

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

A Study on Various Testing Techniques Used In
Software Organizations

Mohammed Rafiq

Research Scholar (Computer Science), CMJ University, Shillong, Meghalaya

Abstract— Software testing is a atsk which is targeted for estimating capability or an attribute of a program and
assures that it attains the needed results. There are numerous approaches to software testing but efficient
complex product testing is significantly an examination process not merely a matter of making and following
route process. It is always not possible to predict all the mistakes in the prpgram. This mistakes can be resolved
using various techniques of software testing. The benefits, challenges and best practices are also dicussed to
develop software testing in future. Thus the selection of appropriate strategy at appropriate time will make
software testing effective and efficient.

Index Terms— Software testing, neeed for software testing, techniques of software testing,. benefits of software
testing, challenges of software testing, best practices of software testing

--♦-------------------------------------

1. INTRODUCTION TO SOFTWARE TESTING

According to Sommerville (2000) testing is a procedure
used to recognize the quality, correctness and
completeness of developed software of a computer.
Testing can never set up the computer software
correctness completely. Software testing is a group of
tasks organized with the purpose of finding mistakes in
software. It also validates and verifies whether the program
is operating appropriately with no errors or not. It identifies
the software for predicting errors. According to
specification software testing is not only used for predicting
and fixing errors but it also assures that the system is
operating. Software testing is a group of process which is
configured to make sure that the computer code does what
it was configured to perform. Software testing is a
destructive method of attempting to predict the mistakes.
The major intention of testing can be assurance, quality,
validation, reliability, verification or estimation. Bertolina
(2003) has mentioned some of the features of software
testing which involves:

 More the testing can be optimized and automated
better the software can be controlled.

 The better it performs more effectively it can be
checked.

 Fewer the modifications fewer the disruption to
testing.

 Testing is a method to recognize the completeness
and correctness of the software.

 A successful test is the one that discloses an
undetected mistake.

 The software testing’s general objective is to
declare the software system quality by exercising
the software systematically in carefully managed
situations.

Whittaker (2000) has described that software testing is
always used in connection with the terms validation and
verification. Validation is the checking process that what
has been specified is what the user needed actually.
Verification is the testing or checking of items including
consistency with a linked specification. Software testing is
one type of verification which uses techniques such as
analysis, reviews, walkthroughs and inspections. For
instance:

Verification: Are we performing the work properly?

Validation: Are we performing the proper work?

According to Barr (2004) the term bug is always used to
define to a fault or an issue in a computer. There are
hardware bugs and software bugs. With debugging
software testing must not be confused. Debugging is the
method of locating and analyzing bugs when software does

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

not act as regarded. Although some bug identification will
be evident from playing with software a methodological
process of software testing is a much more thorough
means of recognizing bugs. Therefore debugging is a task
which aids testing but cannot change testing. However no
value of testing can be assured to discover all bugs. Other
tasks which are always linked with software testing are
dynamic analysis and static analysis. Dynamic analysis
views at software behavior while it is performing to offer
information such as timing profiles, test coverage
information and execution traces. Static analysis examines
the software’s source code, viewing for issues and
collecting metrics without actually performing the code.

2. WHY IS SOFTWARE TESTING NEEDED

A mistake is an action done by human beings that
generates improper outcomes. A mistake is an error
manifestation in software also referred as a bug or a
defect. A mistake is encountered which may induce a fault
which is a software derivation from its regarded service or
delivery. Reliability is the probability that software will not
induce the systems failure for a particular time under
specified situations. Mistakes exist because human beings
are not perfect and even if they are perfect they are
operating under restrictions such as deadlines of delivery.
Testing recognizes the mistakes whose removal develops
the quality of software by enhancing the essential reliability
of software. Testing is the software quality measurement. A
human being can estimate how closely they have gained
quality by testing similar factors such as reliability,
correctness, reusability, usability, testability,
maintainability, etc (Binder, 2000).

Burnstein (2004) has mentioned other factors that may
decide the testing executed may be legal needs or
contractual needs defined usually based on agreed best
practice or industry specific standards.. Though it is very
critical to decide how much testing is enough because
sometimes an individual failure can cost a lot or nothing. In
safety critical systems software can induce injury or death
if it fails so the failure cost in such a system may be in the
lives of human being. The amount of testing executed
relies on the risks involved. Risk must be used as a
foundation for allotting test time that is possible and for
choosing where to fix emphasis and what to test. Software
testing is essential as it may induce failure in mission,
influence on reliability and operational performance if not
performed appropriately. Efficient software testing delivers
quality products of software fulfilling user’s needs,
expectations and requirements. Thus software testing is
very much essential for any development organization to
be assured of the quality that will be provided to
customers.

3. SOFTWARE TESTING TECHNIQUES

According to Loveland et al (2004) software testing is a
procedure which is used to estimate the developed
software quality. It is also a method of disclosing mistakes
in a program and makes it a reliable task. It is a useful
procedure of occurring program with the purpose of
predicting mistakes. The below figure indicates some of the
most predominant software testing techniques which are
categorized by purpose:

Figure 1: Software Testing Techniques categorized by
purpose

Source: Whittaker J A (2000), “What is Software Testing?
And Why Is It So Hard?” IEEE Software, pp. 70-79
Correctness Testing:

Correctness is the most significant testing purpose which is
the minimum need of software.Correctness testing explains
the proper system behavior from the incorrect one for
which it will require some kind of Oracle. Either a black box
view point or a white box view point can be included in
software testing as a tester may or may not know the
inside descriptions of the software module under test. For
instance, Control flow, data flow, etc. The notion of black
box, gray box or white box testing is not restricted to
correctness testing (Kaner, Bach and Pettichord, 2002).
The below figure shows the different forms of correctness
testing:

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

Figure 2: Different forms of correctness testing

Source: Burnstein I (2003), Practical Software Testing,
Springer, New York

The different forms of correctness testing are
described below:

Black Box Testing:

Black (2002) has mentioned that black Box testing is a
major form of correctness testing but its notions are not
restricted to only correctness testing. Correctness testing is
a process which is categorized by software testing
purpose. Black box testing is based on the specification
analysis of a software piece without reference to its internal
operation.

White Box Testing:

According to Copeland (2004) White box testing is based
on internal working analysis and structure of a software
piece. White box testing is the method of giving input to the
system and verifying how the processes of system
produces the needed result. It is important for a tester to
have the complete source code knowledge. White box
testing is possible at unit, system and at integration levels
of software testing process.

Gray Box Testing:

The techniques of gray box testing integrate the testing
methodology of black box and white box. The technique of
gray box testing is used for testing a software piece against

its specifications but using some internal working
knowledge as well.

Performance Testing:

Rakitin (2001) has mentioned that performance testing
includes all phases as the mainstream life cycle of testing
as an independent discipline which includes strategy such
as design, plan, analysis, reporting and execution. This
testing is organized to estimate the system compliance or
tool with the particular needs of performance. Performance
evaluation of any software system involves throughput,
stimulus response time and resource usage. The below
figure shows the types of performance testing:

Figure 3: Two types of performance testing

Source: Jorgensen P C (2002), Software Testing: A
Craftsman’s Approach, 2

nd
 Edition, CRC, USA

The two types of performance testing are
described below:

Load Testing:

Load testing is an industry phrase for the attempt of
performance testing. The load testing is used for verifying
an application against heavy inputs or load such as
website testing to predict at what point the application or
website fails or at what point its performance degrades
(Craig and Jaskiel, 2002).

Stress Testing:

According to Schulmeyer and Mackenzie (2000) stress
testing is referred as an operating random sequence of
operations at bigger than normal volume at quicker than
usual speed and for bigger than the usual time period as a
process to develop the rate of predicting defects and check

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

the product's robustness. Stress testing decides the
system behavior as the base of the user develops.

Reliability Testing:

Reliability testing is very essential as it discover all system
failures and eliminates them before the system is
deployed. reliability testing is similar to numerous
perspectives of software in which the process of testing is
involved. This process of testing is an efficient method of
sampling to estimate the reliability of software. In reliability
testing estimation model is prepared which is used to
identify the data to predict and evaluate future software
reliability. Depending on that evaluation the developers can
determine whether to release the software or not and the
end user will determine whether to acquire that software or
not. The risk of using the software can be assessed based
on reliable information. The two forms of reliability testing
are stress testing and robustness testing (Dasso and
Funes, 2006).

Security Testing:

Jorgensen (2002) has mentioned that security testing
assures that only standardized personnel can access
program and only standardized personnel can access
available functions to their security level. Any developed
system security testing is about predicting major
weaknesses and loopholes of a system which can affect
major damage to the system by a standardized user.
Security testing is very useful for testerto to predict and fix
software issues. It assures that the system will perform for
a long time without any major issue. It also assures that
systems used by organizations are protected from any
unauthorized attack. In this way security testing is
advantageous for organizations in all perspectives.

4. BENEFITS OF SOFTWARE TESTING

Haddox et al (2004) has mentioned that software testing is
consigned to one phase of the software development
Lifecycle. Some of the benefits of software testing are
described below:

1. As manual testing uses a big deal of time in both
the software development process as well as during the
testing of software application, automated components are
a quicker choice as big as the scripts which required to be
performed are non complex and standard.

2. Lewis (2000) has described that test script
execution automation removes human error possibility
when a common sequence of actions is repeated again
and again. This can be normally essential as users would
be surprised to learn how several defects of test

development are in fact affected by tester error, This
specifically exists when similar boring test scripts have to
be performed repeatedly as well as when at opposite
spectrum actually complex testing has to be performed.

3. Software testing tools can be speed up the
process of testing drastically. Automated tools of software
are able to perform 100 or even 1000 times quicker.

4. Software testing tools can eliminate human factors
such as boredom or carelessness. The test component will
operate similar tests and verify the outcomes perfectly
every time it is operated.

5. Software testing can aid code testing in a live
surroundings. Test components are always used to replace
software or hardware which the user plan to use their
product on. This application can help to answer to software
problems that might be critical to gain in a controlled test
surroundings (Hutcheson, 2003).

5. CHALLENGES OF SOFTWARE TESTING

According to Mosley and Posey (2002) all areas of
software engineering face numerous challenges during
execution. So a tester would ever get astonished when the
user faces challenges in software testing. The first
challenge faced by software testing or lack of testing
culture in software organizations. Management needs to
play an essential role to build a testing culture. Second
main challenge in software testing is the lack of skilled
testers. Again the main cause of this challenge is incorrect
decisions of management at the time of testers selection.
As usual management does not need to spend in testers.
This outcomes into inadequate, adhoc and incomplete
testing throughout the Lifecycle of the project. It is also real
that sometimes testers may add complexities in project
testing due to their unqualified way of operation. Myers et
al (2004) has mentioned some other challenges that are
listed below:

1. Complete testing is not possible at all and testing
is often conducted on the basis of sampling. Test
data selection requires better proficiency in the
selection processes of test data.

2. Developers did not interact what the construct is
about and if developers did not interact about what
the construct is about then them before testing
they must ask.

3. Regression testing becomes a challenge as the
project keeps on developing. For these types of
circumstances both the development and testing
teams required to operate together to perform an
appropriate influence analysis.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

4. Sometimes developers and testers collide with
each other on mistakes and take things personally
rather than professionally. It becomes a main
challenge for stakeholders of the project (Perry,
2000).

5. If requirements are not communicated properly to
testers and developers then they must ask for brief
needs.

6. According to Pinkster et al (2006) in several
software organizations in the effort evaluation time
testing team is not included. Testing team is often
asked to verify the construct in a specific area. If
the tester or developer is facing this challenge then
they must increase their voice to similar
stakeholders.

7. Lastly organizations must often expect greater
gains on automation investment.

Thus the above described challenges are resolved and
software testing becomes the future for all industries.

6. BEST PRACTICES FOR SOFTWARE
TESTING

According to Drabick (2003) when applications of software
are designed there are best practices that must be used to
verify the software. There are numerous best practices to
assure risk management and compliance. Some of the
best practices for software testing are;

1. Understanding the purpose or scope of the project
will be useful to judge the level or extent of testing
needed.

2. Before writing test cases testers must go through
the needs briefly without missing any points given
by the client.

3. Once the client gets new needs or changes the
needs the test cases must be updated
immediately.

4. Each test case explanation must be written clearly
after perceiving the module or the context of the
explanation. After executing them manual steps
must be written. Expected outcomes must not
have any ambiguity. Prerequisite situations must
be described if needed (Aggrawal, Singh and Kaur,
2004).

5. Planning and creating test plan document are
important for all software projects/

6. Planning of test/development/staging surroundings
must be performed clearly.

7. Based on the test cases test execution must be
performed carefully and it is very essential to use
proper test data.

8. Whittaker (2002) has mentioned that the bug
report must be prepared clearly with all important
details particularly with the test data or steps for
regenerating the bug. The report of bug must
support the developers to regenerate the bug and
to fix it.

9. Performing little regression test and re-test is
important whenever a reported mistake is fixed.

10. It is not better if the tester performs all the testing
manually as manual testing will take much
effort/time and it is critical to handle and also it is
repeatable or consistent. So it is better to develop
test cases using the tools of the test such as quick
test professional (Pressman, 2000).

Thus the above described software testing best practices
are very efficient when software companies prefer to
develop and design their own applications of software.

7. CONCLUSION

Software testing is an essential technique for the
measurement and improvement of a quality software
system. But it is really not feasible to predict all the
mistakes in the program. For resolving these mistakes
some of the most predominant and similarly used software
testing strategies are described such as correctness
testing, performance testing, reliability testing and security
testing. The successful use of these techniques in software
organizations will verify the outcomes of the research and
direct future research.

8. REFERENCES

1. Sommerville I, (2000): Software Engineering,
Addison-Wesley, 6th edition, August 2000.

2. Bertolina A (2003), ‖Software Testing Research
and Practice‖, Proceedings of the abstract state
machines 10th international conference on
Advances in theory and practice, p 1-21.

3. Whittaker J A (2000), “What is Software Testing?
And Why Is It So Hard?” IEEE Software, pp. 70-79.

4. Barr A (2004), Find the Bug: A Book of Incorrect
Programs, Addison-Wesley Professional, USA.

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

5. Binder R (2000), Testing Object-Oriented Systems:
Models Patterns and Tools, Addison Wesley, USA.

6. Burnstein I (2003), Practical Software Testing,
Springer, New York.

7. Loveland S, Miller G, Prewitt R and Shannon M
(2004), Software Testing Techniques: Finding the
Defects that Matter, Charles River Media, USA.

8. Kaner C, Bach J and Pettichord B (2002), Lessons
Learned in Software Testing, John Wiley & Sons,
New York.

9. Black R (2002), Managing the Testing Process:
Practical Tools and Techniques for Managing
Hardware and Software Testing, 2

nd
 edition, Wiley,

New York.

10. Copeland L (2004), A Practitioner’s Guide to
Software Test Design, Artech House Publishers,
Boston.

11. Rakitin S R (2001), Software Verification and
Validation for Practitioners and Managers, 2nd
Edition, Artech House Publishers, New Delhi.

12. Craig R D and Jaskiel S P (2002), Systematic
Software Testing, Artech House Publishing,
Norwood, MA.

13. Schulmeyer G G and Mackenzie G R (2000),
Verification and Validation of Modern Software-
Intensive Systems, Prentice Hall PTR, New York.

14. Dasso A and Funes A (2006), Verification,
Validation and Testing in Software Engineering,
Idea Group Publishing, UK.

15. Jorgensen P C (2002), Software Testing: A
Craftsman’s Approach, 2

nd
 Edition, CRC, USA.

16. Haddox J, Kapfhammer G M, and Michael C C,
(2002): An approach for understanding and testing
third-party software components, In 48th Reliability
and Maintainability Symposium, January 2002.

17. Lewis W E (2000), “Software Testing and
Continuous Qualify Improvement” CRC Press LLC,
USA.

18. Hutcheson M L (2003), Software Testing
Fundamentals: Methods and Metrics, Wiley
Publishing, Inc., Indianapolis, IN, New York.

19. Mosley D J and Posey B A (2002), Just Enough
Software Test Automation, Prentice Hall PTR,
Upper Saddle River, New Jersey.

20. Myers G J, Sandler C, Badgett T and Thomas T M
(2004), The Art of Software Testing Second
Edition, John Wiley & Sons, New Jersey.

21. Perry W E (2000), Effective Methods for Software
Testing, 2

nd
 Edition, John Wiley & Sons, Inc., New

York.

22. Pinkster I, Van de Burgt B, Janssen D and Van
Veenendaal E (2006), Successful Test
Management: An Integral Approach, Springer,
Germany.

23. Drabick R D (2003), Best Practices for the Formal
Software Testing Process: A Menu of Testing
Tasks, Dorset House Publishing Company, New
York.

24. Aggrawal, K. K., Singh Y and Kaur A (2004),
“Code coverage based technique for prioritizing
test cases for regression testing,”SIGSOFT
Software Engineering Notes,29(5): 1–4.

25. Whittaker J A (2002), How to Break Software: A
Practical Guide to Testing, Addison Wesley, New
York.

26. Pressman R (2001), Software Engineering: A
Practitioner's Approach, McGraw Hill, Boston.

