Exact-Flow-Community uses a
single constant capacity k for all intermediate graph
edges.

The goals of Exact-Flow-Community and Advogato are
somewhat different. The former is intended primarily to
identify existing communities, based on patterns in Web
links. Advogato also defines a community, but with the
specific goal of attack resistance, in other words ensuring
that an attacker cannot add an arbitrary number of false
nodes to the true community.

For this goal, preserving the directionality of edges is
crucial. Edges from bad nodes to good may be under the
attacker’s control, but edges from good nodes to bad are
assumed not to be. Failure to distinguish between the two
clearly leads to a loss of attack resistance.

Similarly, as described in Section 2.3, constraining node
capacities yields better attack resistance than constraining
edge capacities.

The relative significance of the two capacity assignment
strategies is harder to determine. Advogato uses capacities
dependent on the distance from the seed to accept a large
number of nodes, even when the number of seed nodes
(and their total outdegree) is small. The Exact-Flow-
Community algorithm does not have this property. Thus,
the authors propose an Approximate-Flow-Community
algorithm that heuristically adds more seeds, then
computes Exact-Flow-Community over this augmented
seed set. It is quite plausible the results are similar to
Advogato’s, but we have not tested this hypothesis.

4. AN ATTACK-RESISTANT NAME SERVICE

Related work - There are many designs and
implementations of systems to bind keys to names. The
most popular is the X.509 family of standards, loosely
synonymouse with the Public Key Infrastructure (PKI). In
this framework, authority for the namespace is assigned to
one or more certification authorities (CA’s), generally
composed of root CA’s that delegate authority over some
or all of the namespace to various subsidiary CA’s. A
consequence of this design decision is the root
vulnerability—the compromise of any of the root CA’s leads
to catastrophic security failure.

Root vulnerability is a serious concern. Even though
individual CA’s may be well managed (with private keys

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

reasonably well protected), modern applications depending
on PKI such as Web browsers ship with dozens of root CA
keys enabled. Further, the grouwing popularity of CA
software for off-the-shelf platforms (such as Entrust/PKI
and Entegrity’s Notary) implies that CA’s will be deployed
in contexts where it is difficult or impossible to protect the
CA with a high degree of assurance.

Often, the CA given root authority is implementing a fairly
simple and well defined policy. For example, VeriSign’s
Class 1 certificates are issued on a first-come, first-served
basis. Domain name registrars issue second level domains
on an effectively first-come, first-served basis, with the
possibility of revoking the name (and issuing it to someone
else) for non-payment of the bill, or as the result of a
dispute. Actual implementation of these policies is at the
whim of whoever holds the CA’s private key. An attacker
who succeeds in compromising the CA key can reassign
names completely at will, with no regard to any policy.

It is possible to implement well defined policies and avoid
root compromise. The naming service presented in this
chapter factors the name service problem into to sub-
problems: a policy language for expressing policies
formally, and a distributed trusted third party for
implementing the policies. In cases where the complex
blend of factors controlling ownership of names can be
distilled into a formal policy, our naming service can
provide much higher assurance with lower certification cost
than existing PKI’s.

A design factored in this way can only be successful if two
goals are met: the policy language should be rich enough
to express a range of policies useful in the real world, and
the distributed trusted third party should be trustworthy.
Section 5.2 presents such a policy language, and Section
?? presents a distributed network based on an attack-
resistant trust metric.

The policy language introduces the concept of asymmetry
between initial registration of a name and updates to that
name. In traditional PKI designs, the authority granted to
the CA is total, so the CA has equal power to register and
update name/key bindings. However, there are many
interesting asymmetrical policies where the power to
update is more restricted than the power to register. The
first-come, first-served policy is an extreme example.

Authority to register new names is trivially granted, but
authority to update existing names is never granted.

Implementation of naming service - In order to avoid a
single point of failure, we choose a peer-to-peer network
architecture for the implementation of the naming service.
For simplicitly, we choose a two-level architecture, with a

relatively small number of “server” nodes, and most clients
contacting the server nodes to retrieve names and
certificates.

All servers have knowledge of all other servers. Thus,
notification of server joins and leaves are broadcast
operations. When the number of servers is on the order of
the square root of the total number of peers, network traffic
is optimized. This square-root behavior is neither as bad as
flat broadcast networks, such as the original Gnutella
protocol, nor as good as the logarithmic performance of
systems such as Chord[33].

Not all nodes store records for all names registered in the
system. Rather, there is a “responsible server” relation,
generally based on a hash function so that the set of
responsible servers for a given name is effectively random.
An average of 10 to 20 servers should be responsible for
each name. This average is a tunable parameter. As it
increases, security improves, but overall network traffic
also increases.

There are essentially two different authorization decisions
in the system. The first, evaluated by nodes when
processing registration and update requests, is whether the
request is valid. The second, evaluated by clients when
performing queries, is whether the node responding to the
query is trustworthy to provide the correct answer. Our
design mirrors the fundamental asymmetry of these two
decisions. Essentially, for mutation requests, clients send
the request to all responsible nodes for the name,
regardless of whether such nodes are to be considered
trustworthy.

However, for query requests, clients only consider
responses from nodes which are both responsible for the
name and considered trustworthy.

Our design mixes up this clear separation a bit, because
nodes processing mutation requests also function in the
client role when they retrieve the policy and policy
constraint associated with the parent name.

5. MESSAGE FLOW NETWORKS

The network flow-based trust metrics presented in previous
chapters measure the flow of an abstract quantity through
a trust graph, and use the presence of sufficient flow to a
target node to decide whether that node should be
accepted. In this chapter, we consider flow networks in
which messages themselves are the unit of flow. Such
networks are especially useful for spam-resistant
messaging. Indeed, using a trust metric for access control
is vulnerable to attacks involving huge volumes of spam
messages. The goal of a message flow network is to tightly

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

bound the volume of spam messages which may be
succesfully delivered by bad nodes.

The basic message flow design –

Assumptions - We assume a trust network with similar
properties as in previous chapters. Each node in the
network represents a participant in the overall system.
Each user manually enters trust edges into the graph.
Each edge is annotated with a message volume
associated with the peer.

If a user s wants to receive no more than k messages per
time unit from peer t, then s enters a trust edge pointing
from t to s, annotated with k units of flow. Note that the
direction of this trust edge is reversed with respect to the
trust metric presented in Chapter 3. We also assume a
central server which knows the entire trust graph, and also
keeps track of dynamic information based on the actual
flow of messages sent through the system.

Message flow - In particular, the server maintains a
residual capacity for each trust edge in the network, named
in analogy to the standard algorithm for computing
maximum network flows. However, instead of attempting to
saturate the graph with the maximal number of augmenting
paths, residual capacity is consumed only when messages
are actually sent.

In more detail, when a node x wishes to send a message
to node s, the server attempts to find a path from x to s
through the residual capacity graph. If no such path exists
(in other words, if there exists a partition of the graph with x
on one side and s on the other in which all trust edges
have zero residual capacity), then the message is blocked.
Otherwise, the message is sent, and the residual capacity
for each edge along the path is decremented by one.

As usual in computing augmenting paths, it’s a good idea
to use the heuristic of choosing a shortest path through the
residual graph, thereby minimizing total capacity consumed
for an individual message.

Repleneshing the flow - Edge capacity is measured in
units of number of messages per unit of time. In addition to
consuming capacity when messages are sent, there must
also be a mechanism for replenishing this capacity, so that
the network is roughly in equilibrium when there is a steady
stream of messages.

There are a number of approaches to this repleneshing.
Perhaps the simplest is to replenish all residual capacities
to match the maximum capacity specified in the trust
graph, once every time unit. However, this approach has a
number of disadvantages, including an uneven probability

of rejecting messages over time, depending on the
fractional time since the last increment of the time unit.

It would also be desirable to accommodate bursty traffic
patterns. If a user specifies seven messages per week
from another peer, it would be unusual to expect messages
sent at intervals of exactly 24 hours. Rather, it’s more likely
that several days would pass without a message,
interspersed with bursts of several messages in quick
succession.

Thus, we propose a computationally simple and efficient
method modelling a process by which flow is replenished
with exponential decay. In addition to storing a scalar for
each edge representing the residual capacity, the server
also stores a timestamp representing the last moment that
the capacity was updated.

Then, each time the capacity is queried or modified, it is
updated according to the following simple algorithm:

It should be clear that, over a period of one time unit, the
total flow across such an edge will never exceed the
maximum specified. At the same time, burstiness is
penalized, but only somewhat. For example, if messages
are sent in bursts once every time unit, interspersed by

inactivity, then the total flow is of the
maximum specified.

Security Analysis - Outline: partition network into good &

bad.

Total message flow across partition is bounded by total
capacity of edges across the partition. Consider two cases
of partition:

1. There is one bad node. Then he can’t send more
spam than the total cap of edges from good nodes
linking in.

2. There is one good node. Then you can’t receive
more spam than the total cap of edges to you. Have
a heuristic that favors short paths when multiple
messages are competing for scarce flow. Then,
hopefully all the good mail from nearby neighbors
gets through, and at worst the spammer blocks only
mail from good peers farther away.

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 8

E-Mail: ignitedmoffice@gmail.com

Pragmatics - The design of this chapter is unimplemented
as of this writing. However, it should be straightforward to
implement as a centralized web service.

Obviously, having a centralized server is limits both scaling
and security (all users are vulnerable to an attack on the
central server). A completely decentralized peer-to-peer
network implementing the core concepts of the message
flow network presented above is the topic of the next
chapter.

Application Notes - Outline: email is killer app for this. A
similar app is posting comments and backlinks in blogs.
Since # nodes is so much smaller, a centralized server
may be appropriate. Don’t need to actually send messages
through net. Don’t need to replace SMTP. You can just
send tokens authorizing the sending of a message. Then,
the sending email client can query the server for such a
token, and insert it into the headers of the mail. The
recepient email client extracts the token from the headers,
and verifies it.

6. CONCLUSION

Several conclusions follow from the analysis presented in
preceding sections. First, the scalar trust metrics place a
very low upper bound on the attack resistance possible to
achieve. Second, we demonstrate that simple trust metrics
based on maximum network flow meet these upper
bounds. Thus, within these assumptions, there is little if
any room to design improved trust metrics.

In particular, analysis of Maurer’s trust metric shows its
attack resistance to be both disappointing and equivalent
to much simpler metrics.

A reasonable conclusion, then, is that it is the monotonicity
assumption itself which is flawed, and that it is not possible
to achieve good attack resistance by verifying a small, local
subset of the trust edges comprising the global trust metric.
Indeed, in the next chapter, we show that by relaxing the
monotonicity assumption, a reasonably simple trust metric
also based on maximum network flows can acheive
dramatically better attack resistance.

BIBLIOGRAPHY

1. Eytan Adar and Bernardo A. Huberman. Free
riding on gnutella. First Monday, September 2000.

2. Albert-La´azl´o, R´eka Albert, and Hawoong
Jeong. Scale-free characteristics of random
netwoks: The topology of the world wide web.
submitted to Elsevier Preprint, August 1999.

3. T. Beth, M. Borcherding, and B. Klein. Valuation of
trust in open networks. Lecture Notes in Computer
Science, 875:3–??, 1994.

4. Matt Blaze. Oblivious key escrow. In Proc.
Workshop on Information Hiding, number 1174 in
LNCS, pages 334–343. Springer-Verlag, 1996.

5. Matt Blaze, Joan Feigenbaum, and Jack Lacy.
Decentralized trust management. In Proc. 17th
Symposium on Security and Privacy, pages 164–
173, Los Alamitos, 1996. IEEE Computer Society
Press.

6. Marc Branchaud. A survey of public key
infrastructures. Master’s thesis, McGill University,
Dept. of Computer Science, March 1997.

7. Miguel Castro and Barbara Liskov. Practical
byzantine fault tolerance. In Proc. Third Symp. on
Operating Systems Design and Implementation,
New Orleans, February 1999.

8. D. Chaum, A. Fiat, and M. Naor. Untraceable
electronic cash (extended abstract), 1989.

9. Karl Crary, David Walker, and Greg Morrisett.
Typed memory management in a calculus of
capabilities. In Conference Record of POPL 99:
The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San
Antonio, Texas, pages 262–275, New York, NY,
1999.

10. Frank Dabek, Emma Brunskill, M. Frans
Kaashoek, David Karger, Robert Morris, Ion
Stoica, and Hari Balakrishnan. Building peer-to-
peer systems with Chord, a distributed lookup
service. In Proceedings of the 8

th
 Workshop on Hot

Topics in Operating Systems (HotOS-VIII), Schloss
Elmau, Germany, May 2001. IEEE Computer
Society.

11. Roger Dingledine, Michael J. Freedman, and
David Molnar. The free haven project: Distributed
anonymous storage service. In Workshop on
Design Issues in Anonymity and Unobservability,
number 2009 in LNCS, pages 67–95, 2000.

12. Roger Dingledine and Paul Syverson. Reliable MIX
cascade networks through reputation. In Proc.
Financial Cryptography, March 2002.

13. John R. Douceur. The sybil attack. In Proc. 1st
International Workshop on Peer-to-Peer Systems,
March 2002.

Journal of Advances in Science and Technology

VOL. 3, Issue-4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 9

E-Mail: ignitedmoffice@gmail.com

14. Cynthia Dwork and Moni Naor. Pricing via
processing or combating junk mail. In Ernest F.
Brickell, editor, Advances in Cryptology – CRYPTO
’92, number 740 in LNCS, pages 139–147.
Springer-Verlag, 1992.

15. Gary William Flake, Steve Lawrence, C. Lee Giles,
and Frans Coetzee. Self-organization of the web
and identification of communities. IEEE Computer,
35(3):66–71, 2002.

16. David Gay and Alexander Aiken. Language
support for regions. In SIGPLAN Conference on
Programming Language Design and
Implementation, pages 70–80, 2001.

17. Jon Kleinberg. The small-world phenomenon: An
algorithmic perspective. In Proc. 32nd ACM Symp.
on Theory of Computing, 2000.

18. Jon M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

19. Leslie Lamport, Robert Shostak, and Marshall
Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

20. Raph Levien and Alexander Aiken. Attack resistant
trust metrics for public key certification. In 7th
USENIX Security Symposium, San Antonio,
Texas, January 1998.

21. Ueli Maurer. Modelling a public-key infrastructure.
In E. Bertino, H. Kurth, G. Martella, and E.
Montolivo, editors, Computer Security – ESORICS
’96, number 1146 in LNCS. Springer Verlag, 1996.

22. Petar Maymounkov and David Mazi`eres.
Kademlia: A peer-to-peer information system
based on the XOR metric. In Proc. 1st International
Workshop on Peer-to-Peer Systems, March 2002.

23. Mark S. Miller and K. Eric Drexler. Incentive
engineering: for computational resource
management. In Bernardo Huberman, editor, The
Ecology of Computation, pages 231–266. Elsevier
Science Publishers/North-Holland, 1988.

24. Mark S. Miller and K. Eric Drexler. Markets and
computation: Agoric open systems. In Bernardo
Huberman, editor, The Ecology of Computation,
pages 133–176. Elsevier Science
Publishers/North-Holland, 1988.

25. Tim Moreton and Andrew Twigg. Trading in trust,
tokens and stamps. In Proc. Workshop on
Economics of Peer-to-Peer Systems, June 2003.

26. Andy Oram, editor. Peer to Peer. O’Reilly &
Associates, 2001.

27. Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report,
Stanford University, 1998.

28. David Post, 1999.

29. ptsc (pseudonym). The Church of Scientology’s
supremacy over the search term “Scientology” on
Google, February 2002.

30. Michael Reiter and Stuart Stubblebine. Path
independence for authentication in large-scale
systems. In Proceedings of the 4th ACM
Conference on Computer and Communications
Security, 1997.

31. Michael Reiter and Stuart Stubblebine. Toward
acceptable metrics of authentication. In
Proceedings of the 1997 IEEE Symposium on
Security and Privacy, 1997.

32. D. T. Ross. The AED free storage package.
Communications of the ACM, 10(8):481–492,
August 1967.

33. Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A
scalable peerto peer lookup service for internet
applications. In Proceedings of the ACM
SIGCOMM ’01 Conference, San Diego, California,
August 2001.

34. Anas Tarah and Christian Huitema. Associating
metrics to certification paths. In European
Symposium on Research in Computer Security
(ESORICS), pages 175–192, 1992.

35. Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and
Computation, 1997.

36. Bryce Wilcox-O’Hearn. Experiences deploying a
large-scale emergent network. In Proc. 1st
International Workshop on Peer-to-Peer Systems,
March 2002.

