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INTRODUCTION 

The breadth of technologies required to bring performance 
benefits to our customers is remarkable. Maintaining up-to 
date knowledge in a number of rapidly changing fields as 
wide apart as low power applications to software 
generation and verification, from advanced signal 
processing to FPGA technologies is a great challenge for 
our global research and development teams. 

With the ever increasing penetration of embedded systems 
in society and the related increase in investments by 
industry to develop such systems, the investments in 
embedded software engineering technologies increases as 
well. Forecasts [2] predict continuing increase in 
embedded systems specific technologies. This section 
uses the term 'technology* for any method, technique, 
process or tool that can be used to support a certain 
development activity. 

The market for software engineering technologies is largely 
fragmented. There is no clear market leader, and there is 
no supplier present that fully supports the whole 
development chain of embedded products. There are 
different suppliers for requirements engineering 
technologies, different vendors for design technologies, 
etc. Most dominant is the sales of software tools. Tools 
imply to support or be supported with a methodology. 
Some suppliers provide methodologies with their tools, 
while others support generic methodologies, such as UML 
(OMG's Unified Modeling Language) or MOF (MOG's Meta 
Object Facility). 

As the market of technologies is fragmented, so are the 
technologies themselves. Technologies in general are 
stand-alone solutions for specific problems. As embedded 
software development is collection of complex and 
technical problems, several technologies are applied in 
parallel [3]. It does not take very much time or experience 
to observe that this lack of integration is a cause for 
problems too. Technologies are used separately but 

depend on each other, interfaces are not defined, 
inconsistencies occur, etc. Despite this loss of quality due 
to lack of integration, there is moreover a loss of time, 
effort and money due to duplication, redundancy and cost 
of non-quality. As time pressure is prominent in many 
market domains where embedded systems are sold, this 
indicates a potential gain in time-to-market. Time-to-market 
gains in embedded systems development cause high 
potential revenue gains due to earlier market introduction 
and therefore deeper market penetration. Industrial 
companies therefore support initiatives for time-to-market 
reduction strongly. 

Though many software product and process technologies 
are already available, the embedded software domain puts 
specific demands to the application of these technologies. 
Dedicated research results and products are present for 
software architecture development and assessment, 
requirements engineering and validation, software process 
improvement, and tools to support all these technologies. 
However the major disadvantages of these technologies 
are that they do not take into account the specific needs for 
embedded systems and that they are applied "stand 
alone"', which in many cases is not very effective and leads 
to disappointing results. 

The embedded systems industry puts specific demands to 
the usage of such methodologies, such as the large 
dependency on real-time features, limited memory storage, 
large impact of hardware platform technology and the 
related cost drivers of the hardware, etc. The existing 
software engineering methodologies do not distinguish the 
specific impacts or necessary customisation for the 
embedded domain, nor is it indicated how they should be 
used specifically for each specific area within this domain, 
i.e. automotive, telecom, consumer electronics, safety 
critical, etc. The embedded software domain puts 
dedicated pressure on these methodologies. Reasons for 
this are the high complexity of these products and the 
dependency in this domain 011 innovative highly technical 
solutions. 
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Furthermore, the embedded domain is much more driven 
by reliability, cost and time-to-market demands. This 
makes the embedded domain a specific area for which 
available generic methodologies need to be adapted. 

Advances in process technology and the availability of new 
design tools are broadening the scope of embedded 
systems; from being implemented as a set of chips on a 
board, to a set of modules in an integrated circuit. System-
on-Chip (SoC) technology is now being deployed in 
industrial automation, enabling the creation of complex 
field-area intelligent devices. This trend is accompanied by 
the adoption of platform-based design, which facilitates the 
design and verification of complex SoC through the 
extensive re-use of hardware and software IP (intellectual 
property). A further important aspect of the evolution of 
embedded systems is the trend towards networking of 
embedded nodes using specialized network technologies, 
frequently referred to as Networked Embedded Systems 
(NES). 

System-on-Chip (SoC) represents a revolution in 
integrated circuit (IC) design, enabled by advances in pro-
cess technology, which allow the integration of the main 
components and subsystems of an electronic product onto 
a single chip or integrated chipset [1]. This development 
has been embraced by designers of complex chips 
because it permits the highest possible level of integration, 
resulting in increased performance, reduced power 
consumption, and advantages in terms of cost and size. 
These are very important factors in the design process, 
and the use of SoC is arguably one of the key decisions in 
developing real-time embedded systems. 

SoC can be defined as a complex integrated circuit, or 
integrated chipset, that combines the main functional ele-
ments or subsystems of a complete end product in a single 
entity. Nowadays, the most challenging SoC de signs 
include at least one programmable processor, and very 
often a combination of at least one RISC (reduced 
instruction set computing) control processor and one digital 
signal processor (DSP). They also include on-chip com-
munications structures - processor bus(es), peripheral 
bus(es) and sometimes a high-speed system bus. A hier-
archy of on-chip memory units, as well as links to off-chip 
memory, is especially important for SoC processors. For 
most signal-processing applications, some degree of 
hardware- based accelerating functional unit is provided, 
offering higher performance and lower energy 
consumption. For interfacing to the external world, SoC 
design includes a number of peripheral processing blocks 
consisting of analogue components as well as digital 
interfaces (for example, to system buses at board or 
backplane level). Future SoC may incorporate MEMS-

based (microelectro-mechanical system) sen sors and 
actuators, or chemical processing (lab-on-a-chip) D. 

All interesting SoC designs comprise both hardware and 
software components. These include programmable 
processors, real-time operating systems, and other 
elements of hardware- dependent software. Thus, the 
design and use of SoCs not only concerns hardware - it 
also involves system- level design and engineering, hard-
ware—software tradeoffs and partitioning, and software 
architecture, design and implementation. 

System-on-a-Prog rammable-Chip Recently, the scope of 
SoC has broadened. From implementations using custom 
IC, application specific IC (ASIC) or application-specific 
standard part (ASSP), the approach now includes the 
design and use of complex reconfigurable logic parts with 
embedded processors. In addition other application-
oriented blocks of intellectual property, such as processors, 
memories, or special purpose functions bought from third 
parties are incorporated into unique designs. 

These complex FPGAs (Field-Program- mable Gate 
Arrays) are offered by several vendors, including Xilinx 
(Virtex-II PRO Platform FPGA, Virtex-IV) and Altera 
(SOPC). The guiding principle behind this approach to SoC 
is to combine large amounts of reconfigurable logic with 
embedded RISC processors, in order to enable highly 
flexible and tailorable combinations of hardware and 
software processing to be applied to a design problem. 
Algorithms that contain significant amounts of control logic, 
plus large quantities of dataflow processing, can be 
partitioned into the control RISC processor with reconfigu-
rable logic for hardware acceleration. Although the 
resulting combination does not offer the highest 
performance, lowest energy consumption, or lowest cost - 
in comparison with custom IC or ASIC/ASSP 
implementations of the same functionality - it does offer 
enormous flexibility in modifying the design in the field, and 
avoids expensive Non- Recurring Engineering (NRE) costs 
associated with field changes. Thus, new applications, 
interfaces and improved algorithms can be downloaded to 
products already working in the field. 

Products in this area also include other processing and 
interface cores: these consist of multiply—accumulate 
(MAC) blocks aimed at DSP-type dataflow signal- and 
image processing applications, and high-speed serial 
interfaces for wired communications such as SERDES 
(serializer/'de-serializ- er) blocks. In this sense, system-on-
a- programmable-chip SoCs are not exactly application-
specific, but not completely generic either. 

Another important facet of the evolution of embedded 
systems is the emergence of distributed embedded 
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systems, frequently termed networked embedded systems, 
where the word "networked" signifies the importance of the 
networking infrastructure and communication protocol. A 
networked embedded system is a collection of spatially 
and functionally distributed embedded nodes, 
interconnected by means of wireline and/or wireless 
communication infrastructure and protocols, and interacting 
with the environment (via sensor/actuator elements) and 
each other. Within the system, a master node can also be 
included to coordinate computing and communication, in 
order to achieve specific objectives. 

Controllers embedded in nodes or field devices, such as 
sensors and actuators typically provide on-chip signal 
conversion, data and signal processing, and 
communication functions. The ever-increasing functionality, 
processing and communication capabilities of controllers 
have been instrumental in the emergence of a widespread 
trend for the networking of field devices around specialized 
networks, frequently referred to as field area networks. (A 
field area network is normally a digital, two-way, multi-drop 
communication link [61.) In general, the benefits of using 
specialized (field area) networks are numerous and 
include: increased flexibility through combining embedded 
hardware and software; improved system performance; 
and ease of system installation. upgrade, and 
maintenance. 

ALTERNATIVES FOR FILE SYSTEM 
IMPLEMENTATION 

Traditionally, file systems contain directory structures that 
are tightly bound to a particular file system implementation. 
These structures may be embedded, both logically and 
physically, in the file system and contain data that are 
specific to the file system implementation. Changing the 
directory structure of a file system can be extremely 
tedious: the file system code must be changed and rebuilt, 
new file system initialization code (mkfs) is needed, and 
new recovery code (fsck) is also likely to be necessary. 
Several areas of file system research could benefit from a 
generic directory structure that is implemented above the 
physical file system layer, allowing experimentation with 
directory contents and possibly alternative naming 
schemes. 

Ail existing implementation of directory files was completed 
011 Linux 2.2.14 and subsequently on Linux 2.4.2. This 
implementation consists of modifications to the Linux 
kernel NFS server code, but works with any NFS client. A 
directory-file -based file system is created by initializing a 
root directory file, called ROOT. The directory containing 
this file is then exported. The ROOT file is initialized with 

entries for and that both refer to ROOT. A11 entry in a 
directory file consists of: 

 The user's name for the object (e.g., passwd) 

 The system's name for the object in the underlying 
physical file system (e.g., f ile . 001; see below) 

 The type of the object (e.g., directory or file) 

 Any other information that may be necessary (e.g., 
server where the object is located) 

For this implementation, file system objects are created in 
a flat namespace in the underlying physical file system(s). 
and are given unique object identifiers (a name in the 
namespace of the underlying file system). Thus, the 
directory entry associates the users's name for a file with a 
unique object id used by the system to retrieve object 
contents. 

In the NFS server code, an exported file system is flagged 
as a "directory-file file system" if it contains a ROOT 
directory file (this will change in a future implementation, 
and is just a temporary hack). All directory operations for 
this file system are intercepted and interpreted in the 
directory file context. For example, if a readdir request is 
received, the corresponding directory file is opened, its 
contents are read, and the appropriate readdir response is 
constructed and sent to the client. Reading and Birch is 
implemented as a Cocoa application that creates a user-
space NFS system, and NFS RPC calls (which only come 
over a local socket instead of over the network) are 
interpreted to render metadata search queries as files and 
directories. A simple Cocoa user interface  manages the 
search queries the file system renders. Queries are 
composed using the NSPredicate and NSMetadataQuery 
classes, which access the Spotlight metadata database. 

The basic object is the system is the Query, which contains 
three fields: 

 The predicate. which is a Spotlight query stored in an 
NSPredicate object. An example query is "kMD It em 
Authors == '*Brian Eno*

,M
. 

 A boolean attribute isLeaf. "Leaf" queries show their 
results in the file system view; non-leaf queries do not. The 
purpose of non-leaf queries is to store a partial query, 
which can be composed with other queries. Since the 
partial query may match too many files, the non-leaf 
attribute prevents large, possibly uninteresting, result sets 
from being displayed. 
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 A set of names of other sets, called subordinates. 
Subordinate sets are always shown in the file system, and 
provide a way to save metadata search paths. For 
example, one could store a query, like "kMD Item Album 
== ' *Music for Airports*' ", inside a query that it is 
commonly used with, such as "kMD Item Authors == 
'*Brian Eno*'". There is no hierarchy implied here; two 
queries may contain one another in their subordinate sets, 
and conjunctions can be formed by specifying either one 
first. 

In order to simplify the implementation of the NFS server, 
no file I/O requests are handled by the NFS server itself. 
Instead, files referenced in a query always appear as 
symbolic links, where the content of the link is the full path 
to the file elsewhere on the file system. This mechanism 
greatly simplifies the objects the Birch file system needs to 
keep track of: everything in the file system is either a 
directory,and thus a predicate, or it is a link to a file 
matching a predicate. We think this kind of file system — 
which only uses links to reference resources — is a very 
useful implementation strategy, since it simplifies and 
optimizes file access, once the file is looked up. This 
makes the file system analogous to other forms of search 
results, like Internet search engines, which produce as 
output not the content found, but merely links to the 
content. It is also much easier to properly implement 
POSIX semantics if the capabilities of the file system are 
restricted, which was invaluable given the short, 
development time of this project. 

A direct approach to implementing file abstractions for 
hardware is through dedicated operating system resident 
file systems providing the abstraction. These file systems 
can be mounted at required locations within the operating 
system namespace and be used to control and access 
hardware through conventional file operations. Many 
popular operating systems alleviate the difficulty in 
developing file systems by defining standard, generic 
interfaces that file systems can plug themselves into. 
Examples include VFS [102] in Linux, SunOS VFS [74] and 
Installable File System [93] in Microsoft Windows. While 
file systems have to comply with these interface standards 
set by the operating system, the implementation logic is 
largely the file systems’ prerogative. Thus synthetic file 
system behavior could be incorporated by completing 
various file operations through necessary interactions with 
the hardware being abstracted. A more restrictive means of 
implementing kernel-based file abstractions for hardware in 
Unix-like operating systems is through devfs [5], which 
enables association of a single file in a global devfs 
directory (typically /dev) with a hardware device. Handlers 
for the various file operations are defined in the hardware’s 
device driver and registered with devfs. 

 Techniques exist to implement filesystems in user 
space and integrate them within the overlying operating 
system namespace. The general idea of shifting 
functionality from within the kernel to user space has been 
aggressively adopted by the GNU Hurd [64] and Exokernel 
[46] projects among others to several core aspects of 
operating system operation including inter-process 
communication, file systems, signal handling and 
networking. Such systems have a minimal microkernel at 
their core, while much of the operating system functionality 
is transferred out to user space daemons. 

THE PLAN 9 MODEL 

Plan 9 is a general-purpose, multi-user, portable distributed 
system implemented on a variety of computers and 
networks. Because commands, libraries, and system calls 
are similar to those of the Unix operating system, it is 
possible to port many Unix programs to Plan 9 with little or 
no changes. A casual user would find little difference 
between the two systems. 

What distinguishes Plan 9 is its organization. The goals of 
this organization were to reduce administration and to 
promote resource sharing. Our programming style was 
minimalism. We believe that a small number of well-chosen 
abstractions can, with much less code, provide most of the 
function of a larger system. This is the approach that made 
the Unix operating system so much smaller than its 
contemporaries such as Multics. In building Plan 9, we 
generalized proven ideas from the Unix operating system 
rather than add new untried concepts. 

Plan 9 is divided along lines of service function. Diskless 
CPU servers concentrate computing power into large 
multiprocessors: file servers provide repositories for 
storage: and terminals give each user of the system a 
dedicated computer with bitmap screen and mouse on 
which to run a window system. The sharing of computing 
and file storage services provides a sense of community 
for a group of programmers, amortizes costs, and 
centralizes and hence simplifies management and 
administration. 

Since both CPU servers and terminals use the same 
kernel, users may choose whether to run programs locally 
on their terminals or remotely on CPU servers. Plan 9 
provides this flexibility without constraining the choice. 
Therefore, both users and administrators can configure 
their environment to be as distributed or centralized as they 
wish. At work, users tend to use their terminals more like 
workstations running all interactive programs locally and 
reservmg the CPU servers for data or compute intensive 
jobs such as compiling and computing chess end games. 
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At home, connected via a dedicated 9600 baud line to 
work, users choose what they run locally and remotely to 
reduce communication cost. Some applications, such as 
the editor [Pik87], are split into multiple programs to make 
this choice even more flexible. 

Figure in any Plan 9 section shows how we have 
configured our environment. Multiprocessor CPU and file 
servers are clustered in a few computer rooms and 
connected via 7 megabyte/sec point-to-point links [Pre88]. 
This permits the CPU servers to be used as high 

performance compute engines without becoming starved 
for data. Terminals are connected to the servers via lower 
speed, lower cost distribution networks such as the 10 
megabit Ethernet [MetSO] and 2 megabit Incon [Kal. Res], 
By emphasizing the shared service clusters we can quickly 
and cheaply incorporate new technologies as they arise. At 
the same time, users wishing more autonomy can 
incorporate as much computing power as they wish in their 
own offices without losing the advantage of transparently 
sharing other resources. 

 

Figure - Plan 9 Topology 

The rest of this section describes the features of Plan 9 
that make possible such a flexible topology. For more 
information on hardware and use of the system, see our 
previous section [Pik90] . For details of the file server, see 
[Qui] . 

All Plan 9 components are connected using this file system 
protocol. The code used to encapsulate the primitives into 

request and reply messages is 580 lines long. The mount 
driver is 899 lines long. Compared to the equivalent NFS 
code implementing vnodes and XDR this is tiny. 

Iii Plan 9. every network interface is a file system. A 
gateway is a file server that serves its own network 
interfaces to other machines. A process that wants to get 
at a remote network connects to the gateway and mounts 
the gateway's interface to the remote network into its name 
space. Whenever the process accesses the interface, the 
mount driver will send the request to the gateway. Thus, 
the gateway sees exactly what the process does. 
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Plan 9 survives without local disk file systems thanks 
partially to hardware and partially to caching. The CPU 
servers do so because their links to the file servers transfer 
at a substantial percentage of memory speed. The file 
servers maintain large main memory caches for their disk 
file systems. These servers are configured with 128 
megabytes or more of mam memory to ensure that there is 
plenty of room for cache. Getting a file from a file server is 
generally faster than it would be to get it from a local disk. 

The view of the system is built upon three principles. First, 
resources are named and accessed like files in a 
hierarchical file system. Second, there is a standard proto-
col, called 9P, for accessing these resources. Third, the 
disjoint hierarchies provided by different services are joined 
together into a single private hierarchical file name space. 

The unusual properties of Plan 9 stem from the consistent, 
aggressive application of these principles. 

A large Plan 9 installation has a number of computers 
networked together, each providing a particular class of 
service. Shared multiprocessor servers provide computing 
cycles; other large machines offer file storage. These 
machines are located in an air-conditioned machine room 
and are connected by high-performance networks. Lower 
bandwidth networks such as Ethernet or ISDN connect 
these servers to office and home-resident workstations or 
PCs, called terminals in Plan 9 terminology. Figure shows 
the arrangement. 

 

Figure. Structure of a large Plan 9 installation. CPU servers 
and file servers share fast local-area networks, while 
terminals use slower wider-area networks such as 
Ethernet, Datakit, or telephone lines to connect to them. 
Gateway machines, which are just CPU servers connected 
to multiple networks, allow machines on one network to 
see another. 

The modern style of computing offers each user a 
dedicated workstation or PC. Plan 9's approach is different. 
The various machines with screens, keyboards, and mice 
all provide access to the resources of the network, so they 
are functionally equivalent, in the manner of the terminals 
attached to old timesharing systems. When someone uses 
the system, though, the terminal is temporarily 
personalized by that user. Instead of customizing the 

hardware, Plan 9 offers the ability to customize one's view 
of the system provided by the software. That customization 
is accomplished by giving local, personal names for the 
publicly visible resources in the network. Plan 9 provides 
the mechanism to assemble a personal view of the public 
space with local names for globally accessible resources. 
Since the most important resources of the network are 
files, the model of that view is file-oriented. 

The client's local name space provides a way to customize 
the user's view of the network. The services available in 
the network all export file hierarchies. Those important to 
the user are gathered together into a custom name space; 
those of no immediate interest are ignored. This is a 
different style of use from the idea of a 'uniform global 
name space'. In Plan 9, there are known names for 
services and uniform names for files exported by those 
services, but the view is entirely local. As an analogy, 
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consider the difference between the phrase 'my house' and 
the precise address of the speaker's home. The latter may 
be used by anyone but the former is easier to say and 
makes sense when spoken. It also changes meaning 
depending on who says it, yet that does not cause 
confusion. Similarly, in Plan 9 the name /dev/cons always 
refers to the user's terminal and /bin/date the correct 
version of the date command to run, but which files those 
names represent depends on circumstances such as the 
architecture of the machine executing date. Plan 9, then, 
has local name spaces that obey globally understood 
conventions; it is the conventions that guarantee sane 
behavior in the presence of local names. 

The 9P protocol is structured as a set of transactions that 
send a request from a client to a (local or remote) server 
and return the result. 9P controls file systems, not just files: 
it includes procedures to resolve file names and traverse 
the name hierarchy of the file system provided by the 
server. On the other hand, the client's name space is held 
by the client system alone, not on or with the server, a 
distinction from systems such as Sprite [OCDNW88]. Also, 
file access is at the level of bytes, not blocks, which 
distinguishes 9P from protocols like NFS and RFS. A 
section by Welch compares Sprite, NFS, and Plan 9's 
network file system structures [Welc94]. 

This approach was designed with traditional files in mind, 
but can be extended to many other resources. Plan 9 
services that export file hierarchies include I/O devices, 
backup services, the window system, network interfaces, 
and many others. One example is the process file system, 
/proc, which provides a clean way to examine and control 
running processes. Precursor systems had a similar idea 
[Kill84], but Plan 9 pushes the file metaphor much further 
[PPTTW93]. The file system model is well-understood, 
both by system builders and general users, so services 
that present file-like interfaces are easy to build, easy to 
understand, and easy to use. Files come with agreed-upon 
rules for protection, naming, and access both local and 
remote, so services built this way are ready-made for a 
distributed system. (This is a distinction from 'object- 
oriented' models, where these issues must be faced anew 
for every class of object.) Examples in the sections that 
follow illustrate these ideas in action. 

The command set of Plan 9 is similar to that of UNIX. The 
commands fall into several broad classes. Some are new 
programs for old jobs: programs like Is, cat, and who have 
familiar names and functions but are new, simpler 
implementations. Who, for example, is a shell script, while 
ps is just 95 lines of C code. Some commands are 
essentially the same as their UNIX ancestors: awk, troff, 
and others have been converted to ANSI C and extended 

to handle Unicode, but are still the familiar tools. Some are 
entirely new programs for old niches: the shell rc, text 
editor sam, debugger acid, and others displace the better-
known UNIX tools with similar jobs. Finally, about half the 
commands are new. 

Plan 9 is characterized by a variety of servers that offer a 
file-like interface to unusual services. Many of these are 
implemented by user-level processes, although the 
distinction is unimportant to their clients; whether a service 
is provided by the kernel, a user process, or a remote 
server is irrelevant to the way it is used. There are dozens 
of such servers; in this section we present three 
representative ones. 

Perhaps the most remarkable file server in Plan 9 is 8K2, 
the window system. It is discussed at length elsewhere 
[Pike91], but deserves a brief explanation here. 8V2 pro-
vides two interfaces: to the user seated at the terminal, it 
offers a traditional style of interaction with multiple 
windows, each running an application, all controlled by a 
mouse and keyboard. To the client programs, the view is 
also fairly traditional: programs running in a window see a 
set of files in /dev with names like mouse, screen, and 
cons. Programs that want to print text to their window write 
to /dev/cons; to read the mouse, they read /dev/mouse. In 
the Plan 9 style, bitmap graphics is implemented by 
providing a file /dev/bitblt on which clients write encoded 
messages to execute graphical operations such as bitblt 
(RasterOp). What is unusual is how this is done: 8V2 is a 
file server, serving the files in /dev to the clients running in 
each window. Although every window looks the same to its 
client, each window has a distinct set of files in /dev. 8V2 
multiplexes its clients' access to the resources of the 
terminal by serving multiple sets of files. Each client is 
given a private name space with a different set of files that 
behave the same as in all other windows. There are many 
advantages to this structure. One is that 8V2 serves the 
same files it needs for its own implementation—it 
multiplexes its own interface—so it may be run, recursively, 
as a client of itself. Also, consider the implementation of 
/dev/tty in UNIX, which requires special code in the kernel 
to redirect open calls to the appropriate device. Instead, in 
8K2 the equivalent service falls out automatically: 8V2 
serves /dev/cons as its basic function; there is nothing 
extra to do. When a program wants to read from the 
keyboard, it opens /dev/cons, but it is a private file, not a 
shared one with special properties. Again, local name 
spaces make this possible; conventions about the consis-
tency of the files within them make it natural. 

Plan 9 runs on a variety of hardware without constraining 
how to configure an installation. In our laboratory, we 
chose to use central servers because they amortize costs 
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and administration. A sign that this is a good decision is 
that our cheap terminals remain comfortable places to work 
for about five years, much longer than workstations that 
must provide the complete computing environment. We do, 
however, upgrade the central machines, so the 
computation available from even old Plan 9 terminals 
improves with time. The money saved by avoiding regular 
upgrades of terminals is instead spent on the newest, 
fastest multiprocessor servers. We estimate this costs 
about half the money of networked workstations yet 
provides general access to more powerful machines. 

Plan 9 utilities are written in several languages. Some are 
scripts for the shell, rc [Duff90]; a handful are written in a 
new C-like concurrent language called Alef [Wint95], 
described below. The great majority, though, are written in 
a dialect of ANSI C [ANSIC]. Of these, most are entirely 
new programs, but some originate in pre-ANSI C code 
from our research UNIX system [UNIX85]. These have 
been updated to ANSI C and reworked for portability and 
cleanliness. 
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