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Abstract - If the solution of a given boundary value problem satisfies a maximum principle, then a properly 
designed approximation should behave in the same way. A numerical scheme that does not generate spurious 
global extrema in the interior of the computational domain is said to satisfy a discrete maximum principle (DMP). 
As in the continuous case, the precise formulation of this criterion is problem-dependent. In particular, the zero 

v _ 0 in 
continuous maximum principles. 

In the context of finite difference approximations to linear elliptic problems, sufficient conditions of DMP were 
formulated and proven by Varga [340] as early as in 1966. These conditions are related to the concept of 
monotone operators and, in particular, M-matrices which play an important role in numerical linear algebra [339, 
354]. A general approach to DMP analysis for finite difference operators was developed by Ciarlet [63]. Its 
extension to finite elements in [64] features a proof of uniform convergence, as well as simple geometric 
conditions that ensure the validity of DMP for a piecewise-linear Galerkin discretization of the (linear) model 
problem. 
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INTRODUCTION 

On a triangular mesh under the assumption that r 
The results obtained in [63, 64, 339] have illustrated the 
significance of DMPs for the analysis and design of 
numerical approximations. Various extensions and 
generalizations were published during the past three 
decades, see [61, 100, 151, 179, 180, 341, 311] and 
references therein. The frequently cited monograph by 
Ikeda [167] is devoted entirely to DMP for finite element 
models of convection-diffusion phenomena. Some low-
order approximations of transport equations are known to 
satisfy a DMP unconditionally or under rather mild 
restrictions on the angles or aspect ratios of mesh cells. 
However, most a priori proofs are based on a set of 
sufficient conditions which become overly restrictive in the 
case of higher-order discretizations, singularly perturbed 
convection-diffusion equations, and anisotropic diffusion 
problems. A possible remedy to this problem is proposed in 
the next chapter. In this section, we review the algebraic 
constraints that ensure DMP and/or positivity preservation 
for steady transport problems of elliptic and hyperbolic 
type. A brief summary of the corresponding geometric 
conditions will also be presented. 

REVIEW OF LITERATURE  

A key ingredient of the mathematical theory behind the 
discrete maximum principles and positivity preservation is 
the following monotonicity concept [63, 339]. 

Definition 3.8. A regular matrix A = {ai j} is called 
monotone if A−1 _ 0. 

This kind of monotonicity is equivalent to the requirement 
that, for any vector u, Au _ 0 ) u _ 0. 

Matrix Analysis for Steady Problems 109 Of course, it is 
impractical to compute the inverse of A and check the sign 
of its entries. Instead, we will deal with a special class of 
matrices which are known to be monotone under certain 
constraints on the sign and magnitude of their coefficients. 

Definition 3.9. A regular matrix A = {ai j} is called an M-
matrix if A−1 _ 0 and 

ai j _ 0, 8 j 6= i. 
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In other words, an M-matrix is a monotone matrix with 
nonpositive off-diagonal entries. These properties ensure 
positivity and convergence of iterative solvers. 

Definition 3.10. A matrix A = {ai j} is called diagonally 
dominant (by rows) if |aii  

j 6=i |ai j|, 8i. (3.53) 

Such a matrix is called strictly diagonally dominant if all 
inequalities are strict |aii  

j 6=i |ai j|, 8i. (3.54) 

Definition 3.11. A matrix A = {ai j} of size N×N is called 
irreducible if there is no N ×N permutation matrix P such 
that the following transformation is possible PAPT = _ A11 
A12 0 A22 _ , where the size of A11 isM×M, the size of 
A22 is (N−M)×(N−M), and 1_M<N. 

It turns out that a matrix A is irreducible if and only if its 
directed graph is strongly connected ([339], p. 20) or, 
equivalently, if and only if for any i and j 6= I there is a 
sequence of distinct indices i = n0,n1, . . . ,nl = j such that 
[132] ank−1nk 6= 0, 1 _ k _ l. 

MATERIAL AND METHOD  

Consider the steady transport-reaction equation (3.9) 
discretized by a finite difference, finite volume, or finite 
element scheme. Let the approximate solution uh, where 
the subscript h refers to the mesh size, be determined by a 
finite number ¯N of degrees of freedom u1, . . . ,u¯N that 
represent pointwise nodal values, control volume 
averages, or coefficients of piecewise-polynomial basis 
functions, respectively. 

Hence, all information about the solution uh can be packed 
into a vector u 2 R ¯N . 

Furthermore, the differential operator L acting on functions 
defined at infinitely many locations is replaced by a 
discrete operator Lh acting on vectors of length ¯N 

Lh : R 

¯N 

!R 

¯N 

Regardless of the underlying approximation technique, we 
define this mapping as Lhu = Au, where A = {ai j} is a 
sparse ¯N × ¯N matrix and u = {ui} is the vector of nodal 

values. 

The sparsity pattern of A depends on the mesh, on the 
type of discretization, and on the numbering of nodes. 
Since some nodal values are known from the Dirichlet 
boundary conditions, the size of the algebraic system 
reduces accordingly. 

Let the first N nodes be associated with the unknown 
degrees of freedom, and the rest with the Dirichlet 
boundary values. This numbering convention implies that 
the 108 3 Maximum Principles 

 row/column numbers 
N N +1, . . . , ¯N }, 

respectively. Thus, u u1, . . . ,uN} is the vector of 
unknowns, whereas u uN+1, . . . ,u¯N } is given by 
the prescribed boundary data u g. (3.49) 

In this notation, the system of algebraic equations for the 
components of u A u b A g, 
(3.50) where b

Neumann boundary conditions, if any. 

In a practical implementation, it is convenient to 
incorporate the Dirichlet boundary conditions into the ¯N × 
¯N matrix A and solve the extended linear system [63] 

In other words, the ¯N × ¯N matrix ¯A is constructed from 
A by setting A A I, where I denotes the 
identity matrix with ¯N −N rows and columns. 

If the solution of the continuous problem satisfies Theorem 
3.5 or 3.7, it is natural to require that the maxima of u
bounded by those of u g. Likewise, all nodal values 
should be nonnegative if Theorem 3.6 or 3.8 is applicable. 
To verify the validity of DMP, one needs to analyze the 
properties of the discrete operator ¯A. Remark 3.8. In the 
context of linear systems, irreducibility ensures that it is 
impossible to extract a subsystem that can be solved 
independently. Matrices that result from discretization of 
partial differential equations are irreducible in most cases. 

Definition 3.12. A matrix A = {ai j} is irreducibly diagonally 
dominant if it is irreducible and diagonally dominant, with 
strict dominance for at least one row i. 

The following theorem yields a set of sufficient conditions 
which are commonly employed in DMP analysis based on 
the M-matrix property of discrete operators. 

Theorem 3.13. If A = {ai j} is a strictly or irreducibly 
diagonally dominant N ×N matrix with aii > 0, 8i = 1, . . . ,N 
and ai j _ 0, 8 j 6= i, then A−1 _ 0. 

110 3 Maximum Principles 
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Proof. A common approach to the proof of this theorem is 
based on the splitting A = D−C, where the diagonal part D 
= diag(A) > 0 is nonsingular and C _ 0. The diagonal 
dominance makes it possible to prove that the spectral 

B = D−1C B) < 1. This 
condition holds if and only if the series (I−B)−1 = 
I+B+B2+B3+. . .converges, see [131, 339] for technical 
details. Hence, A−1 = (I−B)−1D−1 _ 0. _ 

If all diagonal entries of A are strictly positive and there are 
no positive offdiagonal ones, then diagonal dominance 
(3.53) requires that all row sums be nonnegative. The 
following definition summarizes the corresponding sign 
conditions. 

Definition 3.13. A matrix A = {ai j} is said to be of 
nonnegative type [64, 69] if aii > 0, 8i, (3.55) 

ai j _ 0, 8 j 6= i, (3.56) 

j 

ai j _ 0, 8i. (3.57) 

Corollary 3.12. By Theorem 3.13, a nonnegative-type 
matrix A is an M-matrix if inequality (3.57) is strict or A is 

irreducible and (3.57) is strict for at least one row. 

Note that conditions (3.55)–(3.56) impose the same 
constraints as the third basic rule from Section 1.6.3. The 
second basic rule is satisfied if (3.57) holds as equality. 

Under the assumptions of Corollary 3.12, the nonnegativity 
conditions are sufficient (but not necessary) for the matrix 
A to be monotone. Some other useful criteria related to M-
matrices and monotonicity can be found in [46, 132, 153, 
311, 346]. 

DISCRETE MAXIMUM PRINCIPLES 

Given a discretization of the form (3.51), the monotonicity 
of the matrix ¯A makes it possible to prove discrete 
counterpart s of all maximum, minimum, and 
comparison principles established in Section 3.1. The 
uniqueness of the solution vector u follows from the 
regularity of ¯A. The usual approach to the proof of 
monotonicity is based on Theorem 3.13 and Corollary 3.12 
since the nonnegativity conditions (3.55)–(3.57) are easy to 
verify for an arbitrary space discretization of the transport 
equation. To prove that the solution of problem (3.51) 

nodes, we need a discrete counterpart of the 
v _ 0. At the continuous 

level, it implies that Lu = L(u+c) for an arbitrary constant c. 

According to the second basic rule from Section 1.6.3, the 

discrete operator A should have zero row sums to inherit 
this property. Thus, the global discrete maximum principle 
for nodal values can be formulated as follows. 3.2 Matrix 
Analysis for Steady Problems 111 

CONCLUSION 

That is, if the source term is absent and the solution has a 
ui must 

also assume this value. This property is guaranteed by the 
zero row sum condition (3.58). Only a poor discretization of 
the transport equat v _ 0 would produce ui 6= ¯ 
u in this situation ([268], p. 39). 

Since estimate (3.63) holds for any interior node, 
successive application of the local DMP can be used to 
prove (3.59) if A
sums of ¯A are nonvanishing for some i 
DMP may cease to hold but positivity preservation can be 
inferred from the fact that ¯A is monotone. If the matrix ¯A 
is given by (3.52), where A is monotone and A
0, then discretization (3.51) is positivity-preserving, that is, 
b _ 0 ) u _ 0. (3.64) Proof. The matrix ¯A given by (3.52) is 
regular if and only if the block A
Furthermore, the inverse matrices.  Some finite element 
approximations to elliptic problems like (3.47) are known to 
satisfy the DMP conditions (3.55)–(3.57) on a suitably 
designed mesh. The derivation of geometric constraints 
that ensure monotonicity has been one of the primary 
research directions in the DMP analysis for finite element 
schemes [64, 100, 179, 

180]. Below, we present some useful geometric criteria in 
the context of linear and bilinear Galerkin discretizations of 
the Laplace operator in two space dimensions. 

Definition 3.14. A triangular mesh is called strongly acute 
weakly acute (or 

nonobtuse  

Theorem 3.21. The discrete Laplace operator ¯A for the 
linear finite element approximation on a triangular mesh of 
weakly acute type is monotone [18, 64]. This classical 
result dates back to the paper by Ciarlet and Raviart [64]. 
In the 3D case, a tetrahedral mesh is said to be of acute 
type if all internal angles between the faces of tetrahedra 

the discrete Laplace operator is monotone if linear finite 
elements are employed [189]. 

Definition 3.15. A triangular mesh is a Delaunay 
triangulation if no vertex of this mesh is inside the 

circumcircle of any triangle to which it does not belong. 
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Theorem 3.22. The discrete Laplace operator ¯A for the 
linear finite element approximation on a Delaunay 
triangulation is monotone [18]. 

Delaunay triangulations maximize the minimum angle as to 
avoid excessively stretched triangles. It is known that there 
exists a unique Delaunay triangulation for 114 3 Maximum 
Principles any set of points that do not lie on the same 
line.Moreover, fast algorithms are available for creating 
such triangulations [55, 115, 226], which makes them very 
popular with finite element practitioners. Figure 3.4 
displays a simple 2D Delaunay triangulation generated 
using the MATLAB function delaunay. In three dimensions, 
no vertex of a tetrahedron is inside the circumsphere of 
any other tetrahedron. However, the discrete Laplacian 
operator for a linear FEM approximation on an arbitrary 3D 
Delaunay triangulation may fail to be a matrix of 
nonnegative type [18]. This does not necessarily cause a 
violation of the DMP but it cannot be ruled out anymore. 

Definition 3.16. A rectangular mesh is called nonnarrow if 
the ratio of longest and shortest mesh edge is not greater 
than p2 for any rectangle [100]. 

Theorem 3.23. The discrete Laplace operator ¯A for the 
bilinear finite element approximation on a rectangular mesh 
of nonnarrow type is monotone [61, 100]. 

This theorem explains why iterative solution techniques 
that rely on theM-matrix property may experience 
convergence problems when applied to discretizations of 
second-order PDEs on quadrilateral/hexahedral meshes 
with high aspect ratios. Geometric DMP conditions for 
various elliptic and parabolic problems have been 
formulated building on the above results [100, 116, 179, 
180]. Even if convective effects are present, it is desirable 
to use a sufficiently regular mesh that satisfies the above 
conditions, so that at least the discrete diffusion operator 
poses no hazard to DMP. Moreover, it may offset a 
nonmonotone convective part if the Peclet number is small 
or a sufficiently large amount of artificial diffusion is added 
[51, 69]. Alternatively, the upwind triangle method or other 
techniques can be used to construct a monotone 
approximation of convective terms [11, 167, 200, 288, 
348]. 
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