
Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Study of Different Types of Queries in Sequential

Multi Dimensions Database

Pradeep Kumar

Research Scholar, CMJ University Shillong, Meghalaya

ABSTRACT: A wide range of database applications manage time-varying data. In contrast, existing database technology
provides little support for managing such data. The research area of temporal databases aims to change this state of
affairs by characterizing the semantics of temporal data and providing expressive and efficient ways to model, store, and
query temporal data. It concisely introduces fundamental temporal database concepts, surveys state-of-the-art solutions
to challenging aspects of temporal data management. Applications such as these rely on temporal databases, which
record time referenced data. Temporal database management is a vibrant field of research. Temporal Database
manipulations are effective based on life span time. This paper illustrates the graphical representation of the temporal
database manipulations in terms of visual query with LSA. The Life Span Analyzer (LSA) provides the effective results on
temporal manipulations It also explains the semantics, Patterns and Visual Query Operators.

--♦-------------------------------------

1. INTRODUCTION

There are three main classes of query languages devoted
to spatial databases: Textual languages (natural, SQL and
extensions), Graphical languages (QBE) and Visual
languages. Since these langue’s are not sufficient to work
with temporal databases [4]. The updations are made with
the existing visual query languages to manipulate with the
temporal databases. Visual query with temporal database
provides graphical representation of query analysis and
performance of a query in temporal databases.

In various fields there is a need to manage geometric,
geographic, or spatial data, which means data related to
space. The space of interest can be, for example, the two-
dimensional abstraction of (parts of) the surface of the
earth – that is, geographic space, the most prominent
example –, a man-made space like the layout of a VLSI
design, a volume containing a model of the human brain,
or another 3d-space representing the arrangement of
chains of protein molecules.

Characteristic for the technology emerging to address
these needs is the capability to deal with large collections
of relatively simple geometric objects, for example, a set of
100 000 polygons. This is somewhat different from areas
like CAD databases (solid modeling etc.) where geometric
entities are composed hierarchically into complex
structures, although the issues are certainly related [2].
Several terms have been used for database systems

offering such support like pictorial, image, geometric,
geographic, or spatial database system. The terms
“pictorial” and “image” database system arise from the fact
that the data to be managed are often initially captured in
the form of digital raster images (e.g. remote sensing by
satellites, or computer tomography in medical
applications).

Image database systems may include analysis techniques
to extract objects in space from images, and offer some
spatial database functionality, but are also prepared to
store, manipulate and retrieve raster images as discrete
entities. In this survey we only discuss spatial database
systems in the restricted sense. So the spatial database or
a simple image database system is not sufficient in this
case. Temporal database provides several patterns to
access the images though the databases and the visual
queries provide the effective timings and prominent
accessing and retrival of patterns.

2. TEMPORAL DATABASES AND VISUAL
QUERYIES

Most applications of database technology are temporal in
nature. Examples include financial applications,
recordkeeping applications such as personnel, medical-
record, scheduling applications such as airline, train, and
hotel reservations and project management and scientific
applications such as weather monitoring [1]. Temporal
database management is a vibrant field of research, with

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

an active community of several hundred researchers who
have produced some 2000 papers over the last two
decades [7].

2.1 Temporal Data Semantics:

Before considering temporal data models and query
languages, we examine, in data model-independent terms,
the association of times and facts, which is at the core of
temporal data management.

The Main Goals of Temporal Database:

 Identification of an appropriate data type for time

 Prevent fragmentation of an object description

 Provide query algebra to deal with temporal data

 Compatiable with old database without temporal
data

The transaction time of a database fact is the time when
the fact is current in the database. Unlike valid time,
transaction time may be associated with any database
entity, not only with facts [3]. For example, transaction time
may be associated with objects and values that are not
facts because they cannot be true or false in isolation [6].

Thus, all database entities have a transaction-time aspect.
Based on the lifespan of the system, we could use [t1, t2]
to repersent the valid time of the data model and use
mathematic "SET ALGEBRA" to operate them. When we
want to handle temporal data, we define is the set of all
historical domains.

A relation scheme R = is an ordered 4-tuple where.

 A = {Ar1, Ar2 ...Ar3}(U is the set of attributes od
R.we will sometimes abuse notation and refer to A
as the scheme of R; no confusion should arise.

 K = {Ak1, Ak2,.....Akm}(A is the set of (primary) key
attributes of R

 ALS:A X R -> 2^T is a function assigning a lifespan
to each attribute in A in scheme R. We will refer to
the lifespan of attribute A in relation scheme R as
ALS(A,R).

 DOM:A->HD is a function assigning a domain to
each attribute in R, with the restrictions that (1) for
all key attributes Ai,DOM(Ai) < CD, that is the key
attributes must all be constant-valued; and (2) the

temporal domain of each of the partial function in
any DOM(A) is contained within ALS(A,R).

Figure 1 gives the relation instance in the Bitemporal
Conceptual Data Model(BCDM) [9] that describes the
sample rental scenario. This data model time stamps
tuples, corresponding to facts, with values that are sets of
(transaction time, valid time) pairs, captured using attribute
T in the figure.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

Figure 1: Bitemporal Conceptual CheckedOut Instance

The presence of a pair (tt, vt) in a timestamp of a tuple
means that the current state of the database at time tt
records that the fact represented by the tuple is valid at
time vt.

The special value UC (“until changed”) serves as a marker
indicating that its associated facts remain part of the
current database state, and the presence of this value
results in new time pairs being included into the sets of
pairs at each clock tick. The idea behind the BCDM is to
retain the simplicity of the relational model while also
capturing the temporal aspects of the facts stored in a
database. Because no two tuples with mutually identical
explicit attribute values (termed valueequivalent) are

allowed in a BCDM relation instance.

3. VISUAL QUERIES WITH RELATIONAL
DATABASES

Visual query languages moved beyond QBE’s tabular entry
by providing users with a more accurate view of the
database structure by introducing Extended Entity-
Relationship (EER) diagrams. EER diagrams are an
effective method for modeling the structure of information
stored in a relational database, and can be converted
directly into relational tables. It is not surprising therefore,
that both tables and EER diagrams have been explored as

the basis for database query. Users of Microsoft’s Access
database, for example, have been exposed to one
example of tablebased query specification. Indeed, the
introduction of visual query languages has dramatically
affected database query.

3.1 Temporal Patterns

We consider a temporal pattern as a sequence of Events
and inter-event TimeSpans that can be restricted in some
way. The fundamental building blocks for a pattern are
therefore Events, and between Events, TimeSpans. A
pattern is a sequence of Events and TimeSpans of
arbitrary length, as shown in the following Figure:

Figure : A pattern as a sequence of Events and TimeSpans.

3.2 Example For Visual Query Operators

Visual Query Operators may acts as a tool for manipulating
real time examples. Here we have choosen geographical
data bases for database manipulation with visual queries.
Visual queries can be composed to manipulate these datas
along with temporal databases. Large volumes of federal
data (together with their associated geospatial properties)
are being collected and managed with database systems.
Accessing these databases with command-line-based
query languages is difficult, error-prone, and tedious. This
system concentrates on enabling non-specialist users to
access the system easily. Here we are using GIScience to
facilitate interaction with GIS and in database and
application fields to develop visual query systems (VQS)
that make it easier for users to compose queries. The
Geographic Visual Query Composer (GVQC) [5] [7] can be
viewed as a tool that allows users to visually formulate and
execute a query statement directed to federal databases
containing geospatial data. GVQC also allows users
toget/edit textbased SQL statements, which are
automatically extracted from the visual design.

3.3 Query Processing

A query formulated in some high-level, user-oriented query
language is typically translated into an equivalent query,
formulated in a DBMS-internal, algebraic query language.
The DBMS then optimizes this algebraic expression by
transforming it into an equivalent expression that is

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

expected to be more efficient to process, the result being
better query processing performance. Optimization of
temporal queries offers new challenges over optimization of
conventional queries. At the core of the matter, temporal
database queries are often large and complex [10].
Because of this added complexity, it is not only more
important, but also more challenging, to optimize temporal
database queries. Specifically, the predicates used in
temporal queries make these queries difficult to optimize. In
nontemporal database applications, predicates are often
equality predicates. As a reflection of this, much research in
query processing has concentrated on equality predicates,
and existing DBMSs are optimized for equality predicates
(which occur in, e.g., equi-joins and natural joins). In
contrast, temporal queries typically involve numerous
inequality predicates.

The perhaps most prominent source of such predicates is
the test of overlap among two intervals. Inherent in
temporal joins, this test occurs frequently in temporal
queries and results in two equality predicates. Specifically,
two intervals i and j overlap if the begin value of i is less
than or equal to the end value of j and the begin value of j is
less than or equal to the end value of i. Conventional
DBMSs typically resort to nested-loop implementations of
joins involving such inequality predicates, with their
associated inefficiency. There are new and unexploited
opportunities for query optimization when time is present.
The current time advances continuously; and for transaction
time, the time value used most recently in updates is the
largest value used so far.

As another example of an optimization opportunity, the
integrity constraint that the begin value of an interval is less
than or equal to its end value holds for all intervals in the
database [4]. Next, for many relations, the intervals
associated with a key value are contiguous in time, with one
interval starting exactly when the previous interval ended.
Semantic query optimization can exploit these integrity
constraints, as well as additional ones that can be inferred.

A wide variety of binary joins have been considered,
including time-join and time-equijoin (TE-join), event-join
and TE-outer join, contain-join, contain semi join and
intersect-join, and temporal natural join (e.g., [7, 9]). The
various algorithms proposed for these joins have generally
been extensions to nested loop or merge joins that exploit
sort orders or local workspace, as well as partitioning-based
joins, but incremental techniques have also been proposed.

3.4 Taxonomy Of Query Modules

GVQC views a complex query as a hierarchical composition
of simple queries. GVQC consists of a finite set of query
designs, each of which will either formulate a simple query

or process input from simple queries to formulate a
composite query. An atomic query is a query that cannot be
decomposed into simpler ones [12]. This GVQC formulate
an atomic query to manipulate complex query designs.
According to the data type we used in the system this
composer will analyse the data for the manipulations on
temporal database.

3.5 Formulating And Configuring Queries

The system can get inputs from a numeric range query
design, which represents an atomic query. This query
returns the numeric information’s for the manipulations.

4. VISUAL QUERY BY TIME INTERVAL

Chittaro and Combi have proposed three alternative visual
metaphors for querying temporal intervals [11]. The authors
based the expressivity of their visual language on Allen’s
classification of the relations that may hold between two
intervals. Three semantically equivalent representations
(elastic bands, springs and paint strips) depict horizontal
bars whose ends can be constrained in such a way as to
capture all 13 of Allen’s interval relationships.

The results of controlled user studies indicated that users
were better able to guess the meaning of queries than
formulate their own. Posing queries to find complex
patterns is without question a complex task, but it may be
that the interval representation did not support realistic user
tasks, or that it did not match the user’s mental model of the
for query formulation.

Forms-based direct manipulations are introduced to
represent Temporal Visual Query Language (TVQL) for
specifying interval endpoint constraints [10] to support
Allen’s 13 relational primitives. Four double-sided sliders
allow users to express the relationship between each pair of
endpoints among two intervals. Although users interact
exclusively with the sliders, a visual representation of the
interval interaction is dynamically updated to provide the
user feedback on the meaning of the query defined. Our
approach obviously differs from these interval approaches
insofar as we query events fundamentally as points in time.

Although these proposed interval approaches enable
expression of relationships, they are too succinct to allow
users to filter results by types or value ranges or to specify
absolute time ranges as does ours. We feel there needs to
be a combination of both the power of visualizing the
relationships, while still being able to express specific event
and time constraints. The Query Analyzer Tool which deals
time intervals effectively.

4.1 Visualizing Temporal Patterns

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

Interestingly, none of the previously-described systems
address the visualization of the returned results, but instead
focus only on the query. A query paradigm is necessary;
however, visualizing the results is essential for
understanding the underlying data and provides a feedback
loop to help users more thoroughly understand the query
interface itself.

Various applications such as TimeSearcher [11], Spirals
[10], DataJewel [3], KNAVE [7] and LifeLines [6] have been
proposed to visualize temporal abstractions by clustering
results and emphasizing temporal patterns in the returned
results.

4.2 Time Visualizations

TimeSearcher and Spirals attempt to visualize time-series.
TimeSearcher is a flexible tool that allows users to explore
the data by specifying queries using “TimeBoxes”.
TimeBoxes are rectangular query locators that specify the
region(s) in which the users are interested. This tool allows
the user to explore patterns in the data or to find similar
patterns. Weber et. al proposed visualizing time series on
spirals. Each ring of the spiral represents a periodic section
of time series. Color and line thickness are used to
distinguish the data values. Although an interesting
approach, it is only compatible when dealing with events
that happen periodically.

DataJewel is an excellent example of an application that
bridges information visualization with data mining. For each
day, the frequency of the events is displayed using
horizontal histograms. Although the DataJewel algorithms
are extensible, the visualization parameters are somewhat
restrictive: a maximum of 10 event attributes can be
displayed at a time, and all time events are represented at
the day granularity.

The CalendarView is primarily intended as a compact
representation for visually detecting patterns coupled with
basic browsing capabilities: users may select a subset of
days for display, can order events by frequency, rescale the
view, and access details on demand. We instead provide
ad hoc query for temporal patterns.

For Example we can view the importance of visual queries
in medical field. Viewing, exploring, and analyzing data
collected over time presents a challenge in both the
database and information visualization fields. The amount
of data that is collected over time becomes unmanageable
if there are no techniques to cluster, analyze and visualize
them. Most medical databases use time-stamped instant
data as the only temporal representation of patient
information. Many previous efforts have attempted to
provide frameworks in which medical databases could be

queried in relation to time. These, however, have required
either a sophisticated database representation of time,
including time intervals, or a time-stamp-based database
coupled with a nonstandard temporal query language In the
medical field, final outcomes are important, but recognizing
patterns over time is essential to adapting treatment plans
and understanding complex interactions. For example,
monitoring disease evolution and drug response over time
are typical progress evaluation tasks. However, if time
dependent events are collected from different sources,
joining these databases becomes a challenge as the
granularity of time capture may differ across databases.
Additionally, there exist strong relationships between
consecutive time-stamped observations, with establishes a
context for disease evaluation. Common temporal
confounds in medicine include delays between source
causes and observables, as well as the distortion of
temporal relationships between variables due to concurrent
processes (e.g., multiple drug treatment).

Furthermore, in clinical domains, a final diagnosis is not
always the main goal. What is often needed is a coherent
intermediate-level interpretation of the relationships among
data and events.

We can also see the Patterns in Health Care. Diverse data
for individuals are collected over long periods of time, and
then analyzed and interpreted at many levels. Patients may
be assessed individually by nurses and physicians, but may
also be analyzed en masse by clinical researchers, public
health officials, auditors, etc. Collectively, the potential size
of the data set is staggering, and issuing queries and
interpreting results is a real challenge. Visualizing temporal
data and the patterns within helps different types of end
users interpret the data and make decisions.

Numerous applications in the medical field attempt to make
the interpretation and analysis of the temporal data easier
and faster by visualizing, grouping or abstracting the data.
LifeLines was one of the first such systems, which provided
a compact hierarchical timeline visualization for personal
histories [6]. In both the medical and legal domains (for
which LifeLines has been applied) history is the key factor
in authoritative decision making. Proving an overview for
large datasets has been found beneficial to such decision
makers and LifeLines’ multi-faceted approach allows for a
compact, single-screen overview.

Users then navigate history details by selecting specific
facets for expansion, zooming, adjusting the time scale,
filtering records and accessing details on demand. LifeLines
supports both discrete time events, displayed as icons, and
interval events, displayed as lines. Line thickness and color
encode event attributes such as significance and

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

relationship to other events. Lifeline primarily supports
directed browsing with text search, but does not offer a
higher-level query mechanism. Neither does it support
discovery across multiple records, such as how many
people had heart surgery on a specific date and what are
the trends of events surrounding those surgeries.

5. AN EXAMPLE QUERY

The example dataset covers the entire USA geospatial
structure manipulation with visual query in temporal
database. The system manipulates STATES, COUNTRIES,
CITIES, ROADS, and LAKES. Each layer has a spatial
geometry column (storing points, lines, or polygons), and

many other non-spatial data columns (demographic and
other census variables). A simple query scenario is detailed
below to illustrate the GVQC [12]. The scenario is that the
user is interested in the relative impact of main highways on
jobs, income, and the general economy of places for blacks
and whites. They start by looking at the number of mobile
homes, black, and white populations of small towns or small
to medium cities. One example query from a set of similar
ones might be: for all cities with total population < 50,000,
within the 4-state region of PA-WVMD- VA, and that are
within 5 miles of a main highway—give me the city names,
black population, white population, mobile homes of each
city. The SQL (with Oracle spatial extensions) statement for
this query is as follows:

With GVQC, the user can visually compose this query with
just several mouse clicks without knowing either the SQL
syntax or the detailed database schema. The query
statement is automatically extracted from the visual design.

6. CONCLUSION

Advantages of this visual query system can be generalized
as follows: (1) dynamic visualization of related database
schema information to help the user explore the database
and construct correct/accurate queries; (2) flexibility in and
ease of forming complex spatial and/or non-spatial queries;
(3) clear visualization of the semantic hierarchy of a
complex query, which is useful for both forming and
understanding such queries (4) the ease with which a
query can be modified; (5) the ability to extract text-based
SQL statements that allow users to read/learn the query
language; (6) the extensibility of the system for adding new
modules and new visualization capability to each module.

FUTURE ENHANCEMENT

The Life Span Analyzer (LSA) can be updated or enhanced
for the future modifications. The Main Feature of the
system is Life Span Time calculation and providing the
visual results for the Query manipulations.

 The system can be updated for the best results on
life span calculations by comparing the different
queries along with the Query Analyzer Algorithms.

 The Artificial Intelligence (AI) Technique can be
implemented along with LSA (Life Span Analyzer)
algorithm to analyze the Life Span Time by
Comparing different queries.

 The system can be enriched to sense the query
processing time and analysis of visual queries by
implementing in Neural Networks.

REFERENCES

[1] T. Abraham and J. F. Roddick. Survey of Spatio-
Temporal Databases. GeoInformatica, (1):61–
99,March 1999.

[2] Ahlberg, C. and Shneiderman, B., Visual
Information Seeking: Tight coupling of dynamic query
filters with starfield displays. in Proceedings of ACM's
SIGCHI Conference, (1994), ACM Press.

[3] Allen, J.F. (1983) Maintaining knowledge about
temporal intervals. Communications of the ACM, 26
(11).

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

[4] Ankerst, M., Jones, D.H., Kao, A. and Wang, C.,
DataJewel: Tightly Integrating Visualization with
Temporal Data Mining. in ICDM Workshop on Visual
Data Mining, (2003).

[5] Dionisio, J.D.N. and Cardenas, A.F. (1996)
MQuery: a visual query language for multimedia
timeline and simulation data. Journal of Visual
Languages and Computing,

[6] Catarci, T., M. Costabile, et al. (1995). “Visual
Query Systems for Databases: A Survey.” Journal of
Visual Languages and Computing.

[7] Egenhofer, M. and W. Kuhn (1999). Interacting
with Geographic Information Systems.
GeographicalInformation Systems: Principles,
Techniques, Applications, and Management. D. Rhind,
Wiley:New York.

[8] W. Kim (ed.) Modern Database Systems: The
Object Model, Interoperability and Beyond. Addison-
Wesley/ACMPress 1995.

[9] C. S. Jensen and R. T. Snodgrass. Semantics of
Time-Varying Information. Information Systems,
21(4):311–352, 1996.

[10] R. T. Snodgrass. Developing Time-Oriented
Database Applications in SQL. Morgan Kaufmann
Publishers 2000.

[11] Chittaro, L. and Combi, C. (2003) Visualizing
queries on databases of temporal histories: new
metaphors and their evaluation. Data & Knowledge
Engineering, 44 (2). 239-264.

[12] http://en.wikipedia.org/wiki/ Temporal_database

