
Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Software Architecture Adaptability: A Non-
Functional Requirements Approach

Rajendra Singh

Research Scholar, Singhania University, Rajasthan, India

Abstract : Adaptation of software systems is almost an inevitable process, due to the change in customer requirements,
needs for faster development of new, or maintenance of existing, software systems, etc. No doubt numerous techniques
have been developed to deal with adaptation of software systems. In this paper we present an overview of some of these
techniques. As the first step in the development of software solution it is our opinion that software architecture should itself
be adaptable for the final software system to be adaptable. In order to systematically support adaptation at the
architectural level, this paper adapts the NFR (Non-Functional Requirements) Framework and treats software adaptability
requirement as a goal to be achieved during development. Through this adaptation, then, consideration of design
alternatives, analysis of tradeoffs and rationalization of design decisions are all carried out in relation to the stated goals,
and captured in historical records. This NFR approach can also be adapted to a knowledge-based approach for (semi-
)automatically generating architectures for adaptable software systems and we also discuss how this can be achieved.

Categories and Subject Descriptors - Software -Software Engineering - Requirements/Specifications (D.2.1):
Methodologies (e.g., object-oriented, structured); Software -Software Engineering - Management (D.2.9): Software
process models (e.g., CMM, ISO, PSP); Computing Methodologies -Simulation and Modeling - Model Development
(I.6.5);

--♦-------------------------------------

1. INTRODUCTION

Adaptation of software systems is almost an inevitable
process. In fact it may even make sense to view adaptation
as an important part of the software development lifecycle.
The factors requiring software adaptation are several and
include changing customer requirements, need for faster
development of new software, adding new software
features, and fixing software defects during the
maintenance phase of software lifecycle. Since
maintenance phase consumes about 50% of software
development cost [1,48], an adaptable software system
could perhaps save a large fraction of this cost. There are
several examples of software adaptation and some of
these are mentioned below:

1. A dual-mode cell phone that automatically
switches between the two systems depending
upon currently available service.

2. Dynamic uploading of firmware without need to
reboot the system.

3. A command-processing system that is capable of
accepting commands of different versions.

4. A software system being able to operate on
different OS - Solaris, Windows.

5. Performing system maintenance functions such as
backup or garbage collection when the system is
least busy.

6. A dynamically changeable format - from 2 digit
year to 4 digit year; change units of measurement
(the problem that caused the failure of Mars
Climate Orbiter [49]).

7. Mars Pathfinder project [4] could be salvaged as
the software had the ability to be modified in the
field.

8. eLiza project at IBM [5] - develops self-managing
systems.

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

Before proceeding further it may perhaps be worthwhile to
define adaptation or adaptability. However, here we run
into a problem of many unclear and inconsistent definitions
in the literature. We give a representative sample below:

1. "Self-adaptive software modifies its own behavior
in response to changes in its operating
environment." [6].

2. "Adaptability is defined as the ease with which a
system or parts of the system may be adapted to
the changing requirements." [7].

3. "A program is called adaptable if it can be easily
changed. A program is called adaptive if it changes
its behavior automatically according to its context."
[8].

4. ".a software quality metric that can be used to
assess the ease with which software allows
differing system constraints and user needs to be
satisfied." [9].

5. "Attributes of software that bear on the opportunity
for its adaptation to different specified
environments without
applying other actions or means than those
provided for this purpose for the software
considered." [10].

6. "The objective of adaptive maintenance is to
evolve any system to meet the needs of the user
and business." [2].

7. "Adaptive Measures: a category of quality
measures that address how easily a system can
evolve or migrate." [11].

8. "Adaptation is an organism's or organization's
ability to alter its internal rules of operation in
response to external stimuli." [12].

9. "Over time, the original environment (e.g., CPU,
operating system, business rules, external product
characteristics) for which the software was
developed is likely to change. Adaptive
maintenance results in modification to the software
to accommodate changes to its external
environment." [13].

10. "Adaptive evolution changes the software to run in
a new environment." [14].

Numerous techniques have been developed to deal with
adaptation of software systems and each of these
techniques has its own context of applicability. In this paper
we present an overview of some of these techniques.
However, very few of these techniques trace the solutions
developed to their requirements.

In order to illustrate the approach that we have taken to
tackle adaptability we give our definition of this NFR. Our
definition is consistent with the spirit of [3]. An NFR such as
adaptability tends to be a global property of a software
system. In order to ensure that the software system finally
developed exhibits the NFRs required, it is our opinion that
the NFRs such as adaptability should be considered at the
first step in the development of software solution, viz., in
the software architecture itself. In order to systematically
support adaptation at the architectural level, we adapted
the NFR Framework [15,16,17,50]. The NFR Framework
allows goal-oriented development of software and software
adaptability is treated as one of the goals to be achieved
during development. Through this adaptation,
consideration of design alternatives, analysis of tradeoffs
and rationalization of design decisions are all carried out in
relation to the stated goals, and captured in historical
records.

While the NFR Framework helps develop adaptable
software systems, we adapted the NFR Framework to
develop a knowledge-based system that will develop
adaptable software architectures based on the
requirements. We discuss this idea later in this paper. This
knowledge base can also capture the services, as
proposed in [2].

In this paper we have used the words adaptation and
evolution somewhat synonymously. We first present in the
Related Work section, a summary of some of the
techniques used for dealing with adaptability; in the
subsequent section, The NFR Approach, we present our
definition of adaptability, introduce the NFR Framework
and illustrate the use of the NFR Framework; in the next
section, Knowledge-Based Approach, we demonstrate how
the NFR Framework can be used to (semi-)automatically
develop adaptable systems using a knowledge base of
NFR Framework components; and in the final section we
conclude our work.

2. RELATED WORK

We need a methodology consisting of notations,
methods/techniques, and guidelines, that also allows for
establishing traceability to the "whys" of the techniques,
viz., the requirements. Our partial survey of the existing

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

literature on adaptation has led us to categorize techniques
used to deal with adaptation into the following:
architecture-based techniques, component-based
techniques, code-based techniques, genetic algorithm
techniques, dynamic adaptation techniques, and
adaptation methodologies.

A comprehensive adaptation technique that spans various
adaptation requirements is given in [6]. In this technique,
an adaptable system has embedded in it two managers -
one for adaptation and the other for evolution. The
adaptation manager takes high level decisions which are
implemented by the evolution manager; the entire process
is iterative. In [18] a framework for real-time software
system adaptation, called RESAS (Real-time Software
Adaptation System) is proposed. This framework permits a
real-time system to adapt to timing constraints and to
hardware failures. In [19] an adaptive software architecture
(called multigraph architecture) for digital signal processing
applications has been developed. This architecture, which
is a signal flow graph, permits dynamic changing of graph
nodes, to alter the execution sequence on the fly. In [20]
the Odyssey architecture is proposed. Here, the operating
system controls the fidelities of various applications
running on a mobile phone based on the rate of power
consumption, the aim being to conserve power as much as
possible or as much as required by the user of the mobile.
In [21] the Simplex Architecture has been described. This
architecture permits online evolution of real-time systems
by using a middleware that talks to the various components
of the architecture using the publish/subscribe mechanism.
This mechanism lets new components be created on the
fly and replace existing components. In [22], the
VEHICLES developing environment of NASA has been
described. VEHICLES provides flexible developing
environment which has been used for developing mission-
critical systems.

Component-based techniques hope to leverage the
advantages of component-based software development. In
[23] domain-specific software architecture (DSSA) is used
for evolution. Any architecture of a software system is an
instance of the DSSA and evolution is achieved by creating
another instance of the DSSA with the needed
modifications. Another way to evolve is to use coordination
contracts [24, 25] in an object-oriented environment. A
coordination contract is a set of rules and constraints on
the interaction between any two objects and the contract
superposes its behavior on the interaction of the two
objects between which the contract is valid. Adaptation is
achieved by changing the contract and not the objects.
Design components [26] are another way of adapting.
Design components are collections of design patterns [27].

The design components can be customized and composed
to form software architectures. Another way is to provide
an adaptable interface to each component [28]. The code
in the adaptable interface can be changed as required to
achieve the needed adaptation without making any
changes to the component. Yet another way to achieve
adaptation is to use delegation [29] between objects in an
object-oriented environment. In delegation the "this"
parameter is set to the caller of the method and not to the
callee of the method. This lets the caller call different
objects to achieve the needed adaptation. Languages such
as DARWIN, LAVA and JAVA support delegation. In [30],
binary component adaptation is performed for changing
Java classes on the fly. The byte code of any class that
has to be adapted is changed just before the class is
loaded into the JVM. The application of fuzzy logic to
component adaptation is described in [31]. Components
are modeled using fuzzy membership functions which are
then trained to adapt using different algorithms.
Superimposition has been used for adaptation of
components in [32]. In superimposition different behavior
can be superimposed on an object to change its original
behavior in a manner transparent to the object's clients. In
[33] a real-time component factory for developing
adaptable components for distributed systems is proposed.
The real-time component factory develops components
that can be customized for task priority and exception
handling policy, by providing specific interfaces for
customizing these services.

The code-based techniques change the software code to
achieve adaptation. [34] is one of the first papers on
adapting systems based on code. The paper proposes a
scheme to develop adaptable systems. In [1], an extensible
system called Extension Interpreter (EI) is proposed. EI
works on an UNIX environment and permits new
commands to be added to the system while the system is
running. [35] discusses the problems faced and solutions
found in the STARS (Software Technology for Adaptable,
Reliable Systems) project for ARPA. A calculus for
program adaptation can be found in [36]. This paper
develops mathematical models for program adaptation
based on incrementation, merging, modification and
composition. Using these models any program adaptation
along these methods can be mathematically achieved. [38]
gives some "laws" on software evolution. There are
techniques that use genetic algorithms [31, 37] to deal with
adaptation. Here the evolution of individual components
occurs via the processes of recombination and mutation.
Then the suitable components for the environment are
selected.

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

There are techniques that adapt a software system
dynamically, i.e., when the software system is running.
Some of these techniques have been mentioned earlier
[19,29,30]. In [39] a connector-based adaptation is
described. The connectors, called co-operative action (CO
action) are treated as first-class entities. Each CO action
describes a collaboration between classes. In order to
achieve adaptation, the collaborations between classes are
changed on the fly, without changing the classes.

In [40] a methodology for designing adaptive applications is
discussed. One of the points made is that the user should
be involved in decisions to determine the extent to which
an application should adapt in the given environment. In
[41], machine learning has been recommended as a way to
adapt general solutions. Using different learning
algorithms, solutions for specific situations can be
developed. In [42], a software evolution process has been
described. In this process, firstly the requirements
specifications are iteratively developed in consultation with
the user. The design specification is then developed;
however, during verification, each design specification
should be a refinement of the corresponding requirement
specification and not an evolution of the latter. Finally the
implementation should be a refinement of the design and
not an evolution. In [43], the EVO method used at HP is
described, wherein several incremental cycles are used.
[44] gives some requirements that an adaptable system
should satisfy, viz., extensibility, flexibility, performance
tunability and fixability. In [12] the adaptive software
development methodology is proposed. This methodology
has three steps: speculate (which gives the general idea of
where to go in building the software system), collaborate
(shared development of software) and learn (from
experience).

3. THE NFR APPROACH

The various techniques and methodologies that we have
mentioned in the previous section certainly have deepened
our understanding of the nature of adaptability, especially
in the particular domains considered and with the particular
definitions given. The NFR Approach that we propose here
is intended to be applicable to any such techniques or
methodologies, regardless of the domain and definition of
adaptability. Instead of proposing a single solution, the
NFR Approach allows alternative solutions to be explored.
Additionally, the NFR approach allows for decomposition of
the NFR adaptability depending on the domain, or the
application, and permits criticalities to be allocated to
different NFRs of the decomposition. Also, the NFR
approach allows for the consideration of design tradeoffs,

as well as an interactive assessment of the degree to
which NFRs such as adaptability are achieved.

3.1 Definition of Software Adaptability

The definition for software adaptability that we give below
is consistent with the spirit of [3]. This definition has been
mentioned earlier in [45, 46, 47], and re-presented below.

Adaptation means change in the system to accommodate
change in its environment. More specifically, adaptation of

a software system (S) is caused by change from an old
environment (E) to a new environment (E'), and results in a
new system (S') that ideally meets the needs of its new
environment (E'). Formally, adaptation can be viewed as a
function:

A system is adaptable if an adaptation function exists.
Adaptability then refers to the ability of the system to make
adaptation.

Adaptation involves three tasks:

1. ability to recognize

2. ability to determine the change to be made to

the system S according to

3. ability to effect the change in order to generate the
new system S'.

These can be written as functions in the following way:

The meet function above involves the two tasks of
validation and verification, which confirm that the changed
system (S') indeed meets the needs of the changed
environment (E'). The predicate meet is intended to take
the notion of goal satisficing of the NFR Framework
[15,16,17,50], which assumes that development decisions
usually contribute only partially (or against) a particular
goal, rarely "accomplishing" or "satisfying" goals in a clear-
cut sense. Consequently generated software is expected to
satisfy NFRs within acceptable limits, rather than
absolutely.

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

Figure 1 explains the relationship between the various
symbols described above.

3.2 The NFR Approach to Adaptability

In applying the NFR Framework to adaptability, based on
the definition of adaptability and the domain requirements,
the NFR softgoal adaptability is first decomposed into its
constituent NFRs - this is illustrated by the top part of the
SIGs in Figures 3 and 5. Then a determination of the
extent of satisficing of the various NFR softgoals by the
design softgoals (for a particular architecture) is made.
This is represented by the satisficing links between the
upper part and the lower part of the SIGs in Figures 3 and
5. Whether the design softgoals meet the requirements can
be decided by the developer from the SIG.

Another way to use the NFR Framework is in the
knowledge base approach discussed next. Advantages of
the NFR Framework are several including:

 the history of design decisions is recorded in
graphs

 development knowledge can be organized into
catalogs

 it is very easy to recollect past decisions from the
graphs.

4. CONCLUSION

In this paper we have discussed a way to deal with the
important non-functional requirement (NFR) of software
adaptation, along with some motivations for, and survey of,
techniques for adaptation. We have also shown how to
handle definitions of this NFR in the literature, which can
often be unclear and even inconsistent, by taking an NFR
Approach. This approach adapts the NFR Framework
[15,16,17,50] which helps to systematically handle NFRs
such as adaptability. We then illustrated how the NFR

Approach could be extended into a knowledge-based
approach in order to use and reuse the various techniques
for achieving software architecture adaptability, with a
discussion of how the knowledge-based approach would
help to (semi) automatically generate adaptable
architectures.

The NFR Approach is consistent with the spirit of QFD [51]
and Dr. Barry Boehm's Spiral Model/Win-Win system[52] -
the NFR Approach provides enough constructs to easily
extend these techniques. To date, the NFR Approach has
been used in analyzing adaptation in some systems [45,
46, 47]. However, there still is a lot of work to be done. One
concern is to find better cataloging of this NFR and those
of its refinements. Another is to develop methods for
different application domains so that the knowledge base
better represents the needs of the industry. This will also
allow industry practitioners to make use of the knowledge
base for their own work. Also, right now we are not fully
sure exactly how to generate the architectures. However,
we believe that the NFR Approach to handling adaptability
has already shown some signs of practical effectiveness
and hopefully will be used by software practitioners.

REFERENCES

 Notkin, D., Griswold, W.G. "Extension and
Software Development", Proceedings of the 10

th

International Conference on Software Engineering,
April 1988, pp. 274-283.

 Mikkonen, T., Lahde, E., Niemi, J., Siiskonen, M.
"Managing Software Evolution with the Service
Concept", Proceedings of the International
Symposium on Principles of Software Evolution,
Nov. 2000, Japan, IEEE Computer Press, pp. 46 -
50.

 Lehman, M.M. and Ramil, J.F. "Towards a Theory
of Software Evolution - And its Practical Impact",
Proceedings of the International Symposium on
Principles of Software Evolution, Nov. 2000,
Japan, IEEE Computer Press, pp. 2-11.
http://java.sun.com/people/jag/pathfinder.html.
http: //www-
1.ibm.com/servers/eserver/introducing/eliza.

 Oreizy, P., Gorlick, M.M., Taylor, R.N.,
Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., and Wolf, A.L. "An
Architecture-Based Approach to Self-Adaptive

http://java.sun.com/people/jag/pathfinder.html

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

Software", IEEE Intelligent Systems, May/June
1999, pp. 54-62.

 Adaptability in Object-Oriented Software
Development Workshop Report, 10

th
 European

Conference on Object-Oriented Programming, July
8-12, 1996, Linz, Austria.

 Workshop on Adaptable and Adaptive Software
Report, Addendum to the Proceedings of the 10

th

Annual Conference on Object-Oriented
Programming Systems, Languages and
Applications, Oct. 15-19, 1995, Austin, TX, USA.

 Dorfman, M., and Thayer, R.H. (editors).
Standards, Guidelines, and Examples on System
and Software Requirements Engineering, IEEE
Computer Society Press, Los Alamitos, California,
1990.

 Sanders, J., Curran, E. Software Quality - A
Framework for Success in Software Development
and Support, Addison-Wesley, Wokingham,

England, 1994.

 Software Engineering Institute's website:
http:\\www. sei.cmu.edu.

 Highsmith, J.A. Adaptive Software Development -
A Collaborative Approach to Managing Complex
Systems, Dorset House Publishing, New York,

1999.

 Pressman, R.S. Software Engineering - A
Practitioner's Approach, 4

th
 Edition, McGraw-Hill

Companies, Inc., New York, 1997.

 Oreizy, P., Medvidovic, N. and Taylor, R.N.
"Architecture- Based Runtime Software Evolution",
Proceedings of the International Conference on
Software Engineering", Kyoto, Japan, April 1998,
pp. 177 - 186.

 Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J.
NonFunctional Requirements in Software
Engineering, Kluwer Academic Publishers, Boston,

2000.

 Mylopoulos, J., Chung, L., Nixon, B. "Representing
and Using Nonfunctional Requirements: A
Process-Oriented Approach", IEEE Transactions
on Software Engineering, Vol. 18, No. 6, June

1992, pp. 483-497.

 Mylopoulos, J., Chung, L., Liao, S.S.Y., Wang, H.,
Yu, E. "Exploring Alternatives During
Requirements Analysis", IEEE Software, Jan/Feb.

2001, pp. 2 - 6.

 Bihari, T. E. and Schwan, K. "Dynamic Adaptation
of RealTime Systems", ACM Transactions on
Computer Systems, Vol. 9, No. 2, May 1996,

Pages 143-174.

 Sztipanovits, J., Karsai, G., Bapty, T. "Self-
Adaptive Software for Signal Processing ",
Communications of the ACM, Vol. 41, No. 5, May

1998, pp. 66-73.

 Flinn, J., Satyanarayanan, M. "Energy-aware
Adaptation for Mobile Applications", Proceedings
of the 17

th
 ACM Symposium on Operating Systems

Principles, December 12-15, 1999, Charleston,

USA, 48-63.

 Sha, L., Rajkumar, R., Gagliardi, M. "Evolving
Dependable Real-Time Systems", Proceedings of
Aerospace Applications Conference, Feb. 1996,
pp. 335-346.

 Bellman, K.L. "An Approach to Integrating and
Creating Flexible Software Environments
Supporting the Design of Complex Systems",
Proceedings of the 1991 Winter Simulation
Conference, December 8 - 11, 1991, Phoenix, AZ,
USA, pp. 1101 - 1105.

 Jarzabek, S., Hitz, M. "Business-Oriented
Component-Based Software Development and
Evolution", Proceedings of the International
Workshop on Large-Scale Software Composition,
August 28, 1998, Vienna, Austria, pp. 784-788.

 Koutsoukos, G., Goweia, J., Andrade, L., Fiadeiro,
J.L. "Managing Evolution in Telecommunication
Systems", from the website of Dr. Fiadeiro.

 Andrade, L.F., Fiadeiro, J.L. "Coordination: the
Evolutionary Dimension", from the website of Dr. J.
L. Fiadeiro.

 Keller, R.K., Schauer, R. "Design Components:
Towards Software Composition at the Design
Level", Proceedings of International Conference on
Software Engineering, April 19-25, 1998, Kyoto,
Japan, pp. 302-311.

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

 Gamma, E. et al. Design Patterns: Elements of
Reusable Object-Oriented Software, Reading,

Massachusetts, Addison- Wesley, 1995.

 Heineman, G.T. "Adaptation and Software
Architecture", Proceedings of the 3

rd
 International

Workshop on Software Architecture, Nov. 1-5,

1998, Orlando, Florida, USA, pp. 61-64.

 Kniesel, G. "Type-Safe Delegation for Run-Time
Component Adaptation", Lecture Notes in
Computer Science 1628, Springer-Verlag, Berlin

Heidelberg, 1999, pp. 351-366.

 Keller, R., Holzle, U. "Binary Component
Adaptation", Lecture Notes in Computer Science
1445, Springer-Verlag, Berlin Heidelberg, 1998,

pp. 307-329.

 Chen, J., Rine, D.C. "Training Fuzzy Logic Based
Software Components by Combining Adaptation
Algorithms", Soft Computing, Vol. 2, Issue 2, pp.

48 - 60.

 Bosch, J. "Superimposition: A Component
Adaptation Technique", Information and Software
Technology, Volume 41, Issue 5, March 1999, pp.

257 - 273.

 Yau, S.S. and Karim, F. "Component
Customization for Object-Oriented Distributed
Real-time Software Development", Proceedings of
the 3

rd
 IEEE International Symposium on Object-

Oriented Real-time Distributed Computing, March

15-17, 2000, pp. 156 - 163.

 Parnas, D.L. "Designing Software for Ease of
Extension and Contraction", IEEE Transactions on
Software Engineering, Vol. SE-5, No. 2, March

1979, pp. 128-137.

 Davis, M.J. "Adaptable, Reusable Code",
Proceedings of the 17

th
 International Conference

on Software Engineering on Symposium on
Software Reusability, April 19-30, 1995, Seattle,

WA, USA, pp. 38 - 46.

 Ayed, R.B., Desharnais, J., Frappier, M., Mili, A. "A
Calculus of Program Adaptation and its
Applications", Science of Computer Programming,

Vol. 38, Issues 1 - 3, August 2000, 73 - 123.

 Spears, W.M., DeJong, K.A., Back, T., Fogel, D.B.,
de Garis, H. "An Overview on Evolutionary

Computation", Proceedings of European
Conference on Machine Learning, Vienna, Austria,
April 1993, Lecture Notes in Artificial Intelligence
667, Springer- Verlag, Berlin Heidelberg 1993, pp.
442 - 459.

 Lehman, M.M., and Belady, L. Program Evolution:
Processes of Software Change, Ch. 27, Acad.

Press, London, 1985.

 de Lemos, R. "A Co-operative Object-Oriented
Architecture for Adaptive Systems", Proceedings
of the 7

th
 IEEE International Conference and

Workshop on Engineering of Computer Based
Systems, April 2000, pp. 120-128.

 McIlhagga, M., Light, A., and Wakeman, I.
"Towards a Design Methodology for Adaptive
Applications", The 4

th
 Annual ACM/IEEE

International Conference on Mobile Computing and
Networking, October 25-30, 1998, Dallas, TX,

USA, pp. 133-144.

 Gratch, J., DeJong, G. "A Statistical Approach to
Adaptive Problem Solving", Artificial Intelligence,

Vol. 88, Issues 1-2, December 1996, pp. 101-142.

 Liu, S. "Evolution: A More Practical Approach than
Refinement for Software Development",
Proceedings of the 3

rd
IEEE International

Conference on Engineering of Complex Computer
Systems, IEEE Computer Society Press, Villa
Olmo, Como, Italy, September 8 -12, 1997, pp.
142-151.

 May, E.L., and Zimmer, B.A. "The Evolutionary
Development Model for Software", Hewlett-
Packard Journal, August 1996, pp. 39-45.

 Fayad, M., and Cline, M.P. "Aspects of Software
Adaptability", Communications of the ACM,

Volume 39, No. 10, Oct. 1996, pp. 58-59.

 Subramanian, N., and Chung, L. "Architecture-
Driven Embedded Systems Adaptation for
Supporting Vocabulary Evolution", Proceedings of
the International Symposium on Principles of
Software Evolution, IEEE Computer Press, Nov.

2000, pp. 144 - 153.

 Chung, L., and Subramanian, N. "Process-
Oriented Metrics for Software Architecture
Adaptability", to appear in the Proceedings of
ISRE, 2001.

Journal of Advances in Science and Technology

VOL. 3, NO.4, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 8

E-Mail: ignitedmoffice@gmail.com

 Chung, L., and Subramanian, N. "Architecture-
Based Semantic Adaptation: A Study of Remotely
Controlled Embedded Systems", to appear in the
Proc. of ICSM, 2001.

 Arthur, L.J. Software Evolution - The Software
Maintenance Challenge, John Wiley & Sons, New
York, 1988.
http://mpfwww.jpl.nasa.gov/msp98/news/mco9911
10.html.

 Chung, L., and Nixon, B.A."Dealing with Non-
Functional Requirements: Three Experimental
Studies of a Process-Oriented Approach"; Proc.,
IEEE 17th International Conference on Software
Engineering, Seattle, April 24-28, 1995., pp. 25-37.

 Hauser, J.R., and Clausing, D. "The House of
Quality," Harvard Business Review, May--June

1988, pp. 63--73.

 Boehm, B., and In, H. "Aids for Identifying Conflicts
Among Quality Requirements", Proceedings of
ICRE '96, Colorado, April 1996.

http://mpfwww.jpl.nasa.gov/msp98/news/mco991110.html
http://mpfwww.jpl.nasa.gov/msp98/news/mco991110.html

