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ABSTRACT: A wide range of database applications manage time-varying data. In contrast, existing database technology 
provides little support for managing such data. The research area of temporal databases aims to change this state of 
affairs by characterizing the semantics of temporal data and providing expressive and efficient ways to model, store, and 
query temporal data. It concisely introduces fundamental temporal database concepts, surveys state-of-the-art solutions 
to challenging aspects of temporal data management. Applications such as these rely on temporal databases, which 
record time referenced data. Temporal database management is a vibrant field of research. Temporal Database 
manipulations are effective based on life span time. This paper illustrates the graphical representation of the temporal 
database manipulations in terms of visual query with LSA. The Life Span Analyzer (LSA) provides the effective results on 
temporal manipulations It also explains the semantics, Patterns and Visual Query Operators. 

------------------------------------------♦------------------------------------- 

 

1. INTRODUCTION  

There are three main classes of query languages devoted 
to spatial databases: Textual languages (natural, SQL and 
extensions), Graphical languages (QBE) and Visual 
languages. Since these langue’s are not sufficient to work 
with temporal databases [4]. The updations are made with 
the existing visual query languages to manipulate with the 
temporal databases. Visual query with temporal database 
provides graphical representation of query analysis and 
performance of a query in temporal databases. 

In various fields there is a need to manage geometric, 
geographic, or spatial data, which means data related to 
space. The space of interest can be, for example, the two-
dimensional abstraction of (parts of) the surface of the 
earth – that is, geographic space, the most prominent 
example –, a man-made space like the layout of a VLSI 
design, a volume containing a model of the human brain, 
or another 3d-space representing the arrangement of 
chains of protein molecules. 

Characteristic for the technology emerging to address 
these needs is the capability to deal with large collections 
of relatively simple geometric objects, for example, a set of 
100 000 polygons. This is somewhat different from areas 
like CAD databases (solid modeling etc.) where geometric 
entities are composed hierarchically into complex 
structures, although the issues are certainly related [2]. 
Several terms have been used for database systems 

offering such support like pictorial, image, geometric, 
geographic, or spatial database system. The terms 
“pictorial” and “image” database system arise from the fact 
that the data to be managed are often initially captured in 
the form of digital raster images (e.g. remote sensing by 
satellites, or computer tomography in medical 
applications). 

Image database systems may include analysis techniques 
to extract objects in space from images, and offer some 
spatial database functionality, but are also prepared to 
store, manipulate and retrieve raster images as discrete 
entities. In this survey we only discuss spatial database 
systems in the restricted sense. So the spatial database or 
a simple image database system is not sufficient in this 
case. Temporal database provides several patterns to 
access the images though the databases and the visual 
queries provide the effective timings and prominent 
accessing and retrival of patterns. 

2. TEMPORAL DATABASES AND VISUAL 
QUERYIES 

Most applications of database technology are temporal in 
nature. Examples include financial applications, 
recordkeeping applications such as personnel, medical-
record, scheduling applications such as airline, train, and 
hotel reservations and project management and scientific 
applications such as weather monitoring [1]. Temporal 
database management is a vibrant field of research, with 
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an active community of several hundred researchers who 
have produced some 2000 papers over the last two 
decades [7]. 

2.1 Temporal Data Semantics:  

Before considering temporal data models and query 
languages, we examine, in data model-independent terms, 
the association of times and facts, which is at the core of 
temporal data management.  

The Main Goals of Temporal Database: 

 Identification of an appropriate data type for time 

 Prevent fragmentation of an object description 

 Provide query algebra to deal with temporal data 

 Compatiable with old database without temporal 
data 

The transaction time of a database fact is the time when 
the fact is current in the database. Unlike valid time, 
transaction time may be associated with any database 
entity, not only with facts [3]. For example, transaction time 
may be associated with objects and values that are not 
facts because they cannot be true or false in isolation [6]. 

Thus, all database entities have a transaction-time aspect. 
Based on the lifespan of the system, we could use [t1, t2] 
to repersent the valid time of the data model and use 
mathematic "SET ALGEBRA" to operate them. When we 
want to handle temporal data, we define is the set of all 
historical domains. 

A relation scheme R = is an ordered 4-tuple where. 

 A = {Ar1, Ar2 ...Ar3}(U is the set of attributes od 
R.we will sometimes abuse notation and refer to A 
as the scheme of R; no confusion should arise. 

 K = {Ak1, Ak2,.....Akm}(A is the set of (primary) key 
attributes of R 

 ALS:A X R -> 2^T is a function assigning a lifespan 
to each attribute in A in scheme R. We will refer to 
the lifespan of attribute A in relation scheme R as 
ALS(A,R). 

 DOM:A->HD is a function assigning a domain to 
each attribute in R, with the restrictions that (1) for 
all key attributes Ai,DOM(Ai) < CD, that is the key 
attributes must all be constant-valued; and (2) the 

temporal domain of each of the partial function in 
any DOM(A) is contained within ALS(A,R). 

Figure 1 gives the relation instance in the Bitemporal 
Conceptual Data Model(BCDM) [9] that describes the 
sample rental scenario. This data model time stamps 
tuples, corresponding to facts, with values that are sets of 
(transaction time, valid time) pairs, captured using attribute 
T in the figure. 
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Figure 1: Bitemporal Conceptual CheckedOut Instance 

The presence of a pair (tt, vt) in a timestamp of a tuple 
means that the current state of the database at time tt 
records that the fact represented by the tuple is valid at 
time vt. 

The special value UC (“until changed”) serves as a marker 
indicating that its associated facts remain part of the 
current database state, and the presence of this value 
results in new time pairs being included into the sets of 
pairs at each clock tick. The idea behind the BCDM is to 
retain the simplicity of the relational model while also 
capturing the temporal aspects of the facts stored in a 
database. Because no two tuples with mutually identical 
explicit attribute values (termed valueequivalent) are 

allowed in a BCDM relation instance. 

3. VISUAL QUERIES WITH RELATIONAL 
DATABASES 

Visual query languages moved beyond QBE’s tabular entry 
by providing users with a more accurate view of the 
database structure by introducing Extended Entity- 
Relationship (EER) diagrams. EER diagrams are an 
effective method for modeling the structure of information 
stored in a relational database, and can be converted 
directly into relational tables. It is not surprising therefore, 
that both tables and EER diagrams have been explored as 

the basis for database query. Users of Microsoft’s Access 
database, for example, have been exposed to one 
example of tablebased query specification. Indeed, the 
introduction of visual query languages has dramatically 
affected database query. 

3.1 Temporal Patterns 

We consider a temporal pattern as a sequence of Events 
and inter-event TimeSpans that can be restricted in some 
way. The fundamental building blocks for a pattern are 
therefore Events, and between Events, TimeSpans. A 
pattern is a sequence of Events and TimeSpans of 
arbitrary length, as shown in the following Figure: 

 

Figure : A pattern as a sequence of Events and TimeSpans. 

3.2 Example For Visual Query Operators 

Visual Query Operators may acts as a tool for manipulating 
real time examples. Here we have choosen geographical 
data bases for database manipulation with visual queries. 
Visual queries can be composed to manipulate these datas 
along with temporal databases. Large volumes of federal 
data (together with their associated geospatial properties) 
are being collected and managed with database systems. 
Accessing these databases with command-line-based 
query languages is difficult, error-prone, and tedious. This 
system concentrates on enabling non-specialist users to 
access the system easily. Here we are using GIScience to 
facilitate interaction with GIS and in database and 
application fields to develop visual query systems (VQS) 
that make it easier for users to compose queries. The 
Geographic Visual Query Composer (GVQC) [5] [7] can be 
viewed as a tool that allows users to visually formulate and 
execute a query statement directed to federal databases 
containing geospatial data. GVQC also allows users 
toget/edit textbased SQL statements, which are 
automatically extracted from the visual design. 

3.3 Query Processing 

A query formulated in some high-level, user-oriented query 
language is typically translated into an equivalent query, 
formulated in a DBMS-internal, algebraic query language. 
The DBMS then optimizes this algebraic expression by 
transforming it into an equivalent expression that is 
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expected to be more efficient to process, the result being 
better query processing performance. Optimization of 
temporal queries offers new challenges over optimization of 
conventional queries. At the core of the matter, temporal 
database queries are often large and complex [10]. 
Because of this added complexity, it is not only more 
important, but also more challenging, to optimize temporal 
database queries. Specifically, the predicates used in 
temporal queries make these queries difficult to optimize. In 
nontemporal database applications, predicates are often 
equality predicates. As a reflection of this, much research in 
query processing has concentrated on equality predicates, 
and existing DBMSs are optimized for equality predicates 
(which occur in, e.g., equi-joins and natural joins). In 
contrast, temporal queries typically involve numerous 
inequality predicates. 

The perhaps most prominent source of such predicates is 
the test of overlap among two intervals. Inherent in 
temporal joins, this test occurs frequently in temporal 
queries and results in two equality predicates. Specifically, 
two intervals i and j overlap if the begin value of i is less 
than or equal to the end value of j and the begin value of j is 
less than or equal to the end value of i. Conventional 
DBMSs typically resort to nested-loop implementations of 
joins involving such inequality predicates, with their 
associated inefficiency. There are new and unexploited 
opportunities for query optimization when time is present. 
The current time advances continuously; and for transaction 
time, the time value used most recently in updates is the 
largest value used so far. 

As another example of an optimization opportunity, the 
integrity constraint that the begin value of an interval is less 
than or equal to its end value holds for all intervals in the 
database [4]. Next, for many relations, the intervals 
associated with a key value are contiguous in time, with one 
interval starting exactly when the previous interval ended. 
Semantic query optimization can exploit these integrity 
constraints, as well as additional ones that can be inferred. 

A wide variety of binary joins have been considered, 
including time-join and time-equijoin (TE-join), event-join 
and TE-outer join, contain-join, contain semi join and 
intersect-join, and temporal natural join (e.g., [7, 9]). The 
various algorithms proposed for these joins have generally 
been extensions to nested loop or merge joins that exploit 
sort orders or local workspace, as well as partitioning-based 
joins, but incremental techniques have also been proposed. 

3.4 Taxonomy Of Query Modules 

GVQC views a complex query as a hierarchical composition 
of simple queries. GVQC consists of a finite set of query 
designs, each of which will either formulate a simple query 

or process input from simple queries to formulate a 
composite query. An atomic query is a query that cannot be 
decomposed into simpler ones [12]. This GVQC formulate 
an atomic query to manipulate complex query designs. 
According to the data type we used in the system this 
composer will analyse the data for the manipulations on 
temporal database. 

3.5 Formulating And Configuring Queries 

The system can get inputs from a numeric range query 
design, which represents an atomic query. This query 
returns the numeric information’s for the manipulations. 

4. VISUAL QUERY BY TIME INTERVAL 

Chittaro and Combi have proposed three alternative visual 
metaphors for querying temporal intervals [11]. The authors 
based the expressivity of their visual language on Allen’s 
classification of the relations that may hold between two 
intervals. Three semantically equivalent representations 
(elastic bands, springs and paint strips) depict horizontal 
bars whose ends can be constrained in such a way as to 
capture all 13 of Allen’s interval relationships. 

The results of controlled user studies indicated that users 
were better able to guess the meaning of queries than 
formulate their own. Posing queries to find complex 
patterns is without question a complex task, but it may be 
that the interval representation did not support realistic user 
tasks, or that it did not match the user’s mental model of the 
for query formulation. 

Forms-based direct manipulations are introduced to 
represent Temporal Visual Query Language (TVQL) for 
specifying interval endpoint constraints [10] to support 
Allen’s 13 relational primitives. Four double-sided sliders 
allow users to express the relationship between each pair of 
endpoints among two intervals. Although users interact 
exclusively with the sliders, a visual representation of the 
interval interaction is dynamically updated to provide the 
user feedback on the meaning of the query defined. Our 
approach obviously differs from these interval approaches 
insofar as we query events fundamentally as points in time. 

Although these proposed interval approaches enable 
expression of relationships, they are too succinct to allow 
users to filter results by types or value ranges or to specify 
absolute time ranges as does ours. We feel there needs to 
be a combination of both the power of visualizing the 
relationships, while still being able to express specific event 
and time constraints. The Query Analyzer Tool which deals 
time intervals effectively. 

4.1 Visualizing Temporal Patterns 
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Interestingly, none of the previously-described systems 
address the visualization of the returned results, but instead 
focus only on the query. A query paradigm is necessary; 
however, visualizing the results is essential for 
understanding the underlying data and provides a feedback 
loop to help users more thoroughly understand the query 
interface itself. 

Various applications such as TimeSearcher [11], Spirals 
[10], DataJewel [3], KNAVE [7] and LifeLines [6] have been 
proposed to visualize temporal abstractions by clustering 
results and emphasizing temporal patterns in the returned 
results. 

4.2 Time Visualizations 

TimeSearcher and Spirals attempt to visualize time-series. 
TimeSearcher is a flexible tool that allows users to explore 
the data by specifying queries using “TimeBoxes”. 
TimeBoxes are rectangular query locators that specify the 
region(s) in which the users are interested. This tool allows 
the user to explore patterns in the data or to find similar 
patterns. Weber et. al proposed visualizing time series on 
spirals. Each ring of the spiral represents a periodic section 
of time series. Color and line thickness are used to 
distinguish the data values. Although an interesting 
approach, it is only compatible when dealing with events 
that happen periodically. 

DataJewel is an excellent example of an application that 
bridges information visualization with data mining. For each 
day, the frequency of the events is displayed using 
horizontal histograms. Although the DataJewel algorithms 
are extensible, the visualization parameters are somewhat 
restrictive: a maximum of 10 event attributes can be 
displayed at a time, and all time events are represented at 
the day granularity. 

The CalendarView is primarily intended as a compact 
representation for visually detecting patterns coupled with 
basic browsing capabilities: users may select a subset of 
days for display, can order events by frequency, rescale the 
view, and access details on demand. We instead provide 
ad hoc query for temporal patterns. 

For Example we can view the importance of visual queries 
in medical field. Viewing, exploring, and analyzing data 
collected over time presents a challenge in both the 
database and information visualization fields. The amount 
of data that is collected over time becomes unmanageable 
if there are no techniques to cluster, analyze and visualize 
them. Most medical databases use time-stamped instant 
data as the only temporal representation of patient 
information. Many previous efforts have attempted to 
provide frameworks in which medical databases could be 

queried in relation to time. These, however, have required 
either a sophisticated database representation of time, 
including time intervals, or a time-stamp-based database 
coupled with a nonstandard temporal query language In the 
medical field, final outcomes are important, but recognizing 
patterns over time is essential to adapting treatment plans 
and understanding complex interactions. For example, 
monitoring disease evolution and drug response over time 
are typical progress evaluation tasks. However, if time 
dependent events are collected from different sources, 
joining these databases becomes a challenge as the 
granularity of time capture may differ across databases. 
Additionally, there exist strong relationships between 
consecutive time-stamped observations, with establishes a 
context for disease evaluation. Common temporal 
confounds in medicine include delays between source 
causes and observables, as well as the distortion of 
temporal relationships between variables due to concurrent 
processes (e.g., multiple drug treatment). 

Furthermore, in clinical domains, a final diagnosis is not 
always the main goal. What is often needed is a coherent 
intermediate-level interpretation of the relationships among 
data and events. 

We can also see the Patterns in Health Care. Diverse data 
for individuals are collected over long periods of time, and 
then analyzed and interpreted at many levels. Patients may 
be assessed individually by nurses and physicians, but may 
also be analyzed en masse by clinical researchers, public 
health officials, auditors, etc. Collectively, the potential size 
of the data set is staggering, and issuing queries and 
interpreting results is a real challenge. Visualizing temporal 
data and the patterns within helps different types of end 
users interpret the data and make decisions. 

Numerous applications in the medical field attempt to make 
the interpretation and analysis of the temporal data easier 
and faster by visualizing, grouping or abstracting the data. 
LifeLines was one of the first such systems, which provided 
a compact hierarchical timeline visualization for personal 
histories [6]. In both the medical and legal domains (for 
which LifeLines has been applied) history is the key factor 
in authoritative decision making. Proving an overview for 
large datasets has been found beneficial to such decision 
makers and LifeLines’ multi-faceted approach allows for a 
compact, single-screen overview. 

Users then navigate history details by selecting specific 
facets for expansion, zooming, adjusting the time scale, 
filtering records and accessing details on demand. LifeLines 
supports both discrete time events, displayed as icons, and 
interval events, displayed as lines. Line thickness and color 
encode event attributes such as significance and 
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relationship to other events. Lifeline primarily supports 
directed browsing with text search, but does not offer a 
higher-level query mechanism. Neither does it support 
discovery across multiple records, such as how many 
people had heart surgery on a specific date and what are 
the trends of events surrounding those surgeries. 

5. AN EXAMPLE QUERY 

The example dataset covers the entire USA geospatial 
structure manipulation with visual query in temporal 
database. The system manipulates STATES, COUNTRIES, 
CITIES, ROADS, and LAKES. Each layer has a spatial 
geometry column (storing points, lines, or polygons), and 

many other non-spatial data columns (demographic and 
other census variables). A simple query scenario is detailed 
below to illustrate the GVQC [12]. The scenario is that the 
user is interested in the relative impact of main highways on 
jobs, income, and the general economy of places for blacks 
and whites. They start by looking at the number of mobile 
homes, black, and white populations of small towns or small 
to medium cities. One example query from a set of similar 
ones might be: for all cities with total population < 50,000, 
within the 4-state region of PA-WVMD- VA, and that are 
within 5 miles of a main highway—give me the city names, 
black population, white population, mobile homes of each 
city. The SQL (with Oracle spatial extensions) statement for 
this query is as follows: 

 

 

With GVQC, the user can visually compose this query with 
just several mouse clicks without knowing either the SQL 
syntax or the detailed database schema. The query 
statement is automatically extracted from the visual design. 

6. CONCLUSION 

Advantages of this visual query system can be generalized 
as follows: (1) dynamic visualization of related database 
schema information to help the user explore the database 
and construct correct/accurate queries; (2) flexibility in and 
ease of forming complex spatial and/or non-spatial queries; 
(3) clear visualization of the semantic hierarchy of a 
complex query, which is useful for both forming and 
understanding such queries (4) the ease with which a 
query can be modified; (5) the ability to extract text-based 
SQL statements that allow users to read/learn the query 
language; (6) the extensibility of the system for adding new 
modules and new visualization capability to each module. 

FUTURE ENHANCEMENT 

The Life Span Analyzer (LSA) can be updated or enhanced 
for the future modifications. The Main Feature of the 
system is Life Span Time calculation and providing the 
visual results for the Query manipulations. 

 The system can be updated for the best results on 
life span calculations by comparing the different 
queries along with the Query Analyzer Algorithms. 

 The Artificial Intelligence (AI) Technique can be 
implemented along with LSA (Life Span Analyzer) 
algorithm to analyze the Life Span Time by 
Comparing different queries. 

 The system can be enriched to sense the query 
processing time and analysis of visual queries by 
implementing in Neural Networks. 
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