
Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Virtual File System Based Embedded Software
Development: Underlying Technology

Parveen Kumar

 Research Scholar, CMJ University, Shillong, India

--♦-------------------------------------

INTRODUCTION

The breadth of technologies required to bring performance
benefits to our customers is remarkable. Maintaining up-to
date knowledge in a number of rapidly changing fields as
wide apart as low power applications to software
generation and verification, from advanced signal
processing to FPGA technologies is a great challenge for
our global research and development teams.

With the ever increasing penetration of embedded systems
in society and the related increase in investments by
industry to develop such systems, the investments in
embedded software engineering technologies increases as
well. Forecasts [2] predict continuing increase in
embedded systems specific technologies. This section
uses the term 'technology* for any method, technique,
process or tool that can be used to support a certain
development activity.

The market for software engineering technologies is largely
fragmented. There is no clear market leader, and there is
no supplier present that fully supports the whole
development chain of embedded products. There are
different suppliers for requirements engineering
technologies, different vendors for design technologies,
etc. Most dominant is the sales of software tools. Tools
imply to support or be supported with a methodology.
Some suppliers provide methodologies with their tools,
while others support generic methodologies, such as UML
(OMG's Unified Modeling Language) or MOF (MOG's Meta
Object Facility).

As the market of technologies is fragmented, so are the
technologies themselves. Technologies in general are
stand-alone solutions for specific problems. As embedded
software development is collection of complex and
technical problems, several technologies are applied in
parallel [3]. It does not take very much time or experience
to observe that this lack of integration is a cause for
problems too. Technologies are used separately but

depend on each other, interfaces are not defined,
inconsistencies occur, etc. Despite this loss of quality due
to lack of integration, there is moreover a loss of time,
effort and money due to duplication, redundancy and cost
of non-quality. As time pressure is prominent in many
market domains where embedded systems are sold, this
indicates a potential gain in time-to-market. Time-to-market
gains in embedded systems development cause high
potential revenue gains due to earlier market introduction
and therefore deeper market penetration. Industrial
companies therefore support initiatives for time-to-market
reduction strongly.

Though many software product and process technologies
are already available, the embedded software domain puts
specific demands to the application of these technologies.
Dedicated research results and products are present for
software architecture development and assessment,
requirements engineering and validation, software process
improvement, and tools to support all these technologies.
However the major disadvantages of these technologies
are that they do not take into account the specific needs for
embedded systems and that they are applied "stand
alone"', which in many cases is not very effective and leads
to disappointing results.

The embedded systems industry puts specific demands to
the usage of such methodologies, such as the large
dependency on real-time features, limited memory storage,
large impact of hardware platform technology and the
related cost drivers of the hardware, etc. The existing
software engineering methodologies do not distinguish the
specific impacts or necessary customisation for the
embedded domain, nor is it indicated how they should be
used specifically for each specific area within this domain,
i.e. automotive, telecom, consumer electronics, safety
critical, etc. The embedded software domain puts
dedicated pressure on these methodologies. Reasons for
this are the high complexity of these products and the
dependency in this domain 011 innovative highly technical
solutions.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

Furthermore, the embedded domain is much more driven
by reliability, cost and time-to-market demands. This
makes the embedded domain a specific area for which
available generic methodologies need to be adapted.

Advances in process technology and the availability of new
design tools are broadening the scope of embedded
systems; from being implemented as a set of chips on a
board, to a set of modules in an integrated circuit. System-
on-Chip (SoC) technology is now being deployed in
industrial automation, enabling the creation of complex
field-area intelligent devices. This trend is accompanied by
the adoption of platform-based design, which facilitates the
design and verification of complex SoC through the
extensive re-use of hardware and software IP (intellectual
property). A further important aspect of the evolution of
embedded systems is the trend towards networking of
embedded nodes using specialized network technologies,
frequently referred to as Networked Embedded Systems
(NES).

System-on-Chip (SoC) represents a revolution in
integrated circuit (IC) design, enabled by advances in pro-
cess technology, which allow the integration of the main
components and subsystems of an electronic product onto
a single chip or integrated chipset [1]. This development
has been embraced by designers of complex chips
because it permits the highest possible level of integration,
resulting in increased performance, reduced power
consumption, and advantages in terms of cost and size.
These are very important factors in the design process,
and the use of SoC is arguably one of the key decisions in
developing real-time embedded systems.

SoC can be defined as a complex integrated circuit, or
integrated chipset, that combines the main functional ele-
ments or subsystems of a complete end product in a single
entity. Nowadays, the most challenging SoC de signs
include at least one programmable processor, and very
often a combination of at least one RISC (reduced
instruction set computing) control processor and one digital
signal processor (DSP). They also include on-chip com-
munications structures - processor bus(es), peripheral
bus(es) and sometimes a high-speed system bus. A hier-
archy of on-chip memory units, as well as links to off-chip
memory, is especially important for SoC processors. For
most signal-processing applications, some degree of
hardware- based accelerating functional unit is provided,
offering higher performance and lower energy
consumption. For interfacing to the external world, SoC
design includes a number of peripheral processing blocks
consisting of analogue components as well as digital
interfaces (for example, to system buses at board or
backplane level). Future SoC may incorporate MEMS-

based (microelectro-mechanical system) sen sors and
actuators, or chemical processing (lab-on-a-chip) D.

All interesting SoC designs comprise both hardware and
software components. These include programmable
processors, real-time operating systems, and other
elements of hardware- dependent software. Thus, the
design and use of SoCs not only concerns hardware - it
also involves system- level design and engineering, hard-
ware—software tradeoffs and partitioning, and software
architecture, design and implementation.

System-on-a-Prog rammable-Chip Recently, the scope of
SoC has broadened. From implementations using custom
IC, application specific IC (ASIC) or application-specific
standard part (ASSP), the approach now includes the
design and use of complex reconfigurable logic parts with
embedded processors. In addition other application-
oriented blocks of intellectual property, such as processors,
memories, or special purpose functions bought from third
parties are incorporated into unique designs.

These complex FPGAs (Field-Program- mable Gate
Arrays) are offered by several vendors, including Xilinx
(Virtex-II PRO Platform FPGA, Virtex-IV) and Altera
(SOPC). The guiding principle behind this approach to SoC
is to combine large amounts of reconfigurable logic with
embedded RISC processors, in order to enable highly
flexible and tailorable combinations of hardware and
software processing to be applied to a design problem.
Algorithms that contain significant amounts of control logic,
plus large quantities of dataflow processing, can be
partitioned into the control RISC processor with reconfigu-
rable logic for hardware acceleration. Although the
resulting combination does not offer the highest
performance, lowest energy consumption, or lowest cost -
in comparison with custom IC or ASIC/ASSP
implementations of the same functionality - it does offer
enormous flexibility in modifying the design in the field, and
avoids expensive Non- Recurring Engineering (NRE) costs
associated with field changes. Thus, new applications,
interfaces and improved algorithms can be downloaded to
products already working in the field.

Products in this area also include other processing and
interface cores: these consist of multiply—accumulate
(MAC) blocks aimed at DSP-type dataflow signal- and
image processing applications, and high-speed serial
interfaces for wired communications such as SERDES
(serializer/'de-serializ- er) blocks. In this sense, system-on-
a- programmable-chip SoCs are not exactly application-
specific, but not completely generic either.

Another important facet of the evolution of embedded
systems is the emergence of distributed embedded

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

systems, frequently termed networked embedded systems,
where the word "networked" signifies the importance of the
networking infrastructure and communication protocol. A
networked embedded system is a collection of spatially
and functionally distributed embedded nodes,
interconnected by means of wireline and/or wireless
communication infrastructure and protocols, and interacting
with the environment (via sensor/actuator elements) and
each other. Within the system, a master node can also be
included to coordinate computing and communication, in
order to achieve specific objectives.

Controllers embedded in nodes or field devices, such as
sensors and actuators typically provide on-chip signal
conversion, data and signal processing, and
communication functions. The ever-increasing functionality,
processing and communication capabilities of controllers
have been instrumental in the emergence of a widespread
trend for the networking of field devices around specialized
networks, frequently referred to as field area networks. (A
field area network is normally a digital, two-way, multi-drop
communication link [61.) In general, the benefits of using
specialized (field area) networks are numerous and
include: increased flexibility through combining embedded
hardware and software; improved system performance;
and ease of system installation. upgrade, and
maintenance.

ALTERNATIVES FOR FILE SYSTEM
IMPLEMENTATION

Traditionally, file systems contain directory structures that
are tightly bound to a particular file system implementation.
These structures may be embedded, both logically and
physically, in the file system and contain data that are
specific to the file system implementation. Changing the
directory structure of a file system can be extremely
tedious: the file system code must be changed and rebuilt,
new file system initialization code (mkfs) is needed, and
new recovery code (fsck) is also likely to be necessary.
Several areas of file system research could benefit from a
generic directory structure that is implemented above the
physical file system layer, allowing experimentation with
directory contents and possibly alternative naming
schemes.

Ail existing implementation of directory files was completed
011 Linux 2.2.14 and subsequently on Linux 2.4.2. This
implementation consists of modifications to the Linux
kernel NFS server code, but works with any NFS client. A
directory-file -based file system is created by initializing a
root directory file, called ROOT. The directory containing
this file is then exported. The ROOT file is initialized with

entries for and that both refer to ROOT. A11 entry in a
directory file consists of:

 The user's name for the object (e.g., passwd)

 The system's name for the object in the underlying
physical file system (e.g., f ile . 001; see below)

 The type of the object (e.g., directory or file)

 Any other information that may be necessary (e.g.,
server where the object is located)

For this implementation, file system objects are created in
a flat namespace in the underlying physical file system(s).
and are given unique object identifiers (a name in the
namespace of the underlying file system). Thus, the
directory entry associates the users's name for a file with a
unique object id used by the system to retrieve object
contents.

In the NFS server code, an exported file system is flagged
as a "directory-file file system" if it contains a ROOT
directory file (this will change in a future implementation,
and is just a temporary hack). All directory operations for
this file system are intercepted and interpreted in the
directory file context. For example, if a readdir request is
received, the corresponding directory file is opened, its
contents are read, and the appropriate readdir response is
constructed and sent to the client. Reading and Birch is
implemented as a Cocoa application that creates a user-
space NFS system, and NFS RPC calls (which only come
over a local socket instead of over the network) are
interpreted to render metadata search queries as files and
directories. A simple Cocoa user interface manages the
search queries the file system renders. Queries are
composed using the NSPredicate and NSMetadataQuery
classes, which access the Spotlight metadata database.

The basic object is the system is the Query, which contains
three fields:

 The predicate. which is a Spotlight query stored in an
NSPredicate object. An example query is "kMD It em
Authors == '*Brian Eno*

,M
.

 A boolean attribute isLeaf. "Leaf" queries show their
results in the file system view; non-leaf queries do not. The
purpose of non-leaf queries is to store a partial query,
which can be composed with other queries. Since the
partial query may match too many files, the non-leaf
attribute prevents large, possibly uninteresting, result sets
from being displayed.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

 A set of names of other sets, called subordinates.
Subordinate sets are always shown in the file system, and
provide a way to save metadata search paths. For
example, one could store a query, like "kMD Item Album
== ' *Music for Airports*' ", inside a query that it is
commonly used with, such as "kMD Item Authors ==
'*Brian Eno*'". There is no hierarchy implied here; two
queries may contain one another in their subordinate sets,
and conjunctions can be formed by specifying either one
first.

In order to simplify the implementation of the NFS server,
no file I/O requests are handled by the NFS server itself.
Instead, files referenced in a query always appear as
symbolic links, where the content of the link is the full path
to the file elsewhere on the file system. This mechanism
greatly simplifies the objects the Birch file system needs to
keep track of: everything in the file system is either a
directory,and thus a predicate, or it is a link to a file
matching a predicate. We think this kind of file system —
which only uses links to reference resources — is a very
useful implementation strategy, since it simplifies and
optimizes file access, once the file is looked up. This
makes the file system analogous to other forms of search
results, like Internet search engines, which produce as
output not the content found, but merely links to the
content. It is also much easier to properly implement
POSIX semantics if the capabilities of the file system are
restricted, which was invaluable given the short,
development time of this project.

A direct approach to implementing file abstractions for
hardware is through dedicated operating system resident
file systems providing the abstraction. These file systems
can be mounted at required locations within the operating
system namespace and be used to control and access
hardware through conventional file operations. Many
popular operating systems alleviate the difficulty in
developing file systems by defining standard, generic
interfaces that file systems can plug themselves into.
Examples include VFS [102] in Linux, SunOS VFS [74] and
Installable File System [93] in Microsoft Windows. While
file systems have to comply with these interface standards
set by the operating system, the implementation logic is
largely the file systems’ prerogative. Thus synthetic file
system behavior could be incorporated by completing
various file operations through necessary interactions with
the hardware being abstracted. A more restrictive means of
implementing kernel-based file abstractions for hardware in
Unix-like operating systems is through devfs [5], which
enables association of a single file in a global devfs
directory (typically /dev) with a hardware device. Handlers
for the various file operations are defined in the hardware’s
device driver and registered with devfs.

 Techniques exist to implement filesystems in user
space and integrate them within the overlying operating
system namespace. The general idea of shifting
functionality from within the kernel to user space has been
aggressively adopted by the GNU Hurd [64] and Exokernel
[46] projects among others to several core aspects of
operating system operation including inter-process
communication, file systems, signal handling and
networking. Such systems have a minimal microkernel at
their core, while much of the operating system functionality
is transferred out to user space daemons.

THE PLAN 9 MODEL

Plan 9 is a general-purpose, multi-user, portable distributed
system implemented on a variety of computers and
networks. Because commands, libraries, and system calls
are similar to those of the Unix operating system, it is
possible to port many Unix programs to Plan 9 with little or
no changes. A casual user would find little difference
between the two systems.

What distinguishes Plan 9 is its organization. The goals of
this organization were to reduce administration and to
promote resource sharing. Our programming style was
minimalism. We believe that a small number of well-chosen
abstractions can, with much less code, provide most of the
function of a larger system. This is the approach that made
the Unix operating system so much smaller than its
contemporaries such as Multics. In building Plan 9, we
generalized proven ideas from the Unix operating system
rather than add new untried concepts.

Plan 9 is divided along lines of service function. Diskless
CPU servers concentrate computing power into large
multiprocessors: file servers provide repositories for
storage: and terminals give each user of the system a
dedicated computer with bitmap screen and mouse on
which to run a window system. The sharing of computing
and file storage services provides a sense of community
for a group of programmers, amortizes costs, and
centralizes and hence simplifies management and
administration.

Since both CPU servers and terminals use the same
kernel, users may choose whether to run programs locally
on their terminals or remotely on CPU servers. Plan 9
provides this flexibility without constraining the choice.
Therefore, both users and administrators can configure
their environment to be as distributed or centralized as they
wish. At work, users tend to use their terminals more like
workstations running all interactive programs locally and
reservmg the CPU servers for data or compute intensive
jobs such as compiling and computing chess end games.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

At home, connected via a dedicated 9600 baud line to
work, users choose what they run locally and remotely to
reduce communication cost. Some applications, such as
the editor [Pik87], are split into multiple programs to make
this choice even more flexible.

Figure in any Plan 9 section shows how we have
configured our environment. Multiprocessor CPU and file
servers are clustered in a few computer rooms and
connected via 7 megabyte/sec point-to-point links [Pre88].
This permits the CPU servers to be used as high

performance compute engines without becoming starved
for data. Terminals are connected to the servers via lower
speed, lower cost distribution networks such as the 10
megabit Ethernet [MetSO] and 2 megabit Incon [Kal. Res],
By emphasizing the shared service clusters we can quickly
and cheaply incorporate new technologies as they arise. At
the same time, users wishing more autonomy can
incorporate as much computing power as they wish in their
own offices without losing the advantage of transparently
sharing other resources.

Figure - Plan 9 Topology

The rest of this section describes the features of Plan 9
that make possible such a flexible topology. For more
information on hardware and use of the system, see our
previous section [Pik90] . For details of the file server, see
[Qui] .

All Plan 9 components are connected using this file system
protocol. The code used to encapsulate the primitives into

request and reply messages is 580 lines long. The mount
driver is 899 lines long. Compared to the equivalent NFS
code implementing vnodes and XDR this is tiny.

Iii Plan 9. every network interface is a file system. A
gateway is a file server that serves its own network
interfaces to other machines. A process that wants to get
at a remote network connects to the gateway and mounts
the gateway's interface to the remote network into its name
space. Whenever the process accesses the interface, the
mount driver will send the request to the gateway. Thus,
the gateway sees exactly what the process does.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

Plan 9 survives without local disk file systems thanks
partially to hardware and partially to caching. The CPU
servers do so because their links to the file servers transfer
at a substantial percentage of memory speed. The file
servers maintain large main memory caches for their disk
file systems. These servers are configured with 128
megabytes or more of mam memory to ensure that there is
plenty of room for cache. Getting a file from a file server is
generally faster than it would be to get it from a local disk.

The view of the system is built upon three principles. First,
resources are named and accessed like files in a
hierarchical file system. Second, there is a standard proto-
col, called 9P, for accessing these resources. Third, the
disjoint hierarchies provided by different services are joined
together into a single private hierarchical file name space.

The unusual properties of Plan 9 stem from the consistent,
aggressive application of these principles.

A large Plan 9 installation has a number of computers
networked together, each providing a particular class of
service. Shared multiprocessor servers provide computing
cycles; other large machines offer file storage. These
machines are located in an air-conditioned machine room
and are connected by high-performance networks. Lower
bandwidth networks such as Ethernet or ISDN connect
these servers to office and home-resident workstations or
PCs, called terminals in Plan 9 terminology. Figure shows
the arrangement.

Figure. Structure of a large Plan 9 installation. CPU servers
and file servers share fast local-area networks, while
terminals use slower wider-area networks such as
Ethernet, Datakit, or telephone lines to connect to them.
Gateway machines, which are just CPU servers connected
to multiple networks, allow machines on one network to
see another.

The modern style of computing offers each user a
dedicated workstation or PC. Plan 9's approach is different.
The various machines with screens, keyboards, and mice
all provide access to the resources of the network, so they
are functionally equivalent, in the manner of the terminals
attached to old timesharing systems. When someone uses
the system, though, the terminal is temporarily
personalized by that user. Instead of customizing the

hardware, Plan 9 offers the ability to customize one's view
of the system provided by the software. That customization
is accomplished by giving local, personal names for the
publicly visible resources in the network. Plan 9 provides
the mechanism to assemble a personal view of the public
space with local names for globally accessible resources.
Since the most important resources of the network are
files, the model of that view is file-oriented.

The client's local name space provides a way to customize
the user's view of the network. The services available in
the network all export file hierarchies. Those important to
the user are gathered together into a custom name space;
those of no immediate interest are ignored. This is a
different style of use from the idea of a 'uniform global
name space'. In Plan 9, there are known names for
services and uniform names for files exported by those
services, but the view is entirely local. As an analogy,

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

consider the difference between the phrase 'my house' and
the precise address of the speaker's home. The latter may
be used by anyone but the former is easier to say and
makes sense when spoken. It also changes meaning
depending on who says it, yet that does not cause
confusion. Similarly, in Plan 9 the name /dev/cons always
refers to the user's terminal and /bin/date the correct
version of the date command to run, but which files those
names represent depends on circumstances such as the
architecture of the machine executing date. Plan 9, then,
has local name spaces that obey globally understood
conventions; it is the conventions that guarantee sane
behavior in the presence of local names.

The 9P protocol is structured as a set of transactions that
send a request from a client to a (local or remote) server
and return the result. 9P controls file systems, not just files:
it includes procedures to resolve file names and traverse
the name hierarchy of the file system provided by the
server. On the other hand, the client's name space is held
by the client system alone, not on or with the server, a
distinction from systems such as Sprite [OCDNW88]. Also,
file access is at the level of bytes, not blocks, which
distinguishes 9P from protocols like NFS and RFS. A
section by Welch compares Sprite, NFS, and Plan 9's
network file system structures [Welc94].

This approach was designed with traditional files in mind,
but can be extended to many other resources. Plan 9
services that export file hierarchies include I/O devices,
backup services, the window system, network interfaces,
and many others. One example is the process file system,
/proc, which provides a clean way to examine and control
running processes. Precursor systems had a similar idea
[Kill84], but Plan 9 pushes the file metaphor much further
[PPTTW93]. The file system model is well-understood,
both by system builders and general users, so services
that present file-like interfaces are easy to build, easy to
understand, and easy to use. Files come with agreed-upon
rules for protection, naming, and access both local and
remote, so services built this way are ready-made for a
distributed system. (This is a distinction from 'object-
oriented' models, where these issues must be faced anew
for every class of object.) Examples in the sections that
follow illustrate these ideas in action.

The command set of Plan 9 is similar to that of UNIX. The
commands fall into several broad classes. Some are new
programs for old jobs: programs like Is, cat, and who have
familiar names and functions but are new, simpler
implementations. Who, for example, is a shell script, while
ps is just 95 lines of C code. Some commands are
essentially the same as their UNIX ancestors: awk, troff,
and others have been converted to ANSI C and extended

to handle Unicode, but are still the familiar tools. Some are
entirely new programs for old niches: the shell rc, text
editor sam, debugger acid, and others displace the better-
known UNIX tools with similar jobs. Finally, about half the
commands are new.

Plan 9 is characterized by a variety of servers that offer a
file-like interface to unusual services. Many of these are
implemented by user-level processes, although the
distinction is unimportant to their clients; whether a service
is provided by the kernel, a user process, or a remote
server is irrelevant to the way it is used. There are dozens
of such servers; in this section we present three
representative ones.

Perhaps the most remarkable file server in Plan 9 is 8K2,
the window system. It is discussed at length elsewhere
[Pike91], but deserves a brief explanation here. 8V2 pro-
vides two interfaces: to the user seated at the terminal, it
offers a traditional style of interaction with multiple
windows, each running an application, all controlled by a
mouse and keyboard. To the client programs, the view is
also fairly traditional: programs running in a window see a
set of files in /dev with names like mouse, screen, and
cons. Programs that want to print text to their window write
to /dev/cons; to read the mouse, they read /dev/mouse. In
the Plan 9 style, bitmap graphics is implemented by
providing a file /dev/bitblt on which clients write encoded
messages to execute graphical operations such as bitblt
(RasterOp). What is unusual is how this is done: 8V2 is a
file server, serving the files in /dev to the clients running in
each window. Although every window looks the same to its
client, each window has a distinct set of files in /dev. 8V2
multiplexes its clients' access to the resources of the
terminal by serving multiple sets of files. Each client is
given a private name space with a different set of files that
behave the same as in all other windows. There are many
advantages to this structure. One is that 8V2 serves the
same files it needs for its own implementation—it
multiplexes its own interface—so it may be run, recursively,
as a client of itself. Also, consider the implementation of
/dev/tty in UNIX, which requires special code in the kernel
to redirect open calls to the appropriate device. Instead, in
8K2 the equivalent service falls out automatically: 8V2
serves /dev/cons as its basic function; there is nothing
extra to do. When a program wants to read from the
keyboard, it opens /dev/cons, but it is a private file, not a
shared one with special properties. Again, local name
spaces make this possible; conventions about the consis-
tency of the files within them make it natural.

Plan 9 runs on a variety of hardware without constraining
how to configure an installation. In our laboratory, we
chose to use central servers because they amortize costs

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 8

E-Mail: ignitedmoffice@gmail.com

and administration. A sign that this is a good decision is
that our cheap terminals remain comfortable places to work
for about five years, much longer than workstations that
must provide the complete computing environment. We do,
however, upgrade the central machines, so the
computation available from even old Plan 9 terminals
improves with time. The money saved by avoiding regular
upgrades of terminals is instead spent on the newest,
fastest multiprocessor servers. We estimate this costs
about half the money of networked workstations yet
provides general access to more powerful machines.

Plan 9 utilities are written in several languages. Some are
scripts for the shell, rc [Duff90]; a handful are written in a
new C-like concurrent language called Alef [Wint95],
described below. The great majority, though, are written in
a dialect of ANSI C [ANSIC]. Of these, most are entirely
new programs, but some originate in pre-ANSI C code
from our research UNIX system [UNIX85]. These have
been updated to ANSI C and reworked for portability and
cleanliness.

REFERENCES

[1] 16/32-bit lpc2000 family. http: //www.nxp.com
/products /microcontrollers/32bit/index.html.

[2] ARM extended trace macrocell (etm) technical
reference guide.
http://www.arm.com/documentation/TraceDebug.

[3] ARM’s coresight on-chip debug and trace
technology.
http://www.arm.com/products/solutions/CoreSight.html.

[4] Armulator, ARM. http://www.arm.com
/support/ARMulator.html.

[5] Device file system guide.
http://www.gentoo.org/doc/en/devfs guide.xml.

[6] exportfs, srvfs - network file server from plan9 man
pages.
http://plan9.belllabs.com/magic/man2html/4/exportfs.

[7] Features of the msp430 bootstrap loader (rev. d).
http://focus.ti.com/lit/an/slaa089d/slaa089d.pdf.

[8] Freescale, MPC565 user’s manual, 2002.

[9] Introduction to on-board programming with intel
flash memory.
http://www.intel.com/design/flcomp/applnots/29217902.pdf.

[10] Iso 13239 : High-level data link control protocol.

[11] Msp430 : Ultra low power mcu from texas
intruments. http://www.ti.com/msp430.

[12] National ecological observatory network.
http://www.neoninc.org.

[13] OCP-IP: Open Chip Protocol International
Partnership. http://www.ocpip.org.

[14] Providing asynchronous file i/o for the plan 9
operating system.
http://pdos.csail.mit.edu/papers/plan9:jmhickey-meng.pdf.

[15] Simple Object Access Protocol (SOAP).
http://www.w3.org/TR/soap.

[16] Simulavr: an AVR simulator.
http://savannah.nongnu.org .

[17] The two percent solution.
http://www.embedded.com/story/OEG20021217S0039.

[18] What processor is in your product?
http://www.embedded.com/columns/showArticle.jhtml?artic
leID=193101174.

[19] Emstar: A software environment for developing
and deploying wireless sensor networks. In Proceedings of
the USENIX 2004 Annual Technical Conference, 2004.

[20] The Nexus 5001 Forum Standard for a Global
Embedded Processor Debug Interface, 2004.
http://www.nexus5001.org.

[21] Guest editorial: Concurrent hardware and software
design for multiprocessor SoC. Trans. On Embedded
Computing Sys., 5(2):259–262, 2006.

[22] D. E. L. G. M. H. A. Cerpa, J. Elson and J. Zhao.
Habitat monitoring: Application driver for wireless
communications technology. In Proceedings of the 2001
ACM SIGCOMM Workshop on Data Communications in
Latin America and the Caribbean, April 2001, 2001.

[23] K. M.-M. A. Mayer, H. Siebert. Debug support,
calibration and emulation for multiple processor and
powertrain control socs. IEEE Trans. Comput., 55(2):174–
184, 2006.

[24] C. G. A. S. Tanenbaum and B. Crispo. Taking
sensor networks from the lab to the jungle. IEEE Computer
Magazine, 39(8):98–100, 2006.

[25] D. F. Bacon. Realtime garbage collection. Queue,
5(1):40–49, 2007.

http://www.gentoo.org/doc/en/devfs

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 9

E-Mail: ignitedmoffice@gmail.com

[26] T. W. Bart Vermeulen and S. Bakker. Ieee 1149.1-
compliant access architecture for multiple core debug on
digital system chips. In Proceedings of the International
Test Conference, 2002.

[27] K. A. Bartlett, R. A. Scantlebury, and P.
T.Wilkinson. A note on reliable full-duplex transmission
over half-duplex links. Commun. ACM, 12(5):260–261,
1969.

[28] S. Bhattacharya, J. Darringer, D. Ostapko, and Y.
Shin. A mask reuse methodology for reducing system-on-
a-chip cost. In ISQED ’05: Proceedings of the 6th
International Symposium on Quality of Electronic Design,
pages 482–487, Washington, DC, USA, 2005. IEEE
Computer Society.

[29] G. Biegel and V. Cahill. A framework for
developing mobile, context-aware applications. In 2nd
IEEE International Conference on Pervasive Computing
and Communications (PerCom 2004, March 2004.

[30] Bluetooth.com : The official Bluetooth Technology
Website. http://www.bluetooth.com/bluetooth/.

